V. Evolutionary Computing

A. Genetic Algorithms

Genetic Algorithms

- Developed by John Holland in ‘60s
- Did not become popular until late ‘80s
- A simplified model of genetics and evolution by natural selection
- Most widely applied to optimization problems (maximize “fitness”)
Assumptions

- Existence of fitness function to quantify merit of potential solutions
 - This “fitness” is what the GA will maximize
- A mapping from bit-strings to potential solutions
 - best if each possible string generates a legal potential solution
 - choice of mapping is important
 - can use strings over other finite alphabets

Outline of Simplified GA

1. Random initial population \(P(0) \)
2. Repeat for \(t = 0, \ldots, t_{\text{max}} \) or until converges:
 a) create empty population \(P(t+1) \)
 b) repeat until \(P(t+1) \) is full:
 1) select two individuals from \(P(t) \) based on fitness
 2) optionally mate & replace with offspring
 3) optionally mutate offspring
 4) add two individuals to \(P(t+1) \)

Fitness-Biased Selection

- Want the more “fit” to be more likely to reproduce
 - always selecting the best
 ⇒ premature convergence
 - probabilistic selection ⇒ better exploration
- Roulette-wheel selection: probability \(\propto \) relative fitness:
 \[
 \Pr[i \text{ mates}] = \frac{f_i}{\sum_{j=1}^{x} f_j}
 \]
Crossover: Biological Inspiration

- Occurs during meiosis, when haploid gametes are formed
- Randomly mixes genes from two parents
- Creates genetic variation in gametes

GAs: One-point Crossover

GAs: Two-point Crossover
Part 5A: Genetic Algorithms

GAs: N-point Crossover

Mutation: Biological Inspiration

• Chromosome mutation

• Gene mutation: alteration of the DNA in a gene
 – inspiration for mutation in GAs

• In typical GA each bit has a low probability of changing

• Some GAs models rearrange bits

The Red Queen Hypothesis

“Now, here, you see, it takes all the running you can do, to keep in the same place.”
 — Through the Looking-Glass and What Alice Found There

• Observation: a species probability of extinction is independent of time it has existed

• Hypothesis: species continually adapt to each other

• Extinction occurs with insufficient variability for further adaptation
Demonstration of GA: Finding Maximum of Fitness Landscape

Run Genetic Algorithms — An Intuitive Introduction
by Pascal Glauser
<www.glauserweb.ch/gentore.htm>

Demonstration of GA: Evolving to Generate a Pre-specified Shape (Phenotype)

Run Genetic Algorithm Viewer
<www.rennard.org/alife/english/gavgb.html>

Demonstration of GA: Eaters Seeking Food

http://math.hws.edu/xJava/GA/
Morphology Project
by Michael “Flux” Chang

• Senior Independent Study project at UCLA
 – users.design.ucla.edu/~mflux/morphology
• Researched and programmed in 10 weeks
• Programmed in Processing language
 – www.processing.org

Genotype ⇒ Phenotype

• Cells are “grown,” not specified individually
• Each gene specifies information such as:
 – angle
 – distance
 – type of cell
 – how many times to replicate
 – following gene
• Cells connected by “springs”
• Run phenome:
 – users.design.ucla.edu/~mflux/morphology/gallery/phenome

Complete Creature

• Neural nets for control (blue)
 – integrate-and-fire neurons
• Muscles (red)
 – Decrease “spring length” when fire
• Sensors (green)
 – fire when exposed to “light”
• Structural elements (grey)
 – anchor other cells together
• Creature embedded in a fluid
• Run
 – users.design.ucla.edu/~mflux/morphology/gallery/creature
Effects of Mutation

- Neural nets for control (blue)
- Muscles (red)
- Sensors (green)
- Structural elements (grey)
- Creature embedded in a fluid
- Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack>

Evolution

- Population: 150–200
- Nonviable & non-responsive creatures eliminated
- Fitness based on speed or light-following
- 30% of new pop. are mutated copies of best
- 70% are random
- No crossover

Gallery of Evolved Creatures

- Selected for speed of movement
- Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturegallery>
Karl Sims' Evolved Creatures

Why Does the GA Work?

