Equivalent Circuits with Multiple Damper Windings (e.g. Round-rotor Machines)

- **d axis:**
 \[L_{fd} \triangleq L_F - M_R \quad R_{fd} \triangleq R_F \]
 \[\psi_{fd} \triangleq \psi_F \quad e_{fd} \triangleq e_F \]
 \[L_{1d} \triangleq L_D - M_R \quad R_{1d} \triangleq R_D \]
 \[\psi_{1d} \triangleq \psi_D \]

\(M_R-L_{ad} \approx 0 \) is named \(L_{fkd1} \) in some literature to model rotor mutual flux leakage, i.e. the flux linking the rotor’s field and damper windings but not stator windings.

- **q axis:**
 \[L_{1q} \triangleq L_Q - L_{aq} \quad R_{1q} \triangleq R_Q \]
 \[\psi_{1q} \triangleq \psi_Q \]
 \[L_{2q} \triangleq L_G - L_{aq} \quad R_{2q} \triangleq R_G \]
 \[\psi_{2q} \triangleq \psi_G \]

Subscript Notations:
- \((_fd)\) ~ field winding quantities
- \((_kd)\) ~ k-th d-axis damper winding quantities
- \((_kq)\) ~ k-th q-axis damper winding quantities

(a) d-axis equivalent circuit

(b) q-axis equivalent circuit
Example: a model with 3 rotor windings in each of d- and q-axis equivalent circuits

 - The proposed equivalent circuits are expected to contain sufficient details to model all machines
 - Parameters are estimated by frequency response tests

![Diagram of synchronous machine equivalent circuit](image1)

![Graph showing simulated and measured responses](image2)

Figure S-2. Simulation of Nanticoke Generator Power and Field Current During a Transient Caused By Line Switching.
Example 3.1 (Kundur’s book)

A 555 MVA, 24kV, 0.9p.f., 60Hz, 3 phase, 2 pole synchronous generator has the following inductances an resistances associated with the stator and field windings:

\begin{align*}
 l_{aa} &= 3.2758 + 0.0458 \cos(2\theta) \quad \text{mH} \\
 l_{ab} &= -1.6379 - 0.0458 \cos(2\theta + \pi/3) \quad \text{mH} \\
 l_{aF} &= 40.0 \cos\theta \quad \text{mH} \\
 L_F &= 576.92 \quad \text{mH} \\
 R_a &= 0.0031 \quad \Omega \\
 R_F &= 0.0715 \quad \Omega
\end{align*}

a. Determine L_d and L_q in H

b. If the stator leakage inductance L_l is 0.4129 mH, determine L_{ad} and L_{aq} in H

c. Using the machine rated values as the base values for the stator quantities, determine the per unit values of the following in the L_{ad} base reciprocal per unit system (assuming $L_{ad} = M_F = M_R$ in per unit): $L_l, L_{ad}, L_{aq}, L_d, L_q, M_F, L_F, L_{fd}, R_a$ and R_F

Solution:

a.
\begin{align*}
 l_{aa} &= L_s + L_m \cos 2\theta = 3.2758 + 0.0458 \cos 2\theta \quad \text{mH} \\
 l_{ab} &= -M_s - L_m \cos(2\theta + \pi/3) = -1.6379 - 0.0458 \cos(2\theta + \pi/3) \quad \text{mH} \\
 l_{aF} &= M_F \cos \theta = 40.0 \cos \theta \quad \text{mH} \\
 L_d &= L_s + M_s + 3L_m/2 = 3.2758 + 1.6379 + \frac{3}{2} \times 0.0458 = 4.9825 \quad \text{mH} \\
 L_q &= L_s + M_s - 3L_m/2 = 3.2758 - 1.6379 - \frac{3}{2} \times 0.0458 = 4.8451 \quad \text{mH}
\end{align*}

b.
\begin{align*}
 L_{ad} &= L_d - L_l = 4.9825 - 0.4129 = 4.5696 \quad \text{mH} \\
 L_{aq} &= L_q - L_l = 4.4851 - 0.4129 = 4.432 \quad \text{mH}
\end{align*}
c. \(3\text{-phase }VA_{\text{base}} = 555 \text{ MVA} \)

