
Codepourri: Creating Visual Coding Tutorials
Using A Volunteer Crowd Of Learners

Mitchell Gordon and Philip J. Guo
Department of Computer Science

University of Rochester
Rochester, NY 14627

mgord12@u.rochester.edu, pg@cs.rochester.edu

Abstract—A common way to learn is by studying written step-
by-step tutorials such as worked examples. However, tutorials
for computer programming can be tedious to create since a
static text-based format cannot convey what happens as code
executes. We created a system called Codepourri that enables
people to easily create visual coding tutorials by annotating
steps in an automatically-generated program visualization. Us-
ing Codepourri, we developed a novel crowdsourcing workflow
where learners who are visiting an educational website (www.
pythontutor.com) collectively create a tutorial by annotating
execution steps in a piece of code and then voting on the best
annotations. Since there are far more learners than experts, using
learners as a crowd is a potentially more scalable way of creating
tutorials. Our experiments with 4 expert judges and 101 learners
adding 145 raw annotations to two pieces of textbook Python code
show the learner crowd’s annotations to be accurate, informative,
and containing some insights that even experts missed.

Keywords—program visualization, worked examples, crowd-
sourcing, tutorial creation, CS education

I. INTRODUCTION

Decades of computing education research has shown that
programming is hard to learn since it is a cognitively complex
task requiring one’s mind to manipulate abstract and dynamic
state [1], [2]. Novices often struggle to develop robust mental
models of code execution [3] and are susceptible to hundreds
of common misconceptions about how their code works [2].

One effective way to learn programming is by studying
tutorials of how people (e.g., peers or instructors) approach
and solve coding problems. These tutorials – sometimes called
worked examples or worked-out examples [4] – capture a
person’s thoughts as they walk through an example piece of
code one step at a time. By studying these tutorials, a novice is
able to learn vicariously from the insights of others and avoid
forming misconceptions. This phenomenon, called the worked-
example effect [4], [5], [6], [7], is well-studied in educational
psychology; it states that studying worked examples reduces
cognitive load on novices so that they can devote more of their
attention to understanding concepts rather than, say, grappling
with syntax errors as they try to write their own code.

Worked examples are pervasive in subjects such as math
and physics, but surprisingly, are not as common in program-
ming. One possible reason for this is that it is tedious to create
worked examples for code. A tutorial creator can either:

• Annotate each line of source code with explanatory
comments. This approach is convenient but limited in

Fig. 1. Codepourri is a system that allows a tutorial creator to write
code, automatically visualize its execution state, and annotate each step of
execution (blue bubbles) to provide a step-by-step walkthrough. This simplified
screenshot shows four annotated steps in a Python program with a while loop
and two global variables, i and x, with their values shown to the right.

power since source code is static and cannot capture
runtime semantics such as stack frames, data structure
values, and pointer aliasing.

• Manually draw diagrams of what happens step-by-
step during code execution and then annotate those
diagrams. This approach is powerful but tedious.

To make it easier to create these sorts of tutorials, we
created a tool called Codepourri, which extends an automated
program visualization tool [8] with inline annotations. Code-
pourri enables a tutorial creator to write code, execute it to
automatically produce a step-by-step visualization of the stack
frames, variables, data structure values, and pointers present
during execution, and then annotate any line of code at any
step with notes in pop-up bubbles. Codepourri tutorials are web
pages that can be embedded within other online resources.

The visual coding tutorials created using Codepourri cap-
ture both static and dynamic properties of code, and does not
require the tutorial creator to tediously draw diagrams. The
learner can play back these tutorials step-by-step like a video



and study the annotations at each step. For instance, Figure 1
shows four steps in a simple Python code tutorial involving
a while loop and two global variables, i and x, whose
values change throughout execution. Note that the annotations
in Figure 1a. and Figure 1d. are both next to line 2, but the
context is different since those represent two different steps in
execution (the loop condition in the latter is false, so it should
exit out of the loop). This kind of subtlety is hard to capture
by simply commenting a piece of source code.

We envision instructors using Codepourri to create visual
coding tutorials for their own electronic lecture notes and on-
line digital textbooks. However, a more unusual but promising
use-case that we explore in this paper is to instead use a crowd
of volunteer learners to create visual coding tutorials.

Why try to use learners to create tutorials? The primary
reason is scalability: there are far more learners than experts
in any domain, so leveraging learners drastically expands the
pool of tutorial creators and means that more tutorials can
get made. Novices in particular benefit from studying multiple
examples [9] to get different perspectives on the same piece
of code. A secondary reason is that learners can sometimes
provide insights that experts miss, because they are currently
in the process of learning the material themselves. In contrast,
experts suffer from the expert blind spot [10] because they
forgot what it was like to be a novice, so they can have a hard
time explaining concepts at a basic level suitable for novices.

We created a crowdsourcing workflow where learners on
a popular Python education website, Online Python Tutor [8],
can use Codepourri to annotate pieces of example code and
vote on the best annotations to create a tutorial out of them.
To our knowledge, we are the first to leverage a crowd of
anonymous volunteer learners to create code tutorials. Our
unique crowd is unlike using learners in a formal course
because courses are not anonymous, and it is also unlike using
a paid worker crowd on Amazon Mechanical Turk.

