Design Refinement & Verification

\[f = g \rightarrow h \]

Does \(g; h \) accomplish \(f \)?

\[f = c \rightarrow g \rightarrow h \]

If \(c \) is true does \(g \) accomplish \(f \), and if \(c \) is false does \(h \) accomplish \(f \)?

\[f = c \rightarrow g \]

Is termination guaranteed?

If \(c \) is true does \(g; f \) accomplish \(f \), and if \(c \) is false is \(f \) a no-op ?

Diagrams above show structured programming control structures (we assume test \(c \) does not change state) and their corresponding verification conditions.\(^1\)

- Suppose functionality \(f \) is implemented as: \(g \) followed by \(h \). That implementation is correct provided:
 \[g \text{ followed by } h \text{ transforms state the same way as } f \text{ transforms state.} \]

- Suppose functionality \(f \) is implemented as: if \(c \) then \(g \) else \(h \). That implementation is correct provided:

 If \(c \) is true, then \(g \) transforms state the same way as \(f \) transforms state.

 If \(c \) is false, then \(h \) transforms state the same way as \(f \) transforms state.

- Suppose functionality \(f \) is implemented as: while \(c \) do \(g \). That implementation is correct provided:

 If \(c \) is true, then \(g \) followed by \(f \) transforms state the same way as \(f \) transforms state.

 If \(c \) is false, then \(f \) does not change state.

\(^1\)The notation \(g; h \) denotes \(g \) followed by \(h \).
Consider the following example; the code is intended to transform initial state \(\langle x, y \rangle \) into final state \(\langle x, \lfloor \sqrt{x} \rfloor \rangle \). One might conjecture that loop \(f \) transforms state as follows:

- If \(y^2 \leq x \), then initial state \(\langle x, y \rangle \) is transformed into final state \(\langle x, \lfloor \sqrt{x} \rfloor \rangle \).
- If \(y^2 > x \), then initial state \(\langle x, y \rangle \) is transformed into final state \(\langle x, y \rangle \).

\[
\text{The notation } g; f \text{ denotes } g \text{ followed by } f. \]

To affirm that the conjectured way in which the loop transforms state — the first equality beneath the diagram above — represents how \(f \) actually transforms state, the following verification conditions (from the previous page) must be established:

1. If \((y + 1)^2 \leq x \), then \(g; f \) and \(f \) transform state in the same way.
2. If \((y + 1)^2 > x \), then \(f \) does not change state.

\[2\text{The notation } g; f \text{ denotes } g \text{ followed by } f.\]
Consider the first verification condition above: assume \((y + 1)^2 \leq x\).

If \(y^2 \leq x\) then \(f\) transforms state \(\langle x, y \rangle\) into state \(\langle x, \lfloor \sqrt{x} \rfloor \rangle\), which is identical with how \(g; f\) changes state (that is the desired conclusion).

If \(y^2 > x\) then \(f\) does not change state. However,

\[
x < y^2 < (y + 1)^2 \leq x
\]

\[
\Rightarrow x < x
\]

Thus this case cannot occur.

This argument assumes \(y \geq 0\), because otherwise (3) is false; \(y^2 > (y + 1)^2\) when \(y\) is negative.

Consider the second verification condition above (previous page): assume \((y + 1)^2 > x\).

If \(y^2 > x\) then \(f\) does not change state (that is the desired conclusion).

If \(y^2 \leq x\) then \(f\) transforms state \(\langle x, y \rangle\) into state \(\langle x, \lfloor \sqrt{x} \rfloor \rangle\). Moreover,

\[
y^2 \leq x < (y + 1)^2
\]

\[
\Rightarrow y \leq \sqrt{x} < y + 1
\]

\[
\Rightarrow y = \lfloor \sqrt{x} \rfloor
\]

Thus \(\langle x, y \rangle = \langle x, \lfloor \sqrt{x} \rfloor \rangle\) and \(f\) does not change state (that is the desired conclusion).

Whereas this argument may seem to assume \(y\) is non-negative, \(y < 0\) is not possible because that would contradict (4).

Although desired conclusions hold when \(y \geq 0\), the attempt to establish the required verification conditions has failed because the case \(y < 0\) has not been handled successfully. Moreover, even if that were not an issue, verification would be incomplete because loop termination has not yet been considered.

To illustrate, let \(y = -1\) and \(x = 0\). Condition \(c\) on the initial state \(\langle 0, -1 \rangle\) is true, thus \(g\) executes transforming state to \(\langle 0, 0 \rangle\). Loop \(f\) is entered again and \(c\) on state \(\langle 0, 0 \rangle\) is false, so the loop terminates and \(f\) produces final state \(\langle 0, 0 \rangle\). This contradicts the conjectured behavior

\[
f(\langle 0, -1 \rangle) = \langle 0, -1 \rangle
\]

Homework: the example above demonstrates \(f\) is not how the loop transforms state; how does \(f\) transform state? Prove the correctness of your answer using verification conditions (include loop termination).

3Whereas the initialization \(y := 0\) — it is called \(h\) on the previous page — guarantees non-negative \(y\), that is irrelevant to the current discussion which is *not* analyzing how \(h; f\) transforms state, the current discussion is instead concerned with how \(f\) transforms state.