\[
E_{\text{RMS base}} = 24/\sqrt{3} = 13.856 \text{ kV}
\]

\[
e_{s\text{ base (peak)}} = \sqrt{2} \times E_{\text{RMS base}} = \sqrt{2} \times 13.856 = 19.596 \text{ kV}
\]

\[
I_{\text{RMS base}} = \frac{3\text{-phase }VA_{\text{base}}}{(3 \times E_{\text{RMS base}})} = \frac{555 \times 10^6}{(3 \times 13.856 \times 10^3)} = 13.351 \times 10^3 \text{ A}
\]

\[
i_{s\text{ base (peak)}} = \sqrt{2} \times I_{\text{RMS base}} = \sqrt{2} \times 13.351 \times 10^3 = 18.881 \times 10^3 \text{ A}
\]

\[
Z_{s\text{ base}} = \frac{e_{s\text{ base}}}{i_{s\text{ base}}} = \frac{19.596 \times 10^3}{(18.881 \times 10^3)} = 1.03784 \text{ } \Omega
\]

\[
\omega_{\text{base}} = 2\pi \times 60 = 377 \text{ elec. rad/s}
\]

\[
L_{s\text{ base}} = \frac{Z_{s\text{ base}}}{\omega_{\text{base}}} = \frac{1.03784}{377 \times 10^3} = 2.753 \text{ mH}
\]

\[
i_{F\text{ base}} = \frac{L_{ad}/M_{F} \times i_{s\text{ base}}}{4.5696/40 \times 18.8815 \times 10^3} = 2158.0 \text{ A}
\]

\[
e_{F\text{ base}} = \frac{3\text{-phase }VA_{\text{base}}/i_{F\text{ base}}}{555 \times 10^6/2158} = 257.183 \text{ kV}
\]

\[
Z_{F\text{ base}} = \frac{e_{F\text{ base}}}{i_{F\text{ base}}} = \frac{257.183 \times 10^3}{2158} = 119.18 \text{ } \Omega
\]

\[
L_{F\text{ base}} = \frac{Z_{F\text{ base}}}{\omega_{\text{base}}} = \frac{119.18 \times 10^3}{377} = 316.12 \text{ mH}
\]

\[
M_{F\text{ base}} = \frac{L_{F\text{ base}}}{M_{F\text{ base}}} = \frac{576.92}{316.12} = 1.825 \text{ pu}
\]

Then per unit values are:

\[
L_{l} = \frac{L_{l}/L_{s\text{ base}}}{0.4129/2.753} = 0.15 \text{ pu}
\]

\[
R_{F} = \frac{R_{F}/Z_{F\text{ base}}}{0.0031/1.03784} = 0.0006 \text{ pu}
\]

\[
L_{ad} = 4.5696/2.753 = 1.66 \text{ pu}
\]

\[
M_{F} = \frac{M_{F}/M_{F\text{ base}}}{400/241} = 1.66 \text{ pu}
\]

\[
L_{aq} = 4.432/2.753 = 1.61 \text{ pu}
\]

\[
L_{d} = \frac{L_{d} + L_{ad}}{0.15 + 1.66} = 1.81 \text{ pu}
\]

\[
L_{q} = \frac{L_{q} + L_{aq}}{0.15 + 1.61} = 1.76 \text{ pu}
\]

\[
R_{a} = \frac{R_{a}}{1.03784} = 0.003 \text{ pu}
\]
Steady-state Analysis

- All derivatives (pX) are zero:

\[p\omega_r = 0 \rightarrow \omega_r = 1 \text{ and } L = X \text{ in p.u.} \]

\[p\psi_{fd} = 0 \rightarrow e_{fd} = R_{fd}i_{fd} \]

\[p\psi_{1d} = 0 \rightarrow i_{1d} = 0 \quad \psi_d = -L_d i_d + L_{ad} i_{fd} \]

\[p\psi_{1q} = 0 \rightarrow i_{1q} = 0 \quad \psi_q = -L_q i_q \]

\[p\psi_{d} = 0 \rightarrow e_d = \psi_q - R_a i_d = L_q i_q - R_a i_d \]

\[p\psi_{q} = 0 \rightarrow e_q = \psi_d - R_a i_q = -L_d i_d + L_{ad} i_{fd} - R_a i_q \]

