Graph Theory Applications in Video Games

Clara Nguyễn
COSC 594 – 2020/03/11
Questions

- Given a 3D model M of n vertices, how many triangles are drawn if done via Triangle List?

- What is the $lg^*(2^{2^{65536}})$? Alternatively, what is the $lg^*(62)$?

- What does bitDP stand for?
About Me
About me

• Master’s Student on Course-Only track.
• Did undergrad at UTK. Graduated in Spring 2018.
• Hobbies
 • Game/Web Development
 • Content Creation (Music & Video)
• Born in Knoxville, TN! Look outside a window for a picture if you want.
More on me!

• Been Programming since I was 6. I like to do side projects on the side.
• Not actually a gamer.
• Been a TA here for around 4 years.
• Outside of Computer Science, my goal is to become a polyglot of Asian Languages.
• Not a pet person… (But I prefer cats btw)
Showcase - Game Development History

• Involved since mid-2008
• Worked with other Indie teams
• In-house Engine Development.
• 2014 – Solo Project: “Keyboard Hero”
 • Rhythm Game like Guitar Hero
 • Released on Gamejolt
 • Coded in GML, Delphi, and C++
 • Over 63,000 views and 16,000 plays
Showcase - Keyboard Hero V7.5
Showcase - Game Development History

• 2017 – Solo Project: “Project RX”
 • Successor to previous game.
 • Had composers create music specifically for the game.
 • Over 20 songs charted.
 • Engine written in C++ entirely from scratch.
 • Unreleased as of 2020.
Showcase - Game Development History

• 2017 – CN/GL (Clara Nguyễn’s WebGL Wrapper)
 • Concept 3D engine written entirely from scratch to be playable in your web browser.
 • Written entirely from scratch in 52 hours.
 • This is playable!

 http://web.eecs.utk.edu/~ssmit285/vORlcEmA/finalp/
Why game dev experience matters

• It’s one thing to play games. It’s another to develop them.

• Code can’t be written sloppily. Usually has to generate and draw 30 -60 frames onto your monitor on modern hardware.
 • It’s extremely obvious when a game is poorly optimised.

• There’s lots of unique problem solving in Game Dev. You often build a “toolbox” of ways to approach a problem over time.

• Relevance-wise, Graph Theory plays a huge role in game development.
Disclaimers

• This is not your average talk.

• This is a Graph “Theory” talk... I only give a handful of game mentions and stick to concepts.

• Algorithm discussion is minimal. If I mention an algorithm, then I’ll tell you what it should do, not go over the procedure (except for DFS).

• Topics are laid out intentionally to where they all may not be discussed.
 • All topics and details are here: https://tiny.utk.edu/talk5
Outline

- Racing Games – Lap Counting
- Maze Generation – Disjoint Sets & Union-Find
- Hamiltonian Path Detection – bitDP
- Honourable Mentions
- Discussion
“Rules” of Graphics
The “rules” of graphs of computer graphics

- Unlike most graphs we dealt with in class, the rules change here:
 - Vertices have **positional** coordinates \((x, y, z)\) to define position in space.
 - There is only **one** way to represent graphs in space.
 - Edges (connections between vertices) are **implied**.
 - Everything is oriented around **triangles**.
The “rules”: Edge Implication

- Edge Implying depends on how we tell the computer to draw.

- Several modes. Here are the common ones:
 - **Triangle List:** Every 3 vertices form a triangle.
 - **Triangle Strip:** First 3 vertices form a triangle. Every new vertex after will form a triangle with the previous 2 vertices.
 - **Triangle Fan:** First vertex is in every triangle. Each set of 2 vertices after the first form a triangle with the first vertex.
The “rules”: Triangle List

- Naïve triangle drawing in multiples of 3.
- $n/3$ triangles drawn.
- Assume we are given a model m where $V(m) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
The “rules”: Triangle Strip

- Uses previous 2 vertices & new one to form triangles.
- \(n \geq 3 \). \(n - 2 \) triangles drawn.
- Assume we are given a model \(m \) where \(V(m) = \{v_1, v_2, v_3, v_4\} \)
The “rules”: Triangle Fan

• Uses first vertex and latest 2 vertices to form triangles.

• \(n \geq 3 \). \(n - 2 \) triangles drawn.

