Announcements

• Midterm Exam begins after class
 – Due Friday 10/23 by 5:00pm
 – No collaboration allowed
 – No web resources other than course webpage
 – Can ask questions to instructor

• Friday Lecture → Office Hours

Homework 7 Solution
Remaining Switching Losses

\[V_g \]

Switching Losses:
1. \(\frac{C_{sw}}{C_{ssl}} \rightarrow \text{Eliminated} \)
2. Overlap - turn-on \(\rightarrow \) eliminated, turn-off \(\rightarrow \) may be worse
 \(\left(\frac{I_{sw}}{I_{ssl}} \right) \)
3. Reverse Recovery \(\rightarrow \) eliminated
4. \(Q_{off} \rightarrow Q_{g} \rightarrow \text{no change} \)
5. Body diode conduction \(\rightarrow \) (probably reduced)
6. Shoot-through \(\rightarrow \) (improved short)
7. Coil ringing \(\rightarrow \) (?)

Idealized Switching Waveforms

\[i_{ds} \]

\[t \]

Drop before turn-off

\[V_{ds} \]

Limited overlap loss
Class-E Amplifier

Fig 2—Schematic of a low-order Class-E amplifier.

N. O. Sokal, “Class-E RF Power Amplifiers,” 2001

Class Φ_2 Inverter

Fig 3—Actual transistor voltage and current waveforms in a low-order Class-E amplifier.

J. M. Rivas, O. Leitermann, Y. Han, A. D. Sagneri, and D. J. Perreault, “A High-Frequency Resonant Inverter Topology With Low-Voltage Stress”, 2008
Chapter 20: Resonant Switch Topologies

• Introduction

• 20.1 The zero-current-switching quasi-resonant switch cell
 20.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell
 20.1.2 The average terminal waveforms
 20.1.3 The full-wave ZCS quasi-resonant switch cell

• 20.2 Resonant switch topologies
 20.2.1 The zero-voltage-switching quasi-resonant switch
 20.2.2 The zero-voltage-switching multiresonant switch
 20.2.3 Quasi-square-wave resonant switches

• 20.3 Ac modeling of quasi-resonant converters

• 20.4 Summary of key points
The resonant switch concept

General idea:
- PWM switch network is replaced by a resonant switch network
- This leads to a quasi-resonant or quasi-squarewave version of the original PWM converter

Example: realization of the switch cell in the buck converter

High Frequency Switch Network

Converter examples

High-frequency view of the switch network

Basic switch implementation options
- Q: single-quadrant (transistor)
- D: single-quadrant (diode)
- Q: current-bidirectional (e.g. MOSFET)
- D: current-bidirectional synchronous rectifier (e.g. MOSFET)
ZVS-QSW: Review

Converter examples

High-frequency view of the switch network

Basic switch implementation options

Q: single-quadrant (transistor)
D: single-quadrant (diode)
Q: current-bidirectional (e.g. MOSFET)
D: current-bidirectional synchronous rectifier (e.g. MOSFET)