Relations, Partial Orders, Directed Graphs

Let \(A, B \) be sets. A subset \(R \) of the Cartesian product \(A \times B \) is a relation from \(A \) to \(B \). If \(B = A \), then \(R \) is a relation on \(A \). An alternate notation for \((a, b) \in R\) is \(aRb \). Relation \(R \) is called:

- reflexive iff \(\forall x \in A . xRx \)
- symmetric iff \(\forall x, y \in A . xRy \Rightarrow yRx \)
- transitive iff \(\forall x, y, z \in A . xRy \land yRz \Rightarrow xRz \)
- antisymmetric iff \(\forall x, y \in A . xRy \land yRx \Rightarrow x = y \)

Consider \(R = \{(0,1), (1,0), (0,2)\} \) on \(A = \{0,1,2\} \). Because \((0,0) \notin R\), it follows that \(R \) is not reflexive. Since \((0,1) \in R\) and \((1,0) \in R\), either transitivity or antisymmetry would imply \((0,0) \in R\); thus \(R \) is neither transitive nor antisymmetric. Because \((2,0) \notin R\), it follows that \(R \) is not symmetric.

Consider the “equality” relation on \(A = \{0,1,2\} \),

\[
R = \{(a, a) \mid a \in A \}
\]

It is reflexive (\(xRx \) for all \(x \in A \)), symmetric (\(xRy \Rightarrow x = y \Rightarrow yRx \) for all \(x, y \in A \)), transitive (\(xRy \land yRz \Rightarrow x = y = z \Rightarrow xRz \) for all \(x, y, z \in A \)), and antisymmetric (\(xRy \land yRx \Rightarrow x = y \) for all \(x, y \in A \)).

A relation \(R \) on \(A \) is:

- a partial order if it is transitive, reflexive and antisymmetric (example: equality),
- a total order if it is a partial order and all elements are comparable (\(\forall x, y \in A . xRy \lor yRx \)).
- an equivalence relation if it is transitive, reflexive and symmetric (example: equality).

Homework

1. Consider the less than or equal relation on \(\mathbb{R} \),

\[
\leq = \{(a,b) \mid a \text{ is less than or equal to } b\}
\]

Is \(\leq \) a partial order? Is it a total order? Is it an equivalence relation?

2. Let \(2^U \) be the set of all subsets of a set \(U \). Consider the subset relation on \(2^U \),

\[
\subset = \{(A, B) \mid A \text{ is a subset of } B\}
\]

Is \(\subset \) a partial order? Is it a total order? Is it an equivalence relation?

3. Let \(U \) be a set of propositions. Consider the implication relation on \(U \),

\[
\Rightarrow = \{\langle \alpha, \beta \rangle \mid \alpha \text{ implies } \beta\}
\]

Is \(\Rightarrow \) a partial order? Is it a total order? Is it an equivalence relation?
The composition \(S;R \) of relations \(S \) and \(R \) is the relation
\[
S;R = \{(x, z) \mid \exists y . xSy \land yRz\}.
\]

Given any relation \(R \) on \(A \), the reflexive closure
\[
R \cup \{(x, x) \mid x \in A\}
\]
is reflexive, the symmetric closure
\[
R \cup \{(y, x) \mid (x, y) \in R\}
\]
is symmetric, and the transitive closure
\[
\bigcup_{i=1}^{\infty} R^i \quad (\text{where } R^1 = R, \text{ and } R^{i+1} = R^i; R)
\]
is transitive.

Homework: Consider \(R = \{(0, 1), (1, 0), (0, 2)\} \) on \(A = \{0, 1, 2, 3\} \). Find the reflexive closure, the symmetric closure, the transitive closure, and the reflexive transitive closure (i.e., the reflexive closure of the transitive closure).

A relation \(R \) on \(A \) is equivalent to a directed graph \(\text{dg}(R) \) whose vertex set is \(A \), and which contains an edge from \(x \) to \(y \) iff \(xRy \). Conversely, corresponding to directed graph \(G \) is the relation \(r(G) \) defined by \((x, y) \in r(G) \) iff \(G \) contains an edge from \(x \) to \(y \).

A directed acyclic graph (DAG) contains no directed path whose first and last vertices are the same (a directed path is a sequence of vertices in which there is an edge from each vertex in the sequence to its successor).

Given partial order \(P \), the equivalent graph \(\text{dg}(P) \) is not a DAG; since \(P \) is reflexive, every vertex has a self-loop\(^1\). However, the graph \(\text{dag}(P) \) obtained from \(\text{dg}(P) \) by removing self-loops is a DAG.\(^2\) Conversely, the relation \(r(G) \) corresponding to DAG \(G \) is not a partial order; it will not be reflexive (\(G \) has no self-loops) and it might not be transitive. However, the reflexive transitive closure of \(r(G) \), which we will denote by \(p(G) \), is a partial order.