• Assume we are given a model \(m \) where \(V(m) = \{ v_1, v_2, v_3, v_4, v_5 \} \)
The “rules”: Coordinate System

- Two of the most popular cartesian coordinate systems for 3D space:
 - \((x, y, z)\) where \(z\) is the height axis
 - \((x, y, z)\) where \(y\) is the height axis
The “rules”: Back-Face Culling

- Front side has a triangle. Back side is invisible due to back-face culling.
- Relies on the order we draw the vertices. Vertices with order being clockwise is front-facing. Counter-clockwise is the back.
Lap Counting

Racing Games
Lap Counting – The Basics

• A racing game must keep track of a few things…
 • Player Lap
 • Player Position
 • Distance between players

• How do games know when a player has completed a lap?
Lap Counting – The Basics

- Assume the following (extremely simple) racetrack:
Lap Counting – The Basics

• Divide the track into “checkpoints”.

• Players will have to hit all “checkpoints” and the finish line for a lap to count.

• This can be implemented as a directed graph where all checkpoints are vertices and a complete lap is a Hamiltonian Circuit.
Lap Counting – The Basics

- Simple racetrack broken up into checkpoints, and as a directed graph:
Distance between players

- How will we know how far someone is from first place?
- Graph is broken segments by-vertex, rearranged into a straight line with circular ending node, making distance computation extremely trivial.
Distance between players

- So let’s say Dr. Langston (P_L) having a really good race... unlike me (P_N)...
Lap Counting – Breaking the Rules

- In practice, there are other ways to do lap counting… besides Hamiltonian circuit detection.

- They flopped. Let’s look at an extreme example.
Mario Kart Wii for Nintendo Wii (2008)
Mario Kart Wii – Breaking it down

• Breaks track into **spawn checkpoints**.
 • If you fall out of the track, you spawn at these.

• Breaks track into **key checkpoints**.
 • Finish line also counts as a key checkpoint.
 • Tells where you are and if you completed the lap… or do they?
Mario Kart Wii – Breaking it down

- Assume the following (extremely simple) racetrack with **key checkpoints**, **spawn checkpoints**, and a **finish line**:
Mario Kart Wii – Breaking it down

• Going between a **key checkpoint** and a next checkpoint (**spawn**, **key**, **finish**) updates where you are in the track.

• **Example:** Hitting between 1 and the spawn checkpoint right after will register as you passing through checkpoint 1.
Mario Kart Wii – Ultra-Shortcuts

• **Critical Flaw:** Game allows you to hit the next, current, *and previous key checkpoints*. Completing a lap requires hitting *only the last one*.

• From the start of the race, we can avoid going through 1 and 2. Just jump to 3 and drive up to 0. The lap will count.

• This is known as an **Ultra-Shortcut**.
Mario Kart Wii – Ultra-Shortcuts

• These are not as simple as driving backwards though.

• Going in reverse from the **finish line** will deduct 1 from your lap count. Detected by the **spawn checkpoint** right behind.

• Usually involves finding glitches or out-of-bounds areas to jump to **3**.
Mario Kart Wii – Ultra-Shortcuts

• The normal world records didn’t last very long after that...

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-06-01</td>
<td>1’35”799</td>
<td>Ridley</td>
</tr>
<tr>
<td>2008-06-01</td>
<td>1’29”550</td>
<td>Ridley</td>
</tr>
<tr>
<td>2008-06-01</td>
<td>1’26”078</td>
<td>Alvin</td>
</tr>
<tr>
<td>2008-06-01</td>
<td>1’03”520</td>
<td>Ridley</td>
</tr>
<tr>
<td>2008-06-01</td>
<td>0’43”912</td>
<td>Alvin</td>
</tr>
<tr>
<td>2008-06-01</td>
<td>0’42”446</td>
<td>Ostro</td>
</tr>
<tr>
<td>2019-09-13</td>
<td>0’17”100</td>
<td>Ejay</td>
</tr>
<tr>
<td>2019-09-19</td>
<td>0’16”852</td>
<td>Ejay</td>
</tr>
<tr>
<td>2019-09-23</td>
<td>0’16”691</td>
<td>Niyake</td>
</tr>
<tr>
<td>2019-09-23</td>
<td>0’16”591</td>
<td>Niyake</td>
</tr>
<tr>
<td>2019-09-23</td>
<td>0’16”385</td>
<td>Niyake</td>
</tr>
<tr>
<td>2020-01-12</td>
<td>0’16”332</td>
<td>Niyake</td>
</tr>
</tbody>
</table>

• Moral of the Story: Use Hamiltonian Circuit detection for lap counting.
An observation of mazes

- Cells matched with a select few of adjacent cells.
- Others are separated by “walls”.
- Can be represented as a graph. Depending on properties of the maze, it can be a minimum spanning tree.
- We can use DFS (Depth-First Search) and BFS (Breadth-First Search) to traverse the maze to find a solution easily from any S to any T.
Disjoint-Sets

- Sets that have no element in common.
- “Mazes” with every wall put up is a good example, as no cell is connected.
 - Basically a graph without any edges connecting any nodes.
- We have operations: **union** and **find**:
 - **Union**: Join two disjoint sets together.
 - **Find**: Get the ID of the set that a cell belongs to.
Disjoint-Sets – Continued

• **Union:** Join two disjoint sets together.
 - Notated as $\text{union}(i, j)$ where $S_i = S_i \cup S_j$.
 - In English: All vertices in S_j move into S_i. Then, S_j is deleted.