To evaluate the efficacy of Codepourri and learner-based
crowdsourcing, we uploaded two pieces of Python code from
an introductory programming textbook [11] to the Codepourri
interface on the Online Python Tutor website. In one week,
101 learners contributed 145 raw annotations. Four expert
judges (three CS professors and one teaching assistant) rated
64.8% of raw annotations as being accurate, and 17% of those
contained surprising insights that even the experts did not think
to provide (i.e., due to the expert blind spot [10]). When these
raw annotations were aggregated together using crowdsourced
voting mechanisms to create a single tutorial with the best
annotation shown at each execution step, experts judged that
tutorial to be comparable in quality to the one that they created.

Our results show that this workflow is promising for basic
code tutorials of the sort used in introductory programming
courses. In future work, we plan to extend it to handle more
sophisticated code such as those in advanced courses, perhaps
blending together annotations from experts and novices to
combine the best insights from both populations.

This paper makes the following contributions:

• A system called Codepourri that enables people to
easily create visual coding tutorials that capture both
static and dynamic properties of code execution.

• A novel crowdsourcing workflow where volunteer
learners use Codepourri to collectively create tutorials.

• Experimental results showing that crowd-created tuto-
rials are comparable to or better than expert-created
ones, for code taken from an introductory textbook.

II. BACKGROUND AND RELATED WORK

The educational inspiration behind Codepourri is worked
examples – annotated step-by-step tutorials of how to solve a
problem such as a math or physics derivation. According to
cognitive load theory, asking novice learners to solve problems
on their own too early strains their working memory; instead,
they can learn better by first studying a step-by-step tutorial of
how an expert solves those problems [4], [5]. Worked examples
are pervasive in subjects such as math and physics but have
not been used much in teaching programming. Pirolli used
worked examples to teach recursion in Lisp [7], and more
recently, Margulieux et al. used worked examples to teach
the Android App Inventor visual language [6]. One reason
why worked examples are not more common in teaching
programming is that it is tedious to manually draw the data
structures at each step of code execution and then label all
of the components with explanatory text. Codepourri makes
it easy to create worked examples for computer programming
since it automatically visualizes execution state [8] and enables
the creator to annotate every line of code and step. However,
note that Codepourri works only on code that has already been
written (e.g., as part of a textbook or lecture notes) and cannot
be used to build up worked examples from a blank slate.

One phenomenon that limits the effectiveness of worked
examples is the split-attention effect [12], which occurs when
explanatory text is separated from diagrams, thereby forcing
students to split their attention by glancing back and forth.
Codepourri reduces this effect by allowing people to directly
create and view annotations beside the relevant line of code.

Tutorials such as worked examples are usually created by
expert instructors, but in this paper we explore the idea of
instead using a crowd of learners to create tutorials. The most
relevant project in this area is Crowdy [13], which provides
an interface for learners to annotate educational videos with
subgoal labels [14] – higher-level summaries of each sub-
section within the video. Crowdy introduced the concept of
learnersourcing, which is a variant of crowdsourcing that
recruits a crowd of unpaid learners rather than, say, paid
workers on Amazon Mechanical Turk or unpaid volunteers in
citizen science [15] or CAPTCHAs. The main design challenge
in such a system is to motivate learners to work for free. Aside
from general altruism, a more direct motivation is educational
research that shows how the act of annotating encourages self-
explanation (i.e., explaining a concept to yourself to reinforce
your own knowledge), which can lead to comparable learning
gains as some forms of direct problem solving [14], [16], [17].

VidWiki [18] is a tool similar to Crowdy that allows a
crowd to directly write text and draw diagrams as live layers
on top of existing online videos. And NB [19] allows a crowd
to select text within a PDF document and start embedded
discussions in the margin besides that text. Although these
systems are not confined to use only by novices, the case
studies presented in those papers involved using novices to
annotate educational videos and lecture notes, respectively.



Fig. 2. We built Codepourri upon Online Python Tutor, a Web-based program
visualization tool that allows the user to: a.) write code, b.) single-step through
all execution steps, and see a visualization of c.) stack frames and d.) heap
objects. Here it is visualizing recursive function calls to traverse a linked list.

To our knowledge, no prior work has applied learnersourc-
ing to computing education, so we are the first to use a learner
crowd to create step-by-step tutorials for computer programs.
Perhaps the reason why nobody has explored this domain yet
is that there is no convenient mechanism to draw and annotate
each step of program execution. Simply annotating a piece
of source code does not capture runtime semantics that are
important for worked examples. Our Codepourri tool provides
this necessary mechanism, which expands a static piece of
code into a video-like animation that can be stepped through
and annotated, similar to an educational video.

Finally, an alternative way to annotate execution steps is
to have the computer automatically generate annotations by,
say, analyzing the current execution context and producing a
natural-language description of it. This technique is used in
pedagogical programming environments such as Gidget [20]
and several of those described in surveys by Kelleher and
Pausch [21] and by Sorva et al. [22]. Automatically-generated
annotations are more scalable than manually-generated ones
but are only as insightful as the rules and vocabulary that the
creators originally programmed into them.

III. PRIOR WORK: ONLINE PYTHON TUTOR

We built Codepourri upon a Web-based automated program
visualization tool called Online Python Tutor [8]. To use this
tool, the user first visits www.pythontutor.com and writes code
directly in their browser (Figure 2a.). Despite its legacy name,
Online Python Tutor supports coding in five popular languages
– Python (v2 and v3), Java, JavaScript, TypeScript, and Ruby
– although the majority of users write Python. When the user
presses the “Visualize Execution” button on the page, their
code is sent to the Online Python Tutor server to execute in a
sandbox. The server sends a complete execution trace back to
the user’s browser, usually in less than two seconds. The user
can then step forward and backward through all execution steps
using a navigation slider and buttons (Figure 2b.). At each step,
the user sees a detailed visualization of their code’s runtime
state, which includes stack frames, variables, data structures,
and pointers (Figure 2c. and d.).

