Course Info

• Course focuses on design an modeling of “high frequency” power electronics
 • Course website: http://web.eecs.utk.edu/~dcostine/ECE581
 • Goal of course is understanding of motivations and issues with high frequency power electronics; analysis and design techniques; applications

• Prerequisites: undergraduate Circuits sequence, Microelectronics, ECE 481 – Power Electronics, or equivalent

Contact Info

Instructor: Daniel Costinett

• Office: MK504
• Office Hours: W 3-4pm, R 10-11am
• E-mail: Daniel.Costinett@utk.edu
• Email questions will be answered within 24 hours (excluding weekends)
• Please use [ECE 581] in the subject line
Course Structure

• Course meets MWF 9:15-10:05 am
• Plan to spend ~9 hours per week on course outside of lectures
• Grading:
 – Homework/Lab: 40%
 • One homework per week
 • Assignments due on Fridays unless otherwise noted on course website
 – Midterm: 25%
 • Tentatively scheduled for October 29th
 – Final: 35%

Assignments

• Assignments due at the start of lecture on the day indicated on the course schedule
• All assignments submitted through canvas
 – https://utk.instructure.com/courses/104569
• No late work will be accepted except in cases of documented medical emergencies
• Collaboration is encouraged on all assignments except exams; Turn in your own work
• All work to be turned in through canvas
Textbook and Materials

• The textbook
 will cover some of chapters 19-20 and reference materials from prior chapters. The textbook is available on-line from campus network. Purchase is not required for this course.

• MATLAB/Simulink, LTSpice will be used; All installed in the Tesla Lab

• Lecture slides and notes, additional course materials, homework, due dates , etc. posted on the course website

• Additional information on course website

Online Tools

• Zoom
 - https://tennessee.zoom.us/j/94031104264
 - All lectures will be livestreamed and recorded through the same zoom meeting

• Slack
 - https://curenterc.slack.com/archives/G019PH31YP2
 - Peer collaboration, and instructor-student communication

• Canvas
 - https://utk.instructure.com/courses/104569
 - Submission of all assignments

• Slido
 - https://app.sli.do/event/lhsyh9vk/live/questions
 - Anonymous feedback / Q&A during lectures
Office Hours

• In-person office hours not permitted
• Scheduled office hours are times of maximum availability
• Contact me by e-mail, slack to start a telecon
• Outside of office hours, I will respond within 24 hours to e-mail or slack messages

TiNY BOX CHALLENGE

• Design competition to build and test an “optimized” dc-dc converter
 – Fall ‘16 – 60-to-12V, 60W
 – Fall ‘18 – 48-to-1.2V, 12W
• Format and feasibility TBD due to labwork requirement
 – Usually ~October-November
 – Usually in groups of 2-3
Pandemic Planning

• Discussion
Introduction

• Why high frequency?
 – Power Density
 – Control Bandwidth

• Techniques
 – Devices
 – Control
 – Topologies
 – Passives

Motivating Example

12V/48V Electrical Architecture

- eBooster
- EPS / EMPS
- Roll Stabilization
- 48V High-Power Consumer
- 48V Boardnet
- 48V Starter/Generator
- 48V Battery System
- Classic 12V Boardnet
- DC/DC

- PTC Heater
- Electric Pumps
- El. AC Compressor

AVL UK Expo 2014 / Ulf Stenzel

Audi, “Electric biturbo and hybridization”, 2014
AVL, “48V Mild Hybrid Systems”
Baseline Design

- Use TI WebBench (webench.ti.com) to get a baseline design

LTSpice Simulation

<table>
<thead>
<tr>
<th>Param</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_g</td>
<td>12 V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>48 V</td>
</tr>
<tr>
<td>R_{out}</td>
<td>48 Ω</td>
</tr>
<tr>
<td>ΔV_{out}</td>
<td>0.1 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>C_{out}</th>
<th>f_s</th>
<th>Diode</th>
<th>η (Sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22uH</td>
<td>22uF</td>
<td>202k</td>
<td>Si (FR)</td>
<td>93.9%</td>
</tr>
</tbody>
</table>
Diode Reverse Recovery

Datasheet RR Characteristics

Fig. 10 - Typical Stored Charge vs. dl_T/dt

Fig. 9 - Typical Reverse Recovery Time vs. dl_T/dt
Charge Storage

IGBT Current Tailing

Example: buck converter with IGBT

transistor turn-off transition

\[P_{sw} = \frac{1}{f_s} \int_{t_{sw}}^{t_{off}} p_A(t) \, dt = (W_{on} + W_{off}) f_s \]

Fundamentals of Power Electronics
Schottky Diode

<table>
<thead>
<tr>
<th>L</th>
<th>C_{out}</th>
<th>f_s</th>
<th>Diode</th>
<th>η (Sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22uH</td>
<td>22uF</td>
<td>202k</td>
<td>Si (FR)</td>
<td>93.9%</td>
</tr>
<tr>
<td>22uH</td>
<td>22uF</td>
<td>202k</td>
<td>Si Schottky</td>
<td>95.8%</td>
</tr>
</tbody>
</table>