• **Find:** Get the ID of the set that a cell belongs to.
 - Notated as $\text{find}(i)$ where i is a cell ID.
 - More on this in a bit...
Disjoint-Sets – Example

• Assume a graph M where $n = 16$, and $m = 0$. Each separate vertex is part of its own set $S_i (v_0 \in S_0, v_1 \in S_1, ..., v_{n-1} \in S_{n-1})$. Show as a 4×4 grid:

```
  0  1  2  3
  4  5  6  7
  8  9 10 11
 12 13 14 15
```
Disjoint-Sets – Example

- Let’s do \texttt{union}(1, 2). Notice how the walls break down between the two. They have an edge between them. Now $S_1 = \{1, 2\}$ and S_2 is deleted.
Disjoint-Sets – Example

• Let’s do $\text{union}(2, 6)$. Break down the wall between where 2 used to be and 6.

Now $S_1 = \{1, 2, 6\}$ and S_6 is deleted.
Disjoint-Sets – Example

• To properly generate a maze:

 • Repeat the procedure on cells that are adjacent but are in different groups.

 • Do this until there is only one group left...

\[S_0 = \{ v_0, v_1, \ldots, v_{n-1} \} \]
Disjoint-Sets – Some properties

- Known as Randomised Kruskal’s algorithm.
- There are no cycles.
- There is one path from every S to every T.
- Tends to generate mazes with patterns that are easy to solve.
- If shown as a graph, it’s a minimal spanning tree.
Disjoint-Sets – We can do better

• A simple maze is boring.

• We can connect 2 together by breaking down a wall between them (or even adding a “hall” between them).

• Any cell in one maze is always accessible from any other cell. Connecting like this keeps this property intact as we can always go toward the “hall”.

• This makes more complex, interesting, non-square puzzles.
Disjoint-Sets – 2D Expansion

- Horizontal Expansion. Notice how there is always a path from the left maze to the right maze since we can always access 7 and, thus, the “hall” to 20.
Disjoint-Sets – We can still do better

• We can expand a dimension (or a few).

• Connect 2 mazes together by making a cell have an “elevator” to go up.

• Same property from before still holds. There will always exist a path from one cell to another, even when going up to another floor.
Disjoint-Sets – 3D Expansion

- Floor Expansion. Again, notice how there is always a path from every cell to every other cell.
Disjoint-Sets – Find operation

• In theory, \(\text{union}(i, j) \) on two sets is trivial. To a computer, it requires work.

• **Find:** Get the ID of the set that a cell belongs to.

 • Notated as \(\text{find}(i) \) where \(i \) is a cell ID.

 • Interpret the set as a graph.

 • Go up to root of the “graph”. That is the set’s ID.

 • When doing a \(\text{union}(i, j) \), the ID of two node’s set IDs must be different or else a cycle will occur. The lowest index (rank) becomes the new root.
Disjoint-Sets – Find operation

- Interpret maze M as a traditional graph with vertices and edges.
Disjoint-Sets – Find operation

• Let’s do $\text{union}(1, 2)$. Then, $\text{find}(2) = 1$ as $v_2 \in S_1$.

