Resonant Circuits

\[\frac{\text{d}v_{\text{out}}}{\text{d}t} + \left(\frac{\text{d}v_{\text{in}}}{\text{d}t} \right) V_{\text{out}} - V_{\text{in}} = 0 \]

Transient analysis

- \(v_{\text{in}} \) and \(v_{\text{out}} \)
- \(L \) and \(C \)
- \(R \)

\[\begin{align*}
\text{Diff Eq:} & \quad L \frac{\text{d}i}{\text{d}t} + R \frac{\text{d}v}{\text{d}t} = 0 \\
\text{Laplace:} & \quad L \frac{\text{d}v}{\text{d}t} + R \frac{\text{d}v}{\text{d}t} = 0 \\
\text{Numerical approaches:} & \quad \text{techniques from JFL}
\end{align*} \]

Small ripple approximation (SRA) does not generally apply:

- \[i_L \approx I_L \]
- \[v_{\text{out}} \approx V \]

Filter elements:
- "Large" L & C, SRA applies

Resonant elements:
- "Small" L & C, SRA doesn't apply
Resonant Circuit Analysis

\[v_{in} \]

\[v_{out} \]

\[L \]

\[C \]

\[R \]

\[\frac{1}{\omega_0^2} = \frac{1}{LC} \]

\[Q = \frac{R}{R_0} \]

\[R_0 = \sqrt{LC} \]

\[ECE \text{ set } f_0 \text{ location} \]

\[ECE \text{ set } \text{reversal} \]

\[-40 \text{ dB/dec} \]

\[\text{significant attenuation of } f_0 \text{ & harmonics} \]

\[Q > > 0.5 \]

\[Q < < 0.5 \]

\[\text{Unit}(t) \]

\[f_0 \]

\[f_0 \]

\[f_0 \]

\[f_0 \]
Soft Switching

• Advantages
 – Reduced switching loss
 – Possible operation at higher switching frequency
 – Lower EMI

• Disadvantages
 – Increased current and/or voltage stresses due to circulating current
 – Higher peak and rms current values
 – Complexity of analysis and modeling
Limitations: Gate Drive

Preceding motivation assumes v_{gs} still square wave

Gate power loss (normalized by $C_{iss} V_{G, pk}^2$)

$C_{iss} = 276 \text{pF}$, $V_{G, pk} = 8 \text{V}$

Normalized Power Loss [J/s]

Frequency [MHz]

0, 50, 100, 150, 200, 250, 300
Limitations: t_d/T_s
Limitations: Thermal

(a) Graph showing volume vs. switching frequency for different cooling methods.

(b) Graph showing power density vs. switching frequency for different devices.

Limitations: Magnetics Design

At HF ac loss mechanisms (skin, proximity, fringing core) get worse.

Core loss \(\frac{P_{\text{core}}}{V_{\text{core}}} = k_\text{f} (AB)^{\beta} (f_0)^{\alpha} \)

\(\frac{1}{2} AB \) \(2f_0 \)
Limitations: Circuit Modeling

150-to-400V, 150W Boost

EXPERIMENTAL EXAMPLE
ZVS with Si diode

- **ZVS turn-ON**
 - Eliminated losses due to C_{sw} discharge during turn-ON transient
 - Eliminated losses due to MOSFET di/dt during turn-ON transient
- **Diode reverse recovery still impacts the waveforms and losses**
- **Increased current ripple**
 - Increased conduction losses (by $>30\%$)
 - Increased dv_{ds}/dt upon turn-OFF, MOSFET turn-OFF speed is more important

D. Costinett, D. Maksimovic, R. Zane, A. Rodriguez and A. Vázquez, "Comparison of reverse recovery behavior of silicon and wide bandgap diodes in high frequency power converters"
Loss Breakdown: Soft-Switched Si Boost

