V. Evolutionary Computing

A. Genetic Algorithms

Genetic Algorithms

• Developed by John Holland in ’60s
• Did not become popular until late ’80s
• A simplified model of genetics and evolution by natural selection
• Most widely applied to optimization problems (maximize “fitness”)

Outline of Simplified GA

1. Random initial population $P(0)$
2. Repeat for $t = 0, \ldots, t_{\text{max}}$ or until converges:
 a) create empty population $P(t + 1)$
 b) repeat until $P(t + 1)$ is full:
 1) select two individuals from $P(t)$ based on fitness
 2) optionally mate & replace with offspring
 3) optionally mutate offspring
 4) add two individuals to $P(t + 1)$

Assumptions

• Existence of fitness function to quantify merit of potential solutions
 – This “fitness” is what the GA will maximize
• A mapping from bit-strings to potential solutions
 – best if each possible string generates a legal potential solution
 – choice of mapping is important
 – can use strings over other finite alphabets

Fitness-Biased Selection

• Want the more “fit” to be more likely to reproduce
 – always selecting the best
 ⇒ premature convergence
 – probabilistic selection ⇒ better exploration
• Roulette-wheel selection: probability \propto relative fitness:
 $$ \Pr\{i \text{ mates}\} = \frac{f_i}{\sum_{j=1}^{n} f_j} $$
Part 5A: Genetic Algorithms

Crossover: Biological Inspiration
- Occurs during meiosis, when haploid gametes are formed
- Randomly mixes genes from two parents
- Creates genetic variation in gametes

GAs: One-point Crossover

GAs: Two-point Crossover

GAs: N-point Crossover

Mutation: Biological Inspiration
- Chromosome mutation
- Gene mutation: alteration of the DNA in a gene
 - inspiration for mutation in GAs
- In typical GA each bit has a low probability of changing
- Some GAs models rearrange bits

The Red Queen Hypothesis
- **Observation**: a species probability of extinction is independent of time it has existed
- **Hypothesis**: species continually adapt to each other
- Extinction occurs with insufficient variability for further adaptation

"Now, here, you see, it takes all the running you can do, to keep in the same place.”
— Through the Looking-Glass and What Alice Found There
Demonstration of GA: Finding Maximum of Fitness Landscape

Run Genetic Algorithms — An Intuitive Introduction by Pascal Glauser
<www.glauserweb.ch/gentore.htm>

Demonstration of GA: Evolving to Generate a Pre-specified Shape (Phenotype)

Run Genetic Algorithm Viewer
<www.rennard.org/alife/english/gavgb.html>

Demonstration of GA: Eaters Seeking Food

http://math.hws.edu/eck/js/genetic-algorithm/GA.html

Morphology Project by Michael “Flux” Chang

- Senior Independent Study project at UCLA
 - users.design.ucla.edu/~mflux/morphology
- Researched and programmed in 10 weeks
- Programmed in Processing language
 - www.processing.org

Genotype ⇒ Phenotype

- Cells are “grown,” not specified individually
- Each gene specifies information such as:
 - angle
 - distance
 - type of cell
 - how many times to replicate
 - following gene
- Cells connected by “springs”
- Run phenome:
 <users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome>

Complete Creature

- Neural nets for control (blue)
 - integrate-and-fire neurons
- Muscles (red)
 - Decrease “spring length” when fire
- Sensors (green)
 - fire when exposed to “light”
- Structural elements (grey)
 - anchor other cells together
- Creature embedded in a fluid
- Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature>
Part 5A: Genetic Algorithms

Effects of Mutation
- Neural nets for control (blue)
- Muscles (red)
- Sensors (green)
- Structural elements (grey)
- Creature embedded in a fluid
- Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack>

Evolution
- Population: 150–200
- Nonviable & nonresponsive creatures eliminated
- Fitness based on speed or light-following
- 30% of new pop. are mutated copies of best
- 70% are random
- No crossover

Gallery of Evolved Creatures
- Selected for speed of movement
- Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturegallery>

Karl Sims’ Evolved Creatures

Why Does the GA Work?

