V. Evolutionary Computing

A. Genetic Algorithms

Genetic Algorithms
• Developed by John Holland in ‘60s
• Did not become popular until late ‘80s
• A simplified model of genetics and evolution by natural selection
• Most widely applied to optimization problems (maximize “fitness”)

Outline of Simplified GA
1. Random initial population \(P(0) \)
2. Repeat for \(t = 0, \ldots, t_{\text{max}} \) or until converges:
 a) create empty population \(P(t+1) \)
 b) repeat until \(P(t+1) \) is full:
 1) select two individuals from \(P(t) \) based on fitness
 2) optionally mate & replace with offspring
 3) optionally mutate offspring
 4) add two individuals to \(P(t+1) \)

Assumptions
• Existence of fitness function to quantify merit of potential solutions
 – This “fitness” is what the GA will maximize
• A mapping from bit-strings to potential solutions
 – best if each possible string generates a legal potential solution
 – choice of mapping is important
 – can use strings over other finite alphabets

Fitness-Biased Selection
• Want the more “fit” to be more likely to reproduce
 – always selecting the best
 ⇒ premature convergence
 – probabilistic selection ⇒ better exploration
• Roulette-wheel selection: probability \(\propto \) relative fitness:
 \[
 \Pr[i \text{ mates}] = \frac{f_i}{\sum_{j=1}^{n} f_j}
 \]
Crossover: Biological Inspiration

- Occurs during meiosis, when haploid gametes are formed
- Randomly mixes genes from two parents
- Creates genetic variation in gametes

GAs: One-point Crossover

GAs: Two-point Crossover

GAs: N-point Crossover

Mutation: Biological Inspiration

- Chromosome mutation
- Gene mutation: alteration of the DNA in a gene
 - inspiration for mutation in GAs
- In typical GA each bit has a low probability of changing
- Some GAs models rearrange bits

The Red Queen Hypothesis

- Observation: a species probability of extinction is independent of time it has existed
- Hypothesis: species continually adapt to each other
- Extinction occurs with insufficient variability for further adaptation

"Now, here, you see, it takes all the running you can do, to keep in the same place." — Through the Looking-Glass and What Alice Found There
Demonstration of GA: Finding Maximum of Fitness Landscape

Run Genetic Algorithms — An Intuitive Introduction by Pascal Glauser
<www.glauserweb.ch/gentore.htm>

Demonstration of GA: Evolving to Generate a Pre-specified Shape (Phenotype)

Run Genetic Algorithm Viewer<www.rennard.org/alife/english/gavgb.html>

Demonstration of GA: Eaters Seeking Food

http://math.hws.edu/xJava/GA/

Morphology Project by Michael “Flux” Chang

- Senior Independent Study project at UCLA
 - users.design.ucla.edu/~mflux/morphology
- Researched and programmed in 10 weeks
- Programmed in Processing language
 - www.processing.org

Genotype \Rightarrow Phenotype

- Cells are “grown,” not specified individually
- Each gene specifies information such as:
 - angle
 - distance
 - type of cell
 - how many times to replicate
 - following gene
- Cells connected by “springs”
- Run *phenome*: users.design.ucla.edu/~mflux/morphology/gallery/phenome.html

Complete Creature

- Neural nets for control (blue)
 - integrate-and-fire neurons
- Muscles (red)
 - Decrease “spring length” when fire
- Sensors (green)
 - fire when exposed to “light”
- Structural elements (grey)
 - anchor other cells together
- Creature embedded in a fluid
- Run users.design.ucla.edu/~mflux/morphology/gallery/creature.html
Effects of Mutation

- Neural nets for control (blue)
- Muscles (red)
- Sensors (green)
- Structural elements (grey)
- Creature embedded in a fluid
- Run <users.design.uci.edu/~mflux/morphology/gallery/sketches/creaturepack>

Evolution

- Population: 150–200
- Nonviable & nonresponsive creatures eliminated
- Fitness based on speed or light-following
- 30% of new pop. are mutated copies of best
- 70% are random
- No crossover

Gallery of Evolved Creatures

- Selected for speed of movement
- Run <users.design.uci.edu/~mflux/morphology/gallery/sketches/creaturegallery>

Karl Sims’ Evolved Creatures

Why Does the GA Work?

The Schema Theorem

Schemata

A schema is a description of certain patterns of bits in a genetic string

A string belongs to many schemata

A schema describes many strings
The Fitness of Schemata
- The schemata are the building blocks of solutions.
- We would like to know the average fitness of all possible strings belonging to a schema.
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema.
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism).