Voltage and flux equations:

\[e_{fd} = R_{fd}i_{fd} \quad \psi_{fd} = (L_{ad} + L_{fd})i_{fd} - L_{ad}i_d \]

\[e_d = X_q i_q - R_a i_d \quad \psi_{1d} = L_{ad}(i_{fd} - i_d) \]

\[e_q = -X_d i_d + X_{ad} i_{fd} - R_a i_q \quad \psi_{1q} = \psi_{2q} = -L_{aq} i_q \]

- Single equivalent circuit for both d and q axes:

\[\tilde{I}_t = i_d + j i_q \]

\[\tilde{E}_t = e_d + j e_q = X_q i_q - R_a i_d - j X_d i_d + j X_{ad} i_{fd} - j R_a i_q \]

\[\tilde{E}_t = \tilde{E}_q - (R_a + j X_q) \tilde{I}_t \quad \text{where } \tilde{E}_q = j[X_{ad} i_{fd} - (X_d - X_q) i_d] \]

If saliency is neglected:

\[E_q = X_{ad} i_{fd} \]

\[X_d = X_q = X_s \text{ (synchronous reactance)} \]
Computing per-unit steady-state values

\[\omega_r = 1 \text{p.u.} \]

- **Active and Reactive Powers**

\[
S = \frac{\tilde{E}_t \tilde{I}_t^*}{E_t I_t} = (e_d + j e_q)(i_d - j i_q) = (e_d i_d + e_q i_q) + j (e_q i_d - e_d i_q)
\]

where \(e_d = -\omega_r \psi_q - R_a i_d \)

\[e_q = \omega_r \psi_d - R_a i_q \]

\[
P_t = e_d i_d + e_q i_q = \omega_r (\psi_d i_q - \psi_q i_d) - R_a (i_d^2 + i_q^2) = P_e - R_a (i_d^2 + i_q^2)
\]

\[
Q_t = e_q i_d - e_d i_q
\]

- **Air-gap torque (or electric torque)**

\[
T_e = \frac{P_e}{\omega_r} = \psi_d i_q - \psi_q i_d = P_t + R_a (i_d^2 + i_q^2)
\]

\[\tilde{E}_t = \tilde{E}_q - (R_a + j X_q) \tilde{I}_t \]

- **Rotor angle \(\delta \)**

\[\delta = \delta_i + \angle \tilde{E}_t \]

\[
\delta_i = \tan^{-1} \left(\frac{X_q I_t \cos \phi - R_a I_t \sin \phi}{E_t + R_a I_t \cos \phi + X_q I_t \sin \phi} \right)
\]

\[
I_t = \frac{\sqrt{P_t^2 + Q_t^2}}{E_t} \quad \phi = \cos^{-1} \left(\frac{P_t}{E_t I_t} \right)
\]
Representation of Magnetic Saturation

- **Assumptions for stability studies**
 - The leakage fluxes are not significantly affected by saturation of the iron portion, so L_l is constant and only L_{ad} and L_{aq} saturate in equivalent circuits.

 \[
 L_{adu} \rightarrow L_{ad} \quad L_{aqu} \rightarrow L_{aq} \quad \text{where } L_{adu} \text{ and } L_{aqu} \text{ denote their unsaturated values}
 \]

 - The leakage fluxes do not contribute to the iron saturation. Thus, saturation is determined only by the air-gap flux linkage.

 \[
 \tilde{\psi}_{at} = \psi_{ad} + j\psi_{aq} = \psi_d + L_l i_d + j\psi_q + jL_l i_q
 \]

 \[
 \psi_{at} = \sqrt{\psi_{ad}^2 + \psi_{aq}^2}
 \]

- Saturation relationship ψ_{at} vs. i_{fd} (or MMF) under loaded conditions is the same as under no-load conditions, so only the open-circuit characteristic (OCC) is considered.