The Schema Theorem

Schemata

A *schema* is a description of certain patterns of bits in a genetic string:

- A *string* belongs to many schemata.
The Fitness of Schemata

- The schemata are the building blocks of solutions
- We would like to know the average fitness of all possible strings belonging to a schema
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism)

Effect of Selection

Let n = size of population
Let $m(S,t) =$ number of instances of schema S at time t

String i gets picked with probability $f_i / \sum f_j$

Let $f(S) =$ avg fitness of instances of S at time t

So expected $m(S,t + 1) = m(S,t) \cdot n \cdot f(S) / \sum f_j$

Since $f_{av} = \sum f_j / n$, $m(S,t + 1) = m(S,t) \cdot f(S) / f_{av}$

Exponential Growth

- We have discovered: $m(S,t + 1) = m(S,t) \cdot f(S) / f_{av}$
- Suppose $f(S) = f_{av} (1 + c)$
- Then $m(S,t) = m(S,0) (1 + c)^t$
- That is, exponential growth in above-average schemata

Effect of Crossover

- Let $\lambda =$ length of genetic strings
- Let $\delta(S) =$ defining length of schema S
- Probability {crossover destroys S}: $p_d \leq \delta(S) / (\lambda - 1)$
- Let $p_c =$ probability of crossover
- Probability schema survives:

$$p_s \geq 1 - p_c \delta(S) / (\lambda - 1)$$

Selection & Crossover Together

$$m(S,t + 1) \geq m(S,t) \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} \right]$$

Effect of Mutation

- Let $p_m =$ probability of mutation
- So $1 - p_m =$ probability an allele survives
- Let $o(S) =$ number of fixed positions in S
- The probability they all survive is $(1 - p_m)^{\delta(S)}$
- If $p_m \ll 1$, $(1 - p_m)^{\delta(S)} \approx 1 - o(S) p_m$
Part 5A: Genetic Algorithms

Schema Theorem: “Fundamental Theorem of GAs”

\[m(S, t + 1) \approx m(S, t) \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} - o(S)p_m \right] \]

The Bandit Problem

- Two-armed bandit:
 - random payoffs with (unknown) means \(m_1, m_2 \)
 - variances \(\sigma_1^2, \sigma_2^2 \)
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever

- \(k \)-armed bandit: similar analysis applies

- Analogous to allocation of population to schemata

- Suggests GA may allocate trials optimally

Goldberg’s Analysis of Competent & Efficient GAs

Paradox of GAs

- Individually uninteresting operators:
 - selection, recombination, mutation

- Selection + mutation \(\Rightarrow \) continual improvement

- Selection + recombination \(\Rightarrow \) innovation
 - fundamental to invention: generation vs. evaluation

- Fundamental intuition of GAs: the three work well together

Race Between Selection & Innovation: Takeover Time

- Takeover time \(t^* \) = average time for most fit to take over population

- Transaction selection: population replaced by \(s \) copies of top 1/s

- \(s \) quantifies selective pressure

- Estimate \(t^* \approx \ln n / \ln s \)

Innovation Time

- Innovation time \(t_i \) = average time to get a better individual through crossover & mutation

- Let \(p_i \) = probability a single crossover produces a better individual

- Number of individuals undergoing crossover = \(p_c n \)

- Number of probable improvements = \(p_i p_c n \)

- Estimate: \(t_i \approx 1 / (p_c p_i n) \)
Steady State Innovation

- Bad: $t^* < t_i$
 - because once you have takeover, crossover does no good
- Good: $t_i < t^*$
 - because each time a better individual is produced, the t^* clock resets
 - steady state innovation
- Innovation number:
 $$I^v = \frac{t^*}{t_i} = p_s p_i \frac{n \ln n}{\ln s} > 1$$

Other Algorithms Inspired by Genetics and Evolution

- Evolutionary Programming
 - natural representation, no crossover, time-varying continuous mutation
- Evolutionary Strategies
 - similar, but with a kind of recombination
- Genetic Programming
 - like GA, but program trees instead of strings
- Classifier Systems
 - GA + rules + bids/payments
- and many variants & combinations…

Additional Bibliography