Effect of Selection
Let \(n \) = size of population
Let \(m(S, t) \) = number of instances of schema \(S \) at time \(t \)
String \(i \) gets picked with probability \(\frac{f_i}{\sum_j f_j} \)
Let \(f(S) = \text{avg fitness of instances of } S \) at time \(t \)
So expected \(m(S, t + 1) = m(S, t) \cdot \frac{f(S)}{f_{av}} \)
Since \(f_{av} = \frac{\sum_j f_j}{n} \), \(m(S, t + 1) = m(S, t) \cdot \frac{f(S)}{f_{av}} \)

Exponential Growth
- We have discovered: \(m(S, t + 1) = m(S, t) \cdot f(S) / f_{av} \)
- Suppose \(f(S) = f_{av} (1 + c) \)
- Then \(m(S, t) = m(S, 0) (1 + c)^t \)
- That is, exponential growth in above-average schemata

Effect of Crossover
- Let \(\lambda = \text{length of genetic strings} \)
- Let \(\delta(S) = \text{defining length of schema } S \)
- Probability \{crossover destroys } S\): \(p_d = \delta(S) / (\lambda - 1) \)
- Let \(p_c = \text{probability of crossover} \)
- Probability schema survives:
 \[p_s \geq 1 - p_c \cdot \frac{\delta(S)}{(\lambda - 1)} \]

Selection & Crossover Together
\[m(S, t + 1) \geq m(S, t) \cdot \frac{f(S)}{f_{av}} \left[1 - p_c \cdot \frac{\delta(S)}{\lambda - 1} \right] \]

Effect of Mutation
- Let \(p_m = \text{probability of mutation} \)
- So \(1 - p_m = \text{probability an allele survives} \)
- Let \(o(S) = \text{number of fixed positions in } S \)
- The probability they all survive is \((1 - p_m)^{o(S)} \)
- If \(p_m \ll 1 \), \((1 - p_m)^{o(S)} \approx 1 - o(S) \cdot p_m \)
Schema Theorem: “Fundamental Theorem of GAs”

\[m(S, t + 1) \geq m(S, t) \frac{f(S)}{f_w} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} - o(S) p_m \right] \]

The Bandit Problem

- Two-armed bandit:
 - random payoffs with (unknown) means \(m_1, m_2 \) and variances \(\sigma_1^2, \sigma_2^2 \)
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
- \(k \)-armed bandit: similar analysis applies
- Analogous to allocation of population to schemata
- Suggests GA may allocate trials optimally

Goldberg’s Analysis of Competent & Efficient GAs

Paradox of GAs

- Individually uninteresting operators:
 - selection, recombination, mutation
- Selection + mutation \(\Rightarrow \) continual improvement
- Selection + recombination \(\Rightarrow \) innovation
 - fundamental to invention: generation vs. evaluation
- Fundamental intuition of GAs: the three work well together

Race Between Selection & Innovation: Takeover Time

- Takeover time \(t^* \) = average time for most fit to take over population
- Transaction selection: population replaced by \(s \) copies of top 1/s
- \(s \) quantifies selective pressure
- Estimate \(t^* = \ln n / \ln s \)

Innovation Time

- Innovation time \(t_i = \) average time to get a better individual through crossover & mutation
- Let \(p_i = \) probability a single crossover produces a better individual
- Number of individuals undergoing crossover = \(p_c n \)
- Number of probable improvements = \(p_i p_c n \)
- Estimate: \(t_i \approx 1 / (p_c p_i n) \)
Steady State Innovation

- **Bad:** $t^* < t_i$
 - because once you have takeover, crossover does no good
- **Good:** $t_i < t^*$
 - because each time a better individual is produced, the t^* clock resets
 - *steady state innovation*
- Innovation number:
 \[I_v = \frac{t^*}{t_i} = p_c p_e \frac{n \ln n}{\ln s} > 1 \]

Feasible Region

- **Selection pressure**
- **Crossover probability**
- Schema theorem boundary
- Mixing boundary
- Drift boundary
- Cross-competition boundary
- Successful genetic algorithm

Other Algorithms Inspired by Genetics and Evolution

- **Evolutionary Programming**
 - natural representation, no crossover, time-varying continuous mutation
- **Evolutionary Strategies**
 - similar, but with a kind of recombination
- **Genetic Programming**
 - like GA, but program trees instead of strings
- **Classifier Systems**
 - GA + rules + bids/payments
- and many variants & combinations…

Additional Bibliography