Motivation

Time-Domain Analysis of Switching Transitions

(1) Assume \(C_{out} \gg C_{ds} \)
(2) Assume \(C_{ds} \) is linear (e.g., by linear equivalent)
Resonant Circuit Solution

\[V_{C}(t=0) = V_0 \]
\[I_C(t=0) = I_0 \]

\[v_i(t) = \frac{V_{DC}}{\sqrt{LC}} + \left(V_o - V_{DC} \right) \cos \left(\frac{t}{\sqrt{LC}} \right) + \left(I_0 - I_{DC} \right) \frac{L}{C} \sin \left(\frac{t}{\sqrt{LC}} \right) \]

\[i_L(t) = \frac{I_{DC}}{\sqrt{LC}} + \left(I_0 - I_{DC} \right) \cos \left(\frac{t}{\sqrt{LC}} \right) + \left(V_{DC} - V_0 \right) \frac{C}{L} \sin \left(\frac{t}{\sqrt{LC}} \right) \]

Normalisation and Notation

Notation: \[\omega_0 = \frac{1}{\sqrt{LC}} = 2\pi f_0 \quad R_0 = \frac{1}{\sqrt{LC}} \]

\[\begin{cases} v_c(t) = V_{DC} + (V_0 - V_{DC}) \cos(\omega_0 t) + R_0 (I_0 - I_{DC}) \sin(\omega_0 t) \\ i_L(t) = I_{DC} + (I_0 - I_{DC}) \cos(\omega_0 t) + \frac{1}{R_0} (V_{DC} - V_0) \sin(\omega_0 t) \end{cases} \]

Normalisation:
\[m_c(t) = \frac{v_c(t)}{V_{base}} \]
\[j_L(t) = \frac{i_L(t)}{I_{base}} \]
\[\omega = \omega_0 t_i \]

Base \(V \) \rightarrow \text{Any constant voltage (you choose; some choices better than others)}

Base \(I \) \rightarrow \frac{V_{base}}{R_0}
Circuit Analysis

Base Case

\[
\begin{align*}
V_{\text{base}} &= V_{\text{DC}} \\
I_{\text{base}} &= \frac{V_{\text{DC}}}{R_0}
\end{align*}
\]

Inrush Case

\[
\begin{align*}
v_c(t) &= V_{\text{DC}} + (V_0 - V_{\text{DC}}) \cos(\omega_0 t) + R_0 (I_0 - I_{\text{DC}}) \sin(\omega_0 t) \\
i_l(t) &= I_{\text{DC}} + (I_0 - I_{\text{DC}}) \cos(\omega_0 t) + \frac{1}{R_0} (V_{\text{DC}} - V_0) \sin(\omega_0 t)
\end{align*}
\]

Expressions for \(m_c(\theta) \) and \(j_c(\theta) \)

\[
\begin{align*}
m_c(\theta) &= \frac{V_c}{V_{\text{base}}} = 1 + \left(\frac{V_0}{V_{\text{DC}}} - 1 \right) \cos \theta + R_0 \frac{I_0 - I_{\text{DC}}}{V_{\text{DC}}} \sin \theta \\
j_c(\theta) &= \frac{I_c}{I_{\text{base}}} = R_0 \frac{I_{\text{DC}}}{V_{\text{DC}}} + R_0 \frac{I_0 - I_{\text{DC}}}{V_{\text{DC}}} \cos \theta + \left(\frac{1}{R_0} \frac{V_0}{V_{\text{DC}}} \right) \sin \theta
\end{align*}
\]

Equation for a Circle in the \(m-j \) Plane

\[
\begin{align*}
(m_c(\theta) - 1)^2 + (j_c(\theta) - R_0 \frac{I_{\text{DC}}}{V_{\text{DC}}})^2 &= \left(\frac{V_0}{V_{\text{DC}}} - 1 \right)^2 + \left(R_0 \frac{I_0 - I_{\text{DC}}}{V_{\text{DC}}} \right)^2 \\
&= (M_0 - M_{\text{DC}})^2 + (J_0 - J_{\text{DC}})^2
\end{align*}
\]

Key Points

- **Initial Condition**
 - \((M_0, J_0)\)
- **DC Solution**
 - \((M_{\text{DC}}, J_{\text{DC}})\)
- **Phase Plane**
 - Transforms Diff EQ's into Geometry & try
 - For L-L, L-C circuits
State Plane Analysis

DC Solution:
\[V_c = V_{dc} \rightarrow m_c = \frac{V_{dc}}{V_{base}} \]
\[I_c = I_{dc} \rightarrow J_c = \frac{I_{dc}}{V_{base}} \]

Initial Conditions:
\[V_c(0) = V_0 \rightarrow m_c = \frac{V_0}{V_{base}} \]
\[I_c(0) = I_0 \rightarrow J_c = \frac{I_0}{V_{base}} \]

\[\text{Direction? find } \frac{dv_c}{dt} = 0 \]
\[\text{or/and } \frac{di_c}{dt} = 0 \]
