D Enzymatic computation

The molecular computation processes that we have seen so far are externally controlled by a person or conventional automatic controller sequencing the chemical operations.11 In autonomous molecular computation the chemical processes sequence themselves so that they do not require external control. This is also called “one-pot” molecular computation; that is, you put all the reactants in one pot, and the molecular processes do the rest. Autonomous molecular computation is essential for, example, controlling drug delivery in the body.

Shapiro and his colleagues have demonstrated how to implement finite state machines (FSMs) by autonomous molecular computation. In addition to DNA, it uses a restriction enzyme, ligase, and ATP (for fuel).

The implementation is based on the fokI restriction enzyme. “Once the

protein is bound to duplex DNA via its DNA-binding domain at the 5’-GGATG-3’ : 5’-CATCC-3’ recognition site, the DNA cleavage domain is activated and cleaves, without further sequence specificity, the first strand 9 nucleotides downstream and the second strand 13 nucleotides upstream of the nearest nucleotide of the recognition site.”\(^\text{12}\) It leaves 4-nucleotide sticky ends. That is, the restriction enzyme cuts the DNA as follows:

\[
\begin{align*}
\text{GGATGNNNNNNNN NNNNNNNNNNNNNNNNNN}\; \\
\text{CCTACNNNNNNNNNNNNNNNN NNNNNNNN}
\end{align*}
\]

The ‘N’s can be any nucleotides (respecting Watson-Crick complementarity, of course).

Both the current state of the FSM and the input string are represented by a double DNA strand. \textit{fokI} operates at the beginning of this string and leaves a sticky end that encodes both the current state and the next input symbol (see p. 231 below). The state transitions of the FSM are encoded in transition molecules, which have sticky ends complementary to the state-symbol code at the beginning of the string. The rest of a transition molecule ensures that the string properly encodes the new state, including adding a new recognition site for the enzyme. A matching transition molecule binds to the string’s sticky end, providing a new opportunity for \textit{fokI} to operate, and so the process continues.

A state transition \((q, s_1) \rightarrow q’\) can be represented:

\[
[q, s_1]s_2s_3\cdots s_nt \Rightarrow [q’, s_2]s_3\cdots s_nt
\]

where
\([q,s]\) represents a DNA sequence encoding both state \(q\) and symbol \(s\), and \(t\) is a \textit{terminator} for the string. The \textit{fokI} enzyme cleaves off \([q, s_1]\) in such a way that a transition molecule can bind to the sticky end in a way that encodes \([q’, s_2]\). A special \textit{terminator} symbol marks the end of the input string.

As an example we will consider a two-state FSM on \{a, b\} that accepts strings with an even number of ‘b’s. Ignoring the terminator, DNA codes are assigned to the two symbols ‘a’ and ‘b’ as follows:

\[
\begin{align*}
a & \mapsto AAa\text{aaa} \\
b & \mapsto BB\beta\beta\beta\beta
\end{align*}
\]

\(^{12}\text{wikipedia, s.v. fokI.}\)
where A, α, a, B, β, b are unspecified (by me) bases. The bases are selected in such a way that either the first four bases (AAαα, BBββ) or the last four bases (ααaa, ββbb) encode the symbol. These alternatives represent the two machine states.

The transition molecules are constructed so that the distance between the recognition site (for fokI) and the next symbol depends on new state. As a consequence, when fokI operates it cleaves the next symbol code at a place that depends on the state. Therefore the sticky end encodes the state in the way that it represents the next symbol:

\[
\begin{align*}
[q_0, a] & \quad \mapsto \quad \alpha\alpha\alpha a \\
[q_1, a] & \quad \mapsto \quad AA\alpha\alpha \\
[q_0, b] & \quad \mapsto \quad \beta\beta\beta b \\
[q_1, b] & \quad \mapsto \quad BB\beta\beta
\end{align*}
\]

The transition molecules are:

\[
\begin{align*}
(q_0, a) & \rightarrow q_0 \quad \text{GGATGNNN} \\
& \text{CCTACNNN} \alpha\alpha\alpha a \\
(q_1, a) & \rightarrow q_1 \quad \text{GGATGNNN} \\
& \text{CCTACNNN} \alpha\alpha\alpha a \\
(q_0, b) & \rightarrow q_1 \quad \text{GGATGNNNN} \\
& \text{CCTACNNNNNN} \beta\beta\beta bb \\
(q_1, b) & \rightarrow q_0 \quad \text{GGATGNN} \\
& \text{CCTACNNBB}\beta\beta
\end{align*}
\]

The Ns represent any bases as before. They are used as spacers to adjust the restriction site to represent the new state.

After transition to the new state the sense strand will look like this (for convenience assuming the next symbol is ‘a’):

\[
\begin{align*}
q_0 & \quad \text{GGATGNNXXYY} \quad yyAA.\alpha\alpha\alpha a \\
q_1 & \quad \text{GGATGNNXXYY} \quad yyAA.\alpha\alpha\alpha a
\end{align*}
\]

This is after attachment of the transition molecule but before restriction. Here XX represents either spacers or the first two bases of the previous first symbol, and YYyy represents the last four bases of this symbol. The cleavage site is indicated by a period.

\(^{13}\text{Note that repeated letters might refer to different bases.}\)
The longest strings processed in the PNAS experiments were 12.14 Operation required about 20 seconds per step. However, the parallel speed was about 6.6×10^{10} ops/s/µl. Energy consumption was about $34kT$ per transition, which is only about $50\times$ the von Neumann-Landauer limit ($kT \ln 2$). The authors note, “Reaction rates were surprisingly insensitive to temperature and remained similar over the range of 2–20°C.” This implementation also handles nondeterministic FSMs (just put in all the transition molecules), but the yield decreases exponentially (due to following out all the nondeterministic paths, breadth-first). Therefore it doesn’t seem to be practical for nondeterministic machines.

14Benenson et al., PNAS \textbf{100} (5), March 4, 2003.