Online Python Tutor can compactly visualize arbitrary heap
graphs consisting of custom nested and linked data structures
(e.g., Figure 2d). These automatically-generated visualizations
mimic what people manually draw on the board or on paper
when explaining code execution state.

Fig. 3. Codepourri augments Online Python Tutor by placing a bubble next
to each line of code (see black arrow). When the user clicks on a bubble, it
expands into an editable text field. Each step gets its own independent set of
bubbles. The code in this figure has 18 sets of 5 bubbles (18 steps x 5 lines).

Fig. 4. Once a user has clicked on a bubble, they are able to view all other
users’ annotations and also to add their own.

IV. THE CODEPOURRI SYSTEM

To enable people to easily create programming tutorials,
we created a system called Codepourri (Figure 5) atop Online
Python Tutor. Codepourri displays a piece of code and allows
the user to step through its execution, add annotations, view
annotations left by other users, and vote on what they think
are the best ones (see the next section on crowdsourcing for
more details). The ideas behind Codepourri are programming
language agnostic, and the current system works on the five
languages supported by Online Python Tutor.

Traditional code annotation involves leaving comments
inside the code itself and does not take into account what hap-
pens during execution. In contrast, Codepourri allows users to
add annotations to the visualizations at each step of execution.
This is done by using a model that creates pop-up bubbles for
annotations, which depend both on the current line of code and
the current execution step. Figure 3 shows a piece of code with
5 lines and 18 execution steps; there are 5× 18 = 90 possible
bubbles. Pop-up bubbles have additional advantages over inline
comments: They do not change the spacing or appearance of
the original code and can be selectively hidden.

Code annotations that depend upon the state of execution
are problematic for the traditional inline method of comment-
ing code, because a given line of code often executes more
than once (see Figure 1a. and Figure 1d.), but an ordinary
text comment cannot easily reference such execution context.
Therefore, rather than displaying comments inline in the code
itself, Codepourri displays clickable expanding bubbles to the
right of each line of code (Figure 3). To add a new annotation
for a given line, the user clicks on the bubble corresponding to
that line to bring a up list of past user annotations, along with
a text input field to enter their own. The user can step forward



Fig. 5. The crowdsourcing task prompt for having a crowd of learners
annotate execution steps using Codepourri. To add a new annotation for a
given line of code, click on the bubble (outlined in red) at the right of that
line to bring up a list of past annotations along with an editable text box.

and backward to view execution state and add annotations to
any bubble that they see. To quickly preview the annotations
for a given bubble, the user can mouse over the bubble to
expand it into a scrollable list (Figure 4).

We implemented Codepourri using standard Web technolo-
gies. Once a tutorial has been created, it can be published
as an ordinary dynamic web page that can be embedded in
online resources such as electronic lecture notes or textbooks.
A learner can step through execution, see visualizations of data
structures, and study the annotations made by tutorial creators.

V. CROWDSOURCED TUTORIAL GENERATION

The Codepourri system allows anyone to create a tutorial,
and then allows learners to view the tutorial online by stepping
through the code and reading the annotations at each step.
Thus, an instructor can create a tutorial using their expertise
and post a URL for their students to study. Although that is a
reasonable use case, there are far more learners than instruc-
tors in any educational setting, so can we leverage learners
themselves as a crowd to create tutorials rather than using up
the instructor’s scarce time? To find out, we experimented with
a novel crowdsourcing approach to coding tutorial generation.

A. Why Use Learners as a Crowd?

The primary reason is scalability: Since there are far more
learners than experts in any domain, drawing from a crowd
of learners drastically expands the pool of potential tutorial
creators. We experimented on the population of learners who
visit the Online Python Tutor website. Since the purpose of
Online Python Tutor is to help its users learn to code via
visualizations, the majority of its users are learners. Many
of its users are referred there from introductory computer
programming MOOCs and digital textbooks [8]. We did not
pay workers but instead appealed to their altruism in helping
other learners such as themselves.

A secondary reason for using learners is that instructors
often, without realizing it, assume that their audience has
more background knowledge than they actually do. This well-
documented phenomenon is known as the expert blind spot
[10] – experts forget what it was like to be a novice, so they
might skip over rudimentary explanations that novices need to
see. Having a crowd of learners create tutorials could fill in
some conceptual gaps that experts miss when making tutorials.

To our knowledge, we are the first to leverage a crowd
of anonymous volunteer learners to create coding tutorials.
Our unique crowd is unlike using learners in a formal course
because courses are not anonymous, and it is also unlike using
a paid worker crowd on Amazon Mechanical Turk. Also,
we are not employing any gamification tactics; workers are
contributing purely motivated by their desire to help others.

B. Codepourri Crowdsourcing Workflow

To generate a visual coding tutorial using Codepourri:

1) Setup. Create the task by writing code, visualizing it using
Online Python Tutor, and generating a unique Codepourri page
(Figure 5). Then put a banner ad at the top of the Online Python
Tutor site (Figure 6) that links to that task’s URL.