- No magnetic coupling between d and q axes, saturations on L_{ad} and L_{aq} can be modeled individually.
Estimating Saturation Factors K_{sd} and K_{sd}

\[L_{ad} = K_{sd} L_{adu} \quad L_{aq} = K_{sq} L_{aqu} \]

- Salient pole machines
 - The path for q-axis flux is largely in air, so L_{aq} does not vary significantly with saturation of the iron portion of the path
 - Assume $K_{sq} = 1.0$ for all loading conditions.

- Round rotor machines
 - There is a magnetic saturation in both axes, but the saturation data in q axis is usually not available
 - Assume $K_{sq} = K_{sd}$

- Thus, we focus on estimating K_{sd}

\[
K_{sd} = \frac{L_{ad}}{L_{adu}} = \frac{\psi_{at}}{\psi_{at0}} = \frac{\psi_{at}}{(\psi_{at} + \psi_{I})} = \frac{I_0}{I}
\]

(See Kundur’s Example 3.3 on Estimating K_{sd} for different loading conditions)
Modeling of the Saturation Characteristic

- ψ_I is modeled by 3 approximate functions
 - **Segment I** ($\psi_{at}<\psi_{T1}$):
 \[\psi_I = \psi_{at0} - \psi_{at0} = 0 \]
 - **Segment II** ($\psi_{T1}<\psi_{at}<\psi_{T2}$):
 \[\psi_I = A_{sat} e^{B_{sat}}(\psi_{at}-\psi_{T1}) \]
 - **Segment III** ($\psi_{at}>\psi_{T2}$):
 \[\psi_I = \psi_{G2} + L_{ratio}(\psi_{at}-\psi_{T2}) - \psi_{at} \]

 - Note: segments I and II are not connected since when $\psi_{at} = \psi_{T1}$, $\psi_I = A_{sat} \neq 0$ (usually small)
 - Segments II and III are assumed to be connected at $\psi_{at} = \psi_{T2}$ to solve ψ_{G2}

\[A_{sat} e^{B_{sat}}(\psi_{T2}-\psi_{T1}) = \psi_{G2} + L_{ratio}(\psi_{T2}-\psi_{T2}) - \psi_{T2} \]

\[\psi_{G2} = \psi_{T2} + A_{sat} e^{B_{sat}}(\psi_{T2}-\psi_{T1}) \]

Five independent parameters: A_{sat}, B_{sat}, ψ_{T1}, ψ_{T2} and L_{ratio}
Synchronous Machine Model DG1S1

Model Descriptions

This model uses parameters in basic form and type 1 saturation model.

Data Format

IBUS, 'DG1S1', I, MVA, X_{sd}, X_{sq}, X_{d}, X_{q}, R_s, X_{sd1}, X_{qd1}, R_{sd1}, X_{sd2}, X_{qd2}, R_{sd2}, X_{sd3}, R_{sd3}, H, K_d, a, A_{sat}, B_{sat}, \psi_L, \psi_M, RS /