Homework: Sketch \(\text{dg}(R) \) for \(R = \{(0, 1), (1, 0), (0, 2)\} \) on \(A = \{0, 1, 2, 3\} \). Let \(G_1, G_2 \) denote the left, right graph below (respectively). What is \(P = p(G_1) \)? Draw \(\text{dag}(P) \). What is \(p(G_2) \) ?

\(^1\)A self-loop is an edge from a vertex to itself.
\(^2\)Extra Credit: prove it.
A dependency graph is a finite directed graph G representing constraints between tasks; there is an edge from x to y if task x must be completed before task y can start. If G is not a DAG, then completing the tasks is impossible, because some task must be completed before it can start!

If G is a DAG, there exists a total order S such that $r(G) \subset S$. Thus S is a task schedule which satisfies all constraints. The schedule is serial because different tasks x and y are comparable; either xSy (complete x before starting y) or ySx (complete y before starting x). The following algorithm produces a potentially parallel schedule corresponding to the partial order $p(G)$ which satisfies all constraints yet may allow some tasks to proceed at the same time.

\[
i \leftarrow 0
\]
\[
\text{while } G \neq \emptyset \text{ do}
\]
\[
L[i] \leftarrow \text{Set of nodes with in-degree } 0
\]
\[
\text{if } L[i] = \emptyset \text{ then}
\]
\[
\text{error (input graph is not a DAG)}
\]
\[
\text{remove from } G \text{ all nodes in } L[i] \text{ and their incident edges}
\]
\[
i \leftarrow i + 1
\]
\[
\text{return } L \text{ (of size } n \text{; indexing begins with } 0)
\]

The schedule is L; complete tasks in $L[i]$ before starting tasks in $L[i+1]$, but tasks in $L[i]$ can proceed in parallel because each $L[i]$ is an antichain; a set whose elements are incomparable (i.e., they are not ordered by precedence constraints). Thus L is a partition of the vertices of G into antichains. To obtain a serial schedule, arbitrarily order tasks within each $L[i]$.

Homework: Produce parallel task schedules for dependency graphs G_1, G_2 (see previous page).

Element $m \in A$ is maximal if $\forall x . mPx \Rightarrow x = m$ (m does not precede any other element), and m is maximum if $\forall x . xPm$ (all other elements precede m). Element $m \in A$ is minimal if $\forall x . xPm \Rightarrow x = m$ (no other element precedes m), and m is minimum if $\forall x . mPx$ (m precedes all other elements).

Homework: Give an example of a partial order P on A which contains neither maximal nor minimal elements (hint: a finite partial order contains both maximal and minimal elements).

Give examples of maximal and minimal elements for the partial orders $p(G_1)$ and $p(G_2)$ (hint: running the algorithm above, every element of $L[0]$ is minimal, every element of $L[n-1]$ is maximal). Are there maximum or minimum elements for $p(G_1)$ or $p(G_2)$?

Let $B \subset A$. Element $l \in A$ is a lower bound of B if $\forall x \in B . lPx$ (l precedes every element in B), and l is a greatest lower bound if it is a maximum element of the set of all lower bounds of B. Element $u \in A$ is an upper bound of B if $\forall x \in B . xPu$ (every element in B precedes u), and u is a least upper bound if it is a minimum element of the set of all upper bounds of B. None of the following need exist: greatest lower bound, least upper bound, upper bound, lower bound.

3Total order S is often referred to as a topological sort.

4Extra Credit: prove that the size of array L (i.e., the number of antichains in the partition) is the length of the longest directed path in G.

5Extra Credit: prove that if a greatest lower bound exists for B, then it is unique, and if a least upper bound exists for B, then it is unique.
Homework: Using the partial order $p(G_2)$, give example subsets B for the following.

- B has no lower bound.
- B has no upper bound.
- B has a greatest lower bound.
- B has a least upper bound.
- B has a lower bound, but no greatest lower bound.
- B has an upper bound, but no least upper bound.

Equivalence Relations

Equivalence relations can be viewed as functions in the sense that: to each equivalence relation E there is an associated function f, and to each function f there is an associated equivalence relation E.

Given E on A, define the associated function

$$f_E : A \rightarrow 2^A$$

$$x \mapsto \{y \mid yEx\}$$

Homework: The image $f_E(x)$ of x is the *equivalence class of x*. Prove that the range of f_E — the set of equivalence classes — partitions A (the union of the equivalence classes is A, and distinct equivalence classes have empty intersection).\(^6\)

Conversely, given function $f : A \rightarrow B$, define the associated equivalence relation on A

$$E_f = \{(x, y) \mid f(x) = f(y)\}$$

Extra Credit: Prove that E_f is an equivalence relation, whose set of equivalence classes is

$$\{f^{-1}(x) \mid x \in B\}$$

Moreover, for every equivalence relation E,

$$E = E_{f_E}$$

\(^6\)Hint: this is in the book!