2) Annotate. When any visitor on that website clicks that
banner, it opens Codepourri in a new window and loads a page
like Figure 5. We gave the workers the following instructions:
“You have arrived at a random step in this code. Your goal is to
help create a tutorial that describes what this code does. Each step
of execution has a bubble on the line that is executing. Click on the
bubble to add annotations that describe what the code does at the
current step. Feel free to add an annotation for any step.” Codepourri
decides which step of execution the worker should first be
routed to. While workers are free to annotate any step of the
code that they wish, in our experience, the step that they first
arrive at is the step for which a worker is most likely to add an
annotation. This initial routing decision is based upon where
the code most needs additional annotations, which is calculated
using density metrics (see Section VII for details).

3) Aggregate. The final phase in our workflow is creating
a tutorial by combining together the annotations gathered
from the crowd. To do this, it picks the best annotation for
each step using input from a comparative voting procedure in
which each worker compares the annotation they just added
to other annotations previously added by other workers. In
Section VIII, we describe the enhancements we made to
Codepourri’s user interface to support this aggregation phase.

VI. EXPERIMENTAL SETUP

To refine the design of Codepourri and to assess the quality
of tutorials generated by a crowd of learners, we performed
several formative tests followed by a final evaluation. We
evaluated Codepourri using pieces of Python code taken from
Computer Science Circles [11], a popular digital textbook for
learning basic programming. We took two pieces of code at
different levels of difficulty – easy and medium – based on the
textbook sections in which they appeared. Using pieces of code
at multiple levels of difficulty allowed us to determine whether
code complexity affects annotation quantity and quality. The
easy code consisted just of simple variable assignments, an
if-statement comparing two numbers, and a simple print state-
ment. The medium code was more challenging: it included
multiple functions that called each other and several complex
print statements with variables as parameters. Figure 10 shows
the easy code, and Figure 5 shows the medium code.

We recruited volunteer workers to annotate these two
pieces of code using an advertisement on the Online Python
Tutor website. We first tried using a simple text link saying



Fig. 6. A banner advertisement for our crowdsourcing experiment appears at
the top of the Online Python Tutor web page (code editor shown here). When
the user clicks that banner, the Codepourri interface opens in a new window.

“Want to help our research? Click here!” However, we found
that this advertisement received almost zero clicks, despite
thousands of daily visitors on that site. Thus, we tried a more
informative and visually enticing banner ad (Figure 6), which
consisted of a mildly blurred-out preview of the code that we
wanted the user to annotate as well as the link asking for
participation. An important benefit of this banner ad is that by
showing a blurred preview of the real code that the user will be
annotating, it informs repeat Online Python Tutor users when
there is new code that they have not yet annotated. This final
version of the banner ad resulted in a click-rate of 8.64% of all
Online Python Tutor visitors over the course of the banner’s
10-week deployment throughout all of our experiments.

For all experiments, we report participation numbers in
terms of active users. To be considered an active user, once
the user has arrived at Codepourri, they must take at least one
step through the visualization. Only considering active users
more accurately reflects usage patterns of Codepourri because,
as a strictly volunteer task, many potential workers click on the
advertisement out of curiosity, arrive at Codepourri, determine
that this task will require non-trivial effort, and immediately
close the page. When determining the efficacy of Codepourri,
we want to count only workers that are at least interested in
learning more about our task and considering participation; we
use visualization engagement as a proxy for this intent.

VII. FORMATIVE TESTS AND SYSTEM REFINEMENT

We ran three formative tests to optimize Codepourri’s user
interface so that it could gather the largest number of high-
quality annotations in the shortest amount of time.

Version 1: Pilot Study. Our initial version allowed for an-
notations on any line of code at any step of execution and
always started users at the first step of execution. We ran a pilot
deployment for one week with the medium difficulty code.
Very few workers chose to participate, and of those who did,
their combined annotations could not easily be joined to create
a tutorial that explains what the code is trying to accomplish.
For instance, one worker left an annotation on a blank line
saying “Line break for clarity - this is good programming
practice.” While this may be a valid annotation and perhaps a
useful style tip, it does not advance learners’ understanding of
code execution semantics. The main lessons we learned from
this pilot were that having too many bubbles shown at each
step might have overwhelmed workers and led some workers
to annotate less interesting parts such as blank lines.

Version 2: One Bubble Per Line. To try to raise the
participation rate and annotation quality, we tested a new
version that allowed annotations only on one line per step
of code execution: the line that is executing at that step.

While allowing workers to annotate lines of code that are not
currently executing might still provide useful annotations, by
giving workers a more manageable, less intimidating, and more
specific task (they see only one bubble at a time), we hoped
that workers would be more willing to complete it.

We tested this version using both the easy and medium
difficulty code, deploying each for one week. For the easy
code, 15 out of 154 unique workers chose to add an annotation;
collectively they added 50 total annotations (an average of
3.33 annotations per worker). For the medium code, 15 out
of 239 unique workers chose to add an annotation, and 35
total annotations were added (2.33 annotations per worker).

Version 3: Weighted Routing and Question Prompts. Dur-
ing the Version 2 test, we discovered two new limitations. First,
we found that workers heavily annotated the first few steps of
code execution, but the density of annotations dropped drasti-
cally for later steps. This likely occurred because Codepourri
always started each worker at the first step of execution, so they
probably annotated only the first few steps and then exited. To
alleviate this problem, we implemented a routing system that
sends workers to a step randomly chosen between all steps
with the smallest number of annotations (possibly zero). They
can either annotate that step or navigate to any other step.