Parameter Descriptions

IBUS - Bus number, name, or generator equipment name of the machine.
I - ID of the machine (may or may not be enclosed in single quotes).
MVA - MVA base of the machine. If not specified (i.e., no value or zero is entered), the MVA base of the matched generator in powerflow data will be used.
X_{sd} - Unsaturated direct axis mutual reactance in per unit on machine MVA base.
X_{sq} - Unsaturated quadrature axis mutual reactance in per unit on machine MVA base.
X_{d} - Leakage reactance in per unit on machine MVA base.
X_{q} - Leakage reactance in per unit on machine MVA base.
R_s - Armature resistance in per unit on machine MVA base.
R_d - Field winding leakage reactance in per unit on machine MVA base.
R_{q} - Field winding resistance in per unit on machines MVA base.
X_{sd1} - First quadrature axis damper winding leakage reactance in per unit on machine MVA base.
R_{sd1} - First quadrature axis damper winding resistance in per unit on machine MVA base.
X_{sd2} - First direct axis damper winding leakage reactance in per unit on machine MVA base.
R_{sd2} - First direct axis damper winding resistance in per unit on machine MVA base.
X_{sd3} - Second quadrature axis damper winding leakage reactance in per unit on machine MVA base.
R_{sd3} - Second quadrature axis damper winding resistance in per unit on machine MVA base.
X_{sd4} - Second direct axis damper winding leakage reactance in per unit on machine MVA base.
R_{sd4} - Second direct axis damper winding resistance in per unit on machine MVA base.
X_{sd5} - Third quadrature axis damper winding leakage reactance in per unit on machine MVA base.
R_{sd5} - Third quadrature axis damper winding resistance in per unit on machine MVA base.
H - Inertia time constant of the machine in MW-second/MVA.
K_p - Damping coefficient in (p.u. torque)/(p.u. speed deviation).
\alpha - This parameter is used only for synchronous motors, as the exponential in the load characteristic of the motor. T_m = K_\alpha\psi^2 (K is determined by TSAT based on the initial condition). It is ignored for generator model.
A_{sat} - Coefficient in saturation characteristic.
B_{sat} - Coefficient in saturation characteristic.
\psi_L - Flux linkage on the saturation curve where the Region II characteristic starts.
\psi_M - Flux linkage on the saturation curve where the Region III characteristic starts.
RS - Ratio of the slopes of air-gap line and the Region III characteristic.

Here \psi_L = \psi_{T1}, \psi_M = \psi_{T2} and RS = L_{ratio}
1.20 GENSACE

Salient Pole Generator Model (Exponential Saturation on Both Axes)

This model is located at system bus \#_____. IBUS.

Machine identifier \#_____. ID.

This model uses CONs starting with \#_____. J, EJ, FJ, and STATES starting with \#_____. K.

The machine MVA is \#_____. for each of \#_____. units = \#_____. MBASE.

ZSOURCE for this machine is \#_____. \(j \) \#_____. on the above MBASE.

CONs Table

<table>
<thead>
<tr>
<th>CONs</th>
<th>#</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td></td>
<td>(T_{\text{do}} > 0) (sec)</td>
<td></td>
</tr>
<tr>
<td>J+1</td>
<td></td>
<td>(T_{\text{do}} > 0) (sec)</td>
<td></td>
</tr>
<tr>
<td>J+2</td>
<td></td>
<td>(T_{\text{do}}^* > 0) (sec)</td>
<td></td>
</tr>
<tr>
<td>J+3</td>
<td></td>
<td>(H, \text{ inertia})</td>
<td></td>
</tr>
<tr>
<td>J+4</td>
<td></td>
<td>(D, \text{ speed damping})</td>
<td></td>
</tr>
<tr>
<td>J+5</td>
<td></td>
<td>(X_d)</td>
<td></td>
</tr>
<tr>
<td>J+6</td>
<td></td>
<td>(X_q)</td>
<td></td>
</tr>
<tr>
<td>J+7</td>
<td></td>
<td>(X_d')</td>
<td></td>
</tr>
<tr>
<td>J+8</td>
<td></td>
<td>(X_q' = X_e')</td>
<td></td>
</tr>
<tr>
<td>J+9</td>
<td></td>
<td>(Xi)</td>
<td></td>
</tr>
<tr>
<td>J+10</td>
<td></td>
<td>(S(1.0))</td>
<td></td>
</tr>
<tr>
<td>J+11</td>
<td></td>
<td>(S(1.2))</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(X_d, X_q, X_d', X_q', X_e, X_i, H, \) and \(D \) are in pu, machine MVA base. \(X_q' \) must be equal to \(X_d' \).