The Schema Theorem

Schemata

A schema is a description of certain patterns of bits in a genetic string

- A schema describes many strings
- A string belongs to many schemata
The Fitness of Schemata

- The schemata are the building blocks of solutions.
- We would like to know the average fitness of all possible strings belonging to a schema.
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema.
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism).

Effect of Selection

Let \(n \) = size of population

Let \(m(S, t) \) = number of instances of schema \(S \) at time \(t \)

String \(i \) gets picked with probability \(\frac{f_i}{\sum f_j} \)

Let \(f(S) \) = avg fitness of instances of \(S \) at time \(t \)

So expected \(m(S, t + 1) = m(S, t) \cdot \frac{f(S)}{\sum f_j} \)

Since \(f_{av} = \frac{\sum f_j}{n} \), then \(m(S, t + 1) = m(S, t) \cdot \frac{f(S)}{f_{av}} \)

Exponential Growth

- We have discovered:
 \(m(S, t+1) = m(S, t) \cdot \frac{f(S)}{f_{av}} \)
- Suppose \(f(S) = f_{av} (1 + c) \)
- Then \(m(S, t) = m(S, 0) (1 + c)^t \)
- That is, exponential growth in above-average schemata
Effect of Crossover

- Let λ = length of genetic strings
- Let $\delta(S)$ = defining length of schema S
- Probability {crossover destroys S}:
 $$p_d \leq \frac{\delta(S)}{\lambda - 1}$$
- Let p_c = probability of crossover
- Probability schema survives:
 $$p_s \geq 1 - p_c \frac{\delta(S)}{\lambda - 1}$$

Selection & Crossover Together

$$m(S,t + 1) \geq m(S,t) \frac{f(S)}{f_{sw}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1}\right]$$

Effect of Mutation

- Let p_m = probability of mutation
- So $1 - p_m$ = probability an allele survives
- Let $\sigma(S)$ = number of fixed positions in S
- The probability they all survive is
 $$(1 - p_m)^{\sigma(S)}$$
- If $p_m \ll 1$, $(1 - p_m)^{\sigma(S)} \approx 1 - \sigma(S) p_m$
Schema Theorem: “Fundamental Theorem of GAs”

\[m(S,t + 1) \geq m(S,t) \cdot \frac{f(S)}{f_{av}} \left[1 - p_c \frac{d(S)}{\lambda - 1} - o(S) p_m \right] \]

The Bandit Problem

• Two-armed bandit:
 - random payoffs with (unknown) means \(m_1, m_2 \) and variances \(\sigma_1^2, \sigma_2^2 \)
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
• \(k \)-armed bandit: similar analysis applies
• Analogous to allocation of population to schemata
• Suggests GA may allocate trials optimally

Goldberg’s Analysis of Competent & Efficient GAs
Paradox of GAs

- Individually uninteresting operators:
 - selection, recombination, mutation
- Selection + mutation ⇒ continual improvement
- Selection + recombination ⇒ innovation
 - fundamental to invention: generation vs. evaluation
- Fundamental intuition of GAs: the three work well together

Race Between Selection & Innovation: Takeover Time

- Takeover time $t^* = \text{average time for most fit to take over population}$
- Transaction selection: population replaced by s copies of top $1/s$
- s quantifies selective pressure
- Estimate $t^* = \ln n / \ln s$

Innovation Time

- Innovation time $t_i = \text{average time to get a better individual through crossover & mutation}$
- Let $p_i = \text{probability a single crossover produces a better individual}$
- Number of individuals undergoing crossover = $p_c n$
- Number of probable improvements = $p_c p_i n$
- Estimate: $t_i \approx 1 / (p_c p_i n)$
Steady State Innovation

- Bad: \(t' < t_i \)
 - because once you have takeover, crossover does no good
- Good: \(t_i < t' \)
 - because each time a better individual is produced, the \(t' \) clock resets
 - steady state innovation

Innovation number:

\[
I_v = \frac{t'}{t_i} = p_c p_i \frac{n \ln n}{\ln s} > 1
\]

Feasible Region

Other Algorithms Inspired by Genetics and Evolution

- Evolutionary Programming
 - natural representation, no crossover, time-varying continuous mutation
- Evolutionary Strategies
 - similar, but with a kind of recombination
- Genetic Programming
 - like GA, but program trees instead of strings
- Classifier Systems
 - GA + rules + bids/payments
- and many variants & combinations…
Additional Bibliography