Second, users interpreted the task differently since the an-
notation bubble contained no instruction prompt. To get more
precise annotations, we prototyped a feature that statically
analyzes each line of code and asks a specific question related
to that line. For example, if a line of code was a function
definition, it would ask “Why is this function being called,
and how is it used in this step?” If a variable result was
being set, it would ask “Why is the variable ‘result’ set here?
What is it used for?” Questions were displayed prominently
inside of the bubbles prompting users to add annotations.

When deploying this version for a week on each piece of
code, we found that for the easy code, 17 out of 149 unique
workers chose to add an annotation. On average, each worker
made 2.1 annotations, for a total of 35. For the medium code,
15 out of 162 unique workers chose to add an annotation. On
average, each worker made 2 annotations, for a total of 30.

The routing feature successfully evened out the distribution
of annotations, though there was still a slight bias towards the
first few steps of code execution. We believe this is because
some workers choose to simply step back to the first step of
execution in order to gain overall context.

The question-asking feature succeeded in that the content
of the annotations was more consistent, but we actually lost
out on some interesting information and insight that workers
had shared in previous annotations because workers ignored
lower-level observations. For example, a typical annotation for
a step in this version sounded like “this variable is used to
find out how old any person is currently.” This described what
the purpose of the variable assignment is, but forgoes lower-
level descriptions of what the code is accomplishing. Thus,
we decided not to move further with asking specific questions
to workers. Instead, we changed our prompt to be a generic
one, simply asking: “What does this part of the code do?”
(Figure 5). Note that in our pilot, Codepourri did not even
have a prompt; now it has a generic prompt that provides



Fig. 7. Number of learner annotations on each step of the easy code.

Fig. 8. Number of annotations on each step of the medium code. Note that
the number drops off in later steps because the same lines of code re-execute.

some guidance. These changes led to a fourth iteration of
Codepourri, which we used for our final evaluation.

VIII. EVALUATION OF LEARNER ANNOTATION QUALITY

Using the fourth and final iteration of Codepourri, we used
banner advertisements (Figure 6) to solicit learner annotations
for the easy code for one week, and then for the medium code
for one week. For the easy code, 51 out of 446 unique workers
who interacted with the page chose to add an annotation
(11.4% participation). Each worker contributed an average of
1.27 annotations, for a total of 66 annotations. For the medium
code, 50 out of 581 unique workers chose to add an annotation
(8.6% participation). Each worker contributed an average of
1.58 annotations, for a total of 79. Figures 7 and 8 show how
many annotations were made on each execution step.

To gauge the quality of the learner crowd’s raw annotations
and resulting tutorials, we ran a study with four experts. Three
of them are professors who teach introductory programming
courses in Python, and the fourth is an advanced computer
science undergraduate with experience as a teaching assistant.
Each session lasted for one hour, and we asked the expert to:

1) Create tutorials for both the easy and medium code
using Codepourri.

2) Rate the quality of all raw annotations left by learners
during the one-week online deployment of the easy
and medium code.

3) Compare the final learner-created tutorials generated
by two aggregation methods.

A. Raw Annotation Quality

We asked the experts to rate each of the 145 total raw
annotations made by learners on the easy and medium code.
They could choose from six possible ratings: BS for junk (e.g.,
random text, spam), W (Wrong) for an annotation that provides
incorrect information, R (Right) for one that provides correct
information, and G (Great) for an exceptional annotation. They
could also mark R or G annotations with an extra S for

Fig. 9. The comparison voting UI for workers judge the quality of an
annotation that they just made by comparing it to annotations that prior
workers made for the same step, seeing one competing annotation at a time.

Surprising if they saw something that they would not have
thought to mention themselves.

For example, all four experts agreed that this annotation
was GS (Great and Surprising): “We create a first accessible
integer value containing the number 1928 and labeled birthYear. It
could have been named however we wanted but programmers usually
try to name their variables in a way so they can remember what it
contains at any time. If we had written aa = 1928, code would have
been exactly the same (because computers don’t care what the name
of the variable is) but it would have been more difficult to make a
bigger code.” In contrast, this one for the same step was simply
an R (Right): “Initialize variable ’birthyear’ to integer 1928.”

Here are the percentages of total annotations that each
expert assigned to each quality category:

BS W R RS G GS
Expert 1 18.4 14.7 53.7 1.5 5.1 6.6
Expert 2 18 15.1 17.3 2.2 36.7 10.8
Expert 3 20.7 15.2 52.8 1.4 7.6 1.4
Expert 4 17.3 20.7 38.7 16.7 3.3 3.3
Average 18.6 16.4 40.6 5.5 13.2 5.5

All annotations rated an R or higher contain correct in-
formation. While there is some disagreement between how
experts differentiated between R vs. G, and how they assigned
S, experts have a very high agreement as to how many
annotations are BS, W, or generally correct. On average,
64.8% of annotations were rated at least an R, which is high
considering that they were all made by anonymous volunteer
learners. 17% of correct annotations also had an S label, which
means that they provided insights that even our experts did not
think to provide (i.e., manifestation of the expert blind spot).

B. Creating a Tutorial by Choosing the Best Annotations

After gathering raw annotations, Codepourri uses the crowd
to aggregate them together to create a single tutorial where
each step has at most one annotation (see Figure 1).