STATES Table

<table>
<thead>
<tr>
<th>STATES</th>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>(E_q')</td>
</tr>
<tr>
<td>K+1</td>
<td></td>
<td>(\psi_q)</td>
</tr>
<tr>
<td>K+2</td>
<td></td>
<td>(\psi_{kd})</td>
</tr>
<tr>
<td>K+3</td>
<td></td>
<td>(\Delta \text{ speed (pu)})</td>
</tr>
<tr>
<td>K+4</td>
<td></td>
<td>(\text{Angle (radians)})</td>
</tr>
</tbody>
</table>

From Anderson's book

Fig. 5.25 Estimating saturation as an exponential function.

\[
S(1.0) = S_{G1} = \frac{i_{F1} - i_{F0}}{i_{F0}}
\]

\[
S(1.2) = S_{G2} = \frac{i_{F3} - i_{F2}}{i_{F2}} = \frac{i_{F3} - 1.2i_{F0}}{1.2i_{F0}}
\]

\[
S_G V_t = A_G e^{B_G (V_t - 0.8)} \sim \psi_I = A_{sat} e^{B_{sat} (\psi_{at} - \psi_{T1})}
\]

\[
A_G = S_{G1}^2 / 1.2 S_{G2} \quad B_G = 5 \ln (1.2 S_{G2} / S_{G1})
\]
Example 3.2 in Kundur’s Book

The following are the parameters in per unit on machine rating of a 555 MVA, 24 kV, 0.9 p.f., 60 Hz, 3600 RPM turbine-generator:\(^1\):

\[
\begin{align*}
L_{ad} &= 1.66 & L_{aq} &= 1.61 & L_f &= 0.15 & R_a &= 0.003 \\
L_{fd} &= 0.165 & R_{fd} &= 0.0006 & L_{1d} &= 0.1713 & R_{1d} &= 0.0284 \\
L_{1q} &= 0.7252 & R_{1q} &= 0.00619 & L_{2q} &= 0.125 & R_{2q} &= 0.02368 \\
M_R & \text{ is assumed to be equal to } L_{ad}.
\end{align*}
\]

(a) When the generator is delivering rated MVA at 0.9 p.f. (lag) and rated terminal voltage, compute the following:

(i) Internal angle \(\delta_i \) in electrical degrees
(ii) Per unit values of \(e_d, e_q, i_d, i_q, i_{1d}, i_{1q}, i_{2d}, i_{2q}, e_{fd}, e_{fd}, \psi_{1d}, \psi_{1q}, \psi_{2d}, \psi_{2q} \)
(iii) Air-gap torque \(T_e \) in per unit and in newton-meters

Assume that the effect of magnetic saturation at the given operating condition is to reduce \(L_{ad} \) and \(L_{aq} \) to 83.5% of the values given above.

(b) Compute the internal angle \(\delta_i \) and field current \(i_{fd} \) for the above operating condition, using the approximate equivalent circuit of Figure 3.22. Neglect \(R_a \).

Solution

(a) With the given operating condition, the per unit values of terminal quantities are

\[
P = 0.9, \quad Q = 0.436, \quad E_f = 1.0, \quad I_f = 1.0, \quad \phi = 25.84^\circ
\]
The saturated values of the inductances are

\[L_{ad} = 0.835 \times 1.66 = 1.386 \]
\[L_{aq} = 0.835 \times 1.61 = 1.344 \]
\[L_d = L_{ad} + L_l = 1.386 + 0.15 = 1.536 \]
\[L_q = L_{aq} + L_l = 1.344 + 0.15 = 1.494 \]

Following the procedure outlined in Section 3.6.5,

(i) \[\delta_i = \tan^{-1} \left(\frac{1.494 \times 1.0 \times 0.9 - 0.003 \times 1.0 \times 0.436}{1.0 + 0.003 \times 1.0 \times 0.9 + 1.494 \times 1.0 \times 0.436} \right) \]
\[= \tan^{-1}(0.812) = 39.1 \text{ electrical degrees} \]

(ii) \[e_d = E_1 \sin \delta_i = 1.0 \sin 39.1 = 0.631 \text{ pu} \]
\[e_q = E_1 \cos \delta_i = 1.0 \cos 39.1 = 0.776 \text{ pu} \]
\[i_d = I_1 \sin (\delta_i + \phi) = 1.0 \sin(39.1 + 25.84) = 0.906 \text{ pu} \]
\[i_q = I_1 \cos (\delta_i + \phi) = 1.0 \cos(39.1 + 25.84) = 0.423 \text{ pu} \]
\[i_{fd} = \frac{e_q + R_a i_q + X_{ad} i_d}{X_{ad}} \]
\[= \frac{0.776 + 0.003 \times 0.423 + 1.536 \times 0.906}{1.386} \]
\[= 1.565 \text{ pu} \]