$f_s = 100 \text{ kHz}$

$P_{loss} = 5.7 \text{ W, } \eta = 98.1\%$

Reverse-recovery: 21% of the total loss

$f_s = 1 \text{ MHz}$

$P_{loss} = 17.7 \text{ W, } \eta = 94.4 \%$

Experiment: $\eta = 95.1 \%$

Reverse-recovery: 68% of the total loss
Soft-switched SiC diode

SiC diode, “soft-switched” operation

Only 2nd-order switching loss mechanisms remain

\[f_s = 1 \text{ MHz} \]

MOSFET

- \(\frac{di_f}{dt} = 200 \text{ A/μs} \)
- \(C_{ds,eq} = 45 \text{ pF} \)
- \(R_{on} = 0.15 \text{ Ω} \)

SiC diode

- \(t_{rr} = 0, Q_{rr} = 0 \)
- \(2C_{d,Qeq} - C_{d,eq} = 64 \text{ pF} \)
- \(V_D = 1.8 \text{ V} \)
Soft-switched Boost with SiC diode

Conduction losses only, 2nd-order switching losses not included in the model

Power supply technology limits become dominated by:

- Magnetics
- 2nd-order switching loss mechanisms, e.g. gate-drive losses, parasitic inductances (layout and packaging)
- Gate-drive circuitry and controllers to support high-frequency operation

Experiments:
- 98.7% at 1 MHz
- 98.0% at 2 MHz

100 kHz or 1 MHz

98.5% efficiency

\[P_{\text{loss}} = 4.5 \text{ W} \]
VHF power electronics [11]

<table>
<thead>
<tr>
<th>Component</th>
<th>Resonant Design</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{LF}</td>
<td>33 nH</td>
<td>Coilcraft 1812SMS</td>
</tr>
<tr>
<td>L_{2F}</td>
<td>12.5 nH</td>
<td>Coilcraft A04TG</td>
</tr>
<tr>
<td>L_{rect}</td>
<td>22 nH</td>
<td>1812SMS</td>
</tr>
<tr>
<td>C_{2F}</td>
<td>39 pF</td>
<td>ATC100A</td>
</tr>
<tr>
<td>C_{rect}</td>
<td>10 pF</td>
<td>ATC100A</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>75 µF</td>
<td>Multilayer Ceramics</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>22 µF</td>
<td>Multilayer Ceramics</td>
</tr>
<tr>
<td>S_{main}</td>
<td></td>
<td>Freescale MRF69060 Fairchild S310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Conventional Design</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{Lout}</td>
<td>10 µH</td>
<td>Coilcraft D03316F-103ML</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>75 µF</td>
<td>Multilayer Ceramics</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>22 µF</td>
<td>Multilayer Ceramics</td>
</tr>
<tr>
<td>S_{main}</td>
<td></td>
<td>LT1371HV</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Fairchild S310</td>
</tr>
</tbody>
</table>

Converter Efficiencies vs. Output Power

WBG Devices

TriQuint TGF2023-02
12W, DC-to-18 GHz
RF/microwave HEMT

FOM for switching applications

\[C_{ds} R_{on} \approx 1 \, \Omega \text{pF} \]
\[Q_g R_{on} \approx 10 \, \Omega \text{pC} \]

Standard hard-switched PWM operation at 50 MHz:
\[\frac{dv_{ds}}{dt} \] dominated by probe (4 pF) capacitance

Emerging GaN HEMT devices may enable completely new RF-based design approaches in power electronics

M. Rodríguez, G. Stahl, D. Costinett and D. Maksimović, "Simulation and characterization of GaN HEMT in high-frequency switched-mode power converters,"
Topics Covered

• High Frequency Power Conversion
 - Switching losses and device selection
 - Nonlinear device capacitances
 - Resonance in power electronics
 - Soft switching (ZVS and ZCS)

• Resonant Converters
 - State-plane analysis
 - Resonant converter topologies
 - Sinusoidal analysis
 - AC-modeling and frequency modulation

• Non-resonant soft switching converters
 - State-plane analysis
 - Constant frequency control
 - Resonant switches
 - Modeling and Simulation
 - Discrete time models

• Switched capacitor converters
 - SSL and FSL operation
 - Charge vector modeling
 - Soft-charging operation

• Applications and practical issues of high frequency converters