Given that our crowd consists solely of anonymous learner
volunteers, we cannot rely on all annotations to be good.
Also, simply displaying a large number of possibly redundant
annotations would not make for a good tutorial because it
could confuse or overwhelm the tutorial reader. To solve this
problem, we developed a way to use our same learner crowd
to choose the best annotation for each execution step. We



Fig. 10. The ‘Choose the Best’ interface where a new set of workers judge
the quality of annotations contributed by a prior set. All annotations for a
given execution step are shown, and the worker chooses the best one.

experimented with two aggregation methods. We used only the
easy code for these experiments since it had more annotations
per step than the medium code (see Figure 7 vs. Figure 8),
making it better for testing aggregation techniques.

Method 1: Comparison Voting. The idea for this method
is that workers directly compare the annotation that they just
added against all other annotations that already exist for a given
execution step. To implement this, Codepourri automatically
pops up a voting interface right after a worker adds an
annotation (Figure 9). It displays the worker’s annotation at
the top, followed by a single annotation left by a previous
worker. They can choose whether they thought the competing
annotation was better or worse than their own annotation, or
skip if they were not sure. Casting a vote automatically shows
the next competing annotation, and this process repeats until
the worker has voted against all annotations or chooses to quit.

To aggregate these votes and choose the single best an-
notation for each execution step, we performed the following
calculation: take the number of times that each annotation was
voted as better than a competing annotation and divide by
the total number of votes that annotation took part in. The
annotation for which this ratio is the highest wins.

The upside of this method is that, rather than recruiting
separate crowd workers to vote, we can simply use workers
who are already adding annotations. One potential downside is
that, since it is done immediately after adding an annotation,
workers can vote only for/against prior annotations, meaning
that only the final worker is able to vote for/against all
annotations. Another potential downside is that, since this
approach requires workers to compare their own annotations
to others, some may be biased towards voting for their own
annotations. Of the 234 total votes contributed by 47 workers,
151 votes were for a worker’s own annotation, 38 were in favor
of the competing annotation, and 45 votes chose to skip.

Method 2: Choose the Best. The idea here is that, rather
than integrating quality judgement into the annotation process,
run a second crowdsourcing task where a new set of workers
are recruited to rate annotations after the first set of workers
has finished contributing all of them. This method has the
downside of needing a separate task, but the upside is that all
annotations are considered by an unbiased set of new workers.

To implement this, an interface displays all annotations for
a given execution step as a list in a bubble, with a red check
mark next to each (Figure 10). We asked each worker to choose

“the annotation that you think best describes this step of code
execution.” Each worker starts at the first execution step (not
a random one), and once they make a choice, they continue to
the next step. This process continues until the worker has cast
a vote for all steps. Workers may leave the session at any time,
and their prior votes are still counted. We received a total of
516 total votes contributed by 87 workers. The annotation at
each step with the most votes is included in the final tutorial.

Best Aggregation Method: We asked our four experts to
compare the tutorials produced by both methods. Half felt that
method 1 was better. Expert 1 said that method 1’s tutorial
was more precise; expert 3 said that several of method 1’s
annotations were significantly more detailed. The other half
cited that method 2’s annotations for the last few steps sounded
more like they belonged in a tutorial. All four experts agreed
that choosing between the two tutorials was difficult because
they were both high quality. Given that that the experts arrived
at a tie, we conclude that they are of comparable quality. Given
that method 1 (comparison voting) is more efficient since it
does not require a separate task with another set of workers,
we choose it as Codepourri’s aggregation method.

C. Overall Quality of Learner-Created Codepourri Tutorials

All four experts agreed that the raw annotations and
resulting tutorials created by the crowd are comparable to
those created by experts such as themselves. They agreed that
while some annotations were not quite as precise as those
provided by experts, other annotations were more detailed
and better explained concepts than they would have thought
to do. Experts 1 and 3 pointed out that for complex code
with many execution steps, recruiting a learner crowd has
a significant advantage over an expert because the expert
may suffer from fatigue that results in decreased quality or
detail when annotating dozens or more steps; in contrast,
an individual crowd worker needs to annotate only a small
number of steps, and the final tutorial is created via automatic
aggregation. Expert 2 said that the downside of crowdsourcing
is that the inconsistent tone and writing style of different
workers could make annotations jarring to read. Expert 4 was
pleasantly surprised that many learners evaluated the concrete
values of variables in their annotations (e.g., “On the next line,
prints ’You turn 100 in 2028’ (without the single quotes), since
birthYear=1928 (from line 1) and 100+birthyear=2028.”), rather
than simply describing them in abstract terms.

We asked our experts to create their own tutorial using
Codepourri for both the easy and medium code. Experts added
a total of 51 annotations. We now compare the expert-created
tutorials to the easy code tutorial created by the learner crowd
(aggregated using Method 1). The learner-created tutorial
was more detailed and complete. For instance, here are the
annotations for step 4:

• Expert 1: “print a retirement message if you’re older
than 65 years old”

• Expert 2: “checks if the difference was large enough”
• Expert 3: “check if ready for retirement”
• Expert 4: “We check the value of ’age’ to see if the

person’s age is 65 years or older.”
• Learner-created: “This checks whether age is greater

than 65. If so, it will execute the print statements
located in the indented block below it.”