\[e_{fd} = R_{fd} i_{fd} = 0.0006 \times 1.565 \]
\[= 0.000939 \text{ pu} \]
\[\psi_{fd} = (L_{ad} + L_{fd}) i_{fd} - L_{ad} i_d \]
\[= (1.386 + 0.165) \times 1.565 - 1.386 \times 0.907 \]
\[= 1.17 \text{ pu} \]
\[\psi_{1d} = L_{ad} (i_{fd} - i_d) \]
\[= 1.386 \times (1.565 - 0.906) \]
\[= 0.913 \text{ pu} \]
\[\psi_{1q} = \psi_{2q} = -L_{aq} i_q = -1.344 \times 0.423 \]
\[= -0.569 \text{ pu} \]

Under steady state,

\[i_{1d} = i_{1q} = i_{2q} = 0 \]
(iii) Air-gap torque

\[T_e = P_t + I_t^2 R_e \]
\[= 0.9 + 1.0^2 \times 0.003 \]
\[= 0.903 \text{ pu} \]

\[T_{base} = \frac{\text{MVA}_{base} \times 10^6}{\omega_{m_{base}}} \]
\[= \frac{555 \times 10^6}{2\pi \times 60} = 1.472 \times 10^6 \text{ N} \cdot \text{m} \]

Therefore,

\[T_e = 0.903 \times 1.472 \times 10^6 \]
\[= 1.329 \times 10^6 \text{ N} \cdot \text{m} \]

(b) Using the saturated value of \(X_{ad} \),

\[E_q = X_{ad} i_{fd} = 1.386 i_{fd} \]

\[X_s = X_{ad} + X_l = 1.386 + 0.15 = 1.536 \]

From the equivalent circuit of Figure 3.22, with \(\tilde{E}_t \) as reference phasor,

\[\tilde{E}_q = \tilde{E}_t + jX_s \tilde{I}_t \]
\[= 1.0 + j1.536(0.9 - j0.436) \]
\[= 1.670 + j1.382 \]
\[= 2.17 \angle 39.6^\circ \text{ pu} \]

\[\delta_i = 39.6^\circ \approx 39.1^\circ \]

Therefore,

\[i_{fd} = \frac{E_q}{X_{ad}} = \frac{2.17}{1.386} = 1.566 \text{ pu} \approx 1.565 \text{ pu} \]
Sub-transient and Transient Analysis

- Following a disturbance, currents are induced in rotor circuits. Some of these induced rotor currents decay more rapidly than others.
 - **Sub-transient parameters**: influencing rapidly decaying (cycles) components
 - **Transient parameters**: influencing the slowly decaying (seconds) components
 - **Synchronous parameters**: influencing sustained (steady state) components

![Diagram showing sub-transient, transient, and steady-state periods](image)

Figure 3.27 Fundamental frequency component of armature current
Transient Phenomena

- Study transient behavior of a simple RL circuit

\[v(t) = V_m \sin(\omega t + \alpha) \cdot u(t) \quad \text{Unit step function} \]

\[Ri(t) + L \frac{di(t)}{dt} = v(t) \]

- Apply Laplace Transform

\[RI(s) + L[sI(s) - i(0)] = V(s) \quad \rightarrow \quad I(s) = \frac{V(s)}{R} \cdot \frac{1}{1 + s\tau} = \frac{\Psi(s)}{R/s} \cdot \frac{1}{1 + s\tau} \quad \text{where} \quad \tau = \frac{L}{R} \]

- Apply Inverse Laplace Transform to \(I(s) \)

\[i(t) = I_m \sin(\omega t + \alpha - \gamma) - I_m e^{-t/\tau} \sin(\alpha - \gamma) \]

Steady-state (sinusoidal component) \hspace{1cm} dc offset (transient component)

- Saadat’s Example 8.1

\[R=0.125\Omega, \quad L=10\text{mH}, \quad V_m=151V \]

\[\tau=L/R=0.08\text{s} \quad \text{(time for decaying to 37%)} \]