The learner-created annotation mentions everything that
the best expert-created one (from Expert 1) does, and also
provides more details that might not be obvious to novices.
Other steps had even more differences between learner-crowd-
generated and expert-generated tutorials. Many of the expert
annotations lack specific information on what is happening in
the code, while the learner-crowd annotations included these
details. Experts chose to not annotate some steps at all, perhaps
due to the expert blind spot; i.e., feeling that those steps are
too trivial to explain. Our four experts left annotations on only
4, 6, 4, and 7 of the 7 total steps, respectively, while Figure 7
shows that learners left multiple annotations on all steps.

D. Codepourri Versus Traditional Tutorial Creation Methods

At the end of our study, we asked our experts about
how using Codepourri compared to making tutorials by sim-
ply commenting code or writing text. All four agreed that
Codepourri is preferable. Specifically, Expert 2 appreciated
being able to describe dynamic execution state, saying that
it was “super helpful when working through code with loops,
complicated function calls, and recursion.” Expert 3 said that
inline comments can break up the spacing in code and external
text is too far removed from code, but Codepourri annotation
bubbles show up right next to the code. Expert 3 also said that
Codepourri helps users not get distracted by annotations that
are not relevant to the current execution step.

E. The Potential for Using Codepourri in the Classroom

We also asked our experts about their thoughts on incor-
porating Codepourri into courses they teach. Expert 2 said
they think that a Codepourri tutorial created by a professor
or teaching assistant would be a helpful tool while teaching.
Expert 2 also thinks that, while expecting students to contribute
annotations on a voluntary basis is not realistic, they can see
great pedagogical value in making students add annotations as
a homework assignment. They envision the use of comparison
voting as a peer grading technique. Expert 4 said that they
would “love to use the annotation feature in my course.” They
envision using the voting feature as an in-class activity, and
using the results to both gauge students’ understanding of
topics and address their misconceptions in real time.

F. Study Limitations

While we asked experts to evaluate the quality of learner-
created tutorials, we did not formally test a group of learners
to assess how well they actually learned using these tutorials.
Also, we did not optimize for total elapsed time. In this study,
we gave the crowd one week to generate each tutorial. In
the future, we could use a real-time crowdsourcing such as
LegionTools [23] and other techniques [24] to speed up this
process if the learner population is large enough. Finally, we
found that the difficulty of the code that we asked our volunteer
workers to annotate had a direct effect on participation rates.
During our formative tests, we also tried adding a third piece
of ‘hard’ code, which was actively tricky and included nested
functions (closures) and misleading calls. Almost no workers
annotated this code, though. Thus, it is an open question as
to how this technique will scale to complex code taught in
advanced courses. Despite this limitation, we have shown that
this technique has potential for creating tutorials for code at

the level of introductory-level courses, which can help a large
population of novices who are starting to learn programming.

IX. FUTURE WORK

Motivating workers. Giving better motivation to workers
could help even out the distribution of annotations across
steps, increase the quality of annotations, and increase the
total number of workers willing to annotate. Help sites such
as Stack Overflow use an account system with reputation
points attached to each user to encourage participation [25].
Codepourri could incorporate a similar system, rewarding
points based on the quality of annotations, which it can do by
scaling reward amounts based on upvotes. We could also give
a higher reward amount when workers annotate steps of code
that have the most need for new annotations; these are often
indicated by a lack of agreement amongst raters as to which
is the best annotation at that step (i.e., the least consensus).

Targeted recruitment ads and intelligent routing. Since we
recruit workers from Online Python Tutor, we are able to link
usage habits from that website with Codepourri usage habits.
One possible use of this data is to create targeted banner
advertisement for recruitment. By analyzing the code that a
worker naturally writes on that site, we can determine what
a worker’s interests are. For example, if they spend a lot of
time stepping through loops, we know that this worker has an
interest in learning about how loops work. We can then create
a targeted ad that asks the worker to help us annotate execution
steps of a loop. Since we are asking the worker to complete
a task about a subject that we know they are interested in,
the worker might be more interested in annotating this type of
code. This technique will help alleviate the earlier-discussed
issue of having an uneven distribution of annotations. The
system can be even more intelligent by considering how well
it thinks a worker understands certain topics (based on both
their own written code and quality of their annotations) and
how difficult it thinks a certain step of code is to annotate. We
can use this data both to increase the quality of annotations and
also to increase the learning value that workers may receive
by annotating code, such as sending them to annotate areas of
code that are just slightly above their expertise level.

X. CONCLUSION

We have presented Codepourri, a system that enables
people to create visual coding tutorials by annotating execution
steps within an automatically-generated program visualization.
We have also developed a novel crowdsourcing workflow
where learners volunteer to make annotations within Code-
pourri and then vote on the best ones to use in a tutorial.
In an experiment involving easy and medium difficulty code
examples from an introductory programming textbook, experts
judged the crowd-created tutorials to be comparable in quality
to their own and were pleasantly surprised that the crowd
provided some insights that even they did not think to provide.
Thus, this technique has potential to scale up the creation
of tutorials for introductory-level programming content by
leveraging the collective time of a large crowd of online
learners rather than using up the scarce time of experts.

ACKNOWLEDGMENTS

Thanks to Walter Lasecki for his feedback on this project.



REFERENCES

[1] M. Guzdial, “Limitations of MOOCs for Computing Education -
addressing our needs: MOOCs and technology to advance learning and
learning research (ubiquity symposium),” Ubiquity, 2014. [Online].
Available: http://doi.acm.org/10.1145/2591683

[2] J. Sorva, “Visual program simulation in introductory programming
education,” Ph.D. Dissertation, Aalto University, 2012.

[3] B. Du Boulay, “Some difficulties of learning to program,” Jour. Edu-
cational Computing Research, vol. 2, no. 1, 1986. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1207/S15327809JLS0904 3

[4] J. Sweller and G. A. Cooper, “The use of worked examples as a
substitute for problem solving in learning algebra,” Cognition and
Instruction, vol. 2, pp. 58–89, 1985.

[5] M. C. Linn and M. J. Clancy, “The case for case studies of
programming problems,” Communications of the ACM, vol. 35, no. 3,
pp. 121–132, Mar. 1992. [Online]. Available: http://doi.acm.org/10.
1145/131295.131301

[6] L. E. Margulieux, M. Guzdial, and R. Catrambone, “Subgoal-labeled
instructional material improves performance and transfer in learning
to develop mobile applications,” in Proceedings of the Ninth Annual
International Conference on International Computing Education
Research, ser. ICER ’12. New York, NY, USA: ACM, 2012, pp. 71–
78. [Online]. Available: http://doi.acm.org/10.1145/2361276.2361291

[7] P. Pirolli, “Effects of examples and their explanations in a lesson on
recursion: A production system analysis,” Cognition and Instruction,
vol. 8, no. 3, pp. 207–259, 1991.

[8] P. J. Guo, “Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education,” ser. SIGCSE ’13. ACM, 2013, pp.
579–584.

[9] J.-P. Guo, M. F. Pang, L.-Y. Yang, and Y. Ding, “Learning from
comparing multiple examples: On the dilemma of similar or different,”
Educational Psychology Review, vol. 24, no. 2, pp. 251–269, 2012.

[10] M. J. Nathan, K. R. Koedinger, and M. W. Alibali, “Expert blind spot:
When content knowledge eclipses pedagogical content knowledge,”
in Proceedings of the Third International Conference on Cognitive
Science. Citeseer, 2001, pp. 644–648.

[11] D. Pritchard and T. Vasiga, “CS Circles: An in-browser Python
course for beginners,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’13. New
York, NY, USA: ACM, 2013, pp. 591–596. [Online]. Available:
http://doi.acm.org/10.1145/2445196.2445370

[12] P. Chandler and J. Sweller, “The split-attention effect as a factor
in the design of instruction,” British Journal of Educational
Psychology, vol. 62, no. 2, pp. 233–246, 1992. [Online]. Available:
http://dx.doi.org/10.1111/j.2044-8279.1992.tb01017.x

[13] S. Weir, J. Kim, K. Z. Gajos, and R. C. Miller, “Learnersourcing subgoal
labels for how-to videos,” in Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing, ser.
CSCW ’15. New York, NY, USA: ACM, 2015, pp. 405–416.

[14] R. Catrambone, “The subgoal learning model: Creating better examples
so that students can solve novel problems,” Journal of Experimental
Psychology; General, vol. 127, no. 4, pp. 355–376, 1998.

[15] A. Wiggins and K. Crowston, “From conservation to crowdsourcing:
A typology of citizen science,” in System Sciences (HICSS), 2011 44th
Hawaii International Conference on. IEEE, 2011, pp. 1–10.

[16] K. Bielaczyc, P. Pirolli, and A. Brown, “Training in self-explanation
and self-regulation strategies: Investigating the effects of knowledge
acquisition activities on problem solving,” Cognition and instruction,
vol. 13, no. 2, pp. 221–252, 1995.

[17] W. A. Sandoval, J. G. Trafton, and B. J. Reiser, “The effects of
self-explanation on studying examples and solving problems,” in In
Proceedings of the Seventeenth Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc,
1995, pp. 511–532.

[18] A. Cross, M. Bayyapunedi, D. Ravindran, E. Cutrell, and W. Thies,
“Vidwiki: Enabling the crowd to improve the legibility of online
educational videos,” in Proceedings of the 17th ACM Conference
on Computer Supported Cooperative Work & Social Computing, ser.
CSCW ’14. New York, NY, USA: ACM, 2014, pp. 1167–1175.

[19] S. Zyto, D. Karger, M. Ackerman, and S. Mahajan, “Successful
classroom deployment of a social document annotation system,”
ser. CHI ’12. ACM, 2012, pp. 1883–1892. [Online]. Available:
http://doi.acm.org/10.1145/2207676.2208326

[20] M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers’ learning,” in Proceedings of the Seventh
International Workshop on Computing Education Research, ser. ICER
’11. New York, NY, USA: ACM, 2011, pp. 109–116. [Online].
Available: http://doi.acm.org/10.1145/2016911.2016934

[21] C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” ACM Computing Surveys, vol. 37, no. 2, pp. 83–137,
Jun. 2005. [Online]. Available: http://doi.acm.org/10.1145/1089733.
1089734

[22] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” ACM
Transactions on Computing Education, vol. 13, no. 4, pp. 15:1–15:64,
Nov. 2013. [Online]. Available: http://doi.acm.org/10.1145/2490822

[23] M. Gordon and W. Lasecki, “LegionTools,” http://rochci.github.io/
LegionTools/, 2014.

[24] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger,
“Crowds in two seconds: enabling realtime crowd-powered interfaces,”
in Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, Santa Barbara, CA, USA,
October 16-19, 2011, 2011, pp. 33–42. [Online]. Available: http:
//doi.acm.org/10.1145/2047196.2047201

[25] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’11. New York, NY, USA: ACM, 2011, pp. 2857–2866.