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
```
Disjoint-Sets – Find operation

• Okay, now do $\text{union}(2, 6)$. Then, $\text{find}(6) = 1$ as $v_6 \in S_1$.
Disjoint-Sets – Find operation

• Keep building the minimum spanning tree until entire graph is connected.

For every vertex in the final graph, \(\text{find} = 0 \) as they are all in \(S_0 \).
Disjoint-Sets – Find operation

- This can become bad quickly… The vertex at the bottom right of the maze has to traverse through 6 vertices to reach the root.
Disjoint-Sets – Find operation

- As usual, we can do better… *much better.*

- Let’s apply two concepts: **Union by rank** and **Path compression**.
 - **Union by rank** – Attach shorter tree to the root of the taller tree.
 - **Path compression** – Make every node point straight to the root.
Disjoint-Sets – Find operation

• The original lookup speed requires around n lookups to reach the root.

• With our optimisations in place, it becomes $\lg^* n$ (iterated logarithm base 2).

• In the world of Computer Science, this is essentially **constant time**.

<table>
<thead>
<tr>
<th>n_a</th>
<th>x</th>
<th>$\lg^* x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2 2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3 2</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>4 2</td>
<td>65536</td>
<td>4</td>
</tr>
<tr>
<td>5 2</td>
<td>2^{65536}</td>
<td>5</td>
</tr>
<tr>
<td>6 2</td>
<td>$2^{2^{65536}}$</td>
<td>6</td>
</tr>
</tbody>
</table>
bitDP

Hamiltonian Path Detection

Some of you may have seen this before...
Hamiltonian Paths

• A path where we visit every vertex once.
• NP-Complete.
• For computers, naïvely finding these in a graph of size N explodes into $N!$ steps.
• Detection useful for a game generating random paths and needs to check for correctness before giving to the player.
Naïve Brute-Force Method

- Perform a DFS (Depth-First Search) from the starting vertex S search around all possible combinations of paths until we find a Hamiltonian Path.
- Gets the job done, but is nowhere near efficient.
DFS Breakdown

• Assuming a graph G, keep a list $V'(G) = \{\}$ which is the path (in the order we visited the vertices). Mark all vertices as unvisited.

• Behold the procedure $DFS(v)$. Run it on $DFS(S)$:
 1. Mark v as visited and add it to the end of $V'(G)$.
 2. Go through every unvisited vertex v' that v is connected to and do $DFS(v')$.
 3. If the size of $V'(G)$ is equal to the number of vertices in G, a Hamiltonian Path exists!
 4. If one wasn’t found, remove v from $V'(G)$, mark it as unvisited, and go back to the previous call of the procedure.
DFS Example - Setup

- Behold a graph G where $S = v_0$ and $V'(G) = \emptyset$. Find if a Hamiltonian Path exists starting from S via $DFS(S)$.

![Graph Diagram](image-url)
DFS Example - $DFS(S)$

- $v = v_0$
- $V'(G) = \{v_0\}$
- Call $DFS(v_1)$
DFS Example - $DFS(v_1)$

- $v = v_1$
- $V'(G) = \{v_0, v_1\}$
- Call $DFS(v_2)$
DFS Example - $DFS(v_2)$

- $v = v_2$
- $V'(G) = \{v_0, v_1, v_2\}$
- Call $DFS(v_3)$
DFS Example - $DFS(v_3)$

- $v = v_3$
- $V'(G) = \{v_0, v_1, v_2, v_3\}$
- The size of $V'(G)$ is 4. Hamiltonian Path found.
DFS – Performance Analysis

![Graph showing the relationship between time (in seconds) and vertices in a graph (G)]

Intel Core i7-7700
3.60 GHz

Vertices in G
Let’s bash DFS for a sec

- Multiple repeated function calls
- We have to check if we visited a vertex or not
- This is naïve brute-force. We aren’t taking advantage of any “properties”.
- We can do better... *much better.*
Dynamic Programming (DP)

• Mathematical Optimisation by Richard Bellman

• Break a problem down into easier “sub-problems”, solve those, and use the result to solve the original problem.

• “Sub-problems” are broken down into even easier “sub-problems” if possible, recursively.
Held-Karp Algorithm

- Proposed by Michael Held and Richard Karp, as well as independently by Richard Bellman in 1962.

- Utilises DP to solve “sub-problems” of a graph, preventing repeating traversals if a solution is already known.

- Reduces DFS’s $O(N!)$ time to $O(2^N \times N^2)$. A significant improvement.

- This was mainly for solving TSP (Travelling Salesman Problem). But the variant here will solve for Hamiltonian Paths.
Held-Karp – An Observation

- **Observation**: Assume a graph G, a subgraph G', and $H = G - G'$.

- If there is a Hamiltonian Path in G' and a vertex in G' is adjacent to a vertex v in H in G, then there is a Hamiltonian Path in a subgraph $G' + v$.

![Graphs](image_url)
Held-Karp – Example

- Assume a graph G, a subgraph G', and H shown below.
- It’s trivial to tell that G' has a Hamiltonian Path $\{v_0, v_1\}$.
Held-Karp – Example

• Now let’s look at a new sub-graph, I where $V(I) = \{v_0, v_1, v_2\}$.

• We know there was a Hamiltonian Path in G'. I has the same vertices plus v_2. Since any vertex in $G'(v_0$ or v_1) can reach v_2, it also has a Hamiltonian Path.
bitDP

- bitDP = **Bit Dynamic Programming** (ビット動的計画法)
- Use a DP table where **vertices** go on one side and **bitmasks** go on the other.
 - Bitmap represents subgraphs of G.
- Table is sized $N \times 2^N$.
 - e.g. Graph with 4 vertices has 16 subgraphs, from 0000 to 1111.
- At the final mask (1111), if **any** value is set to 1, there is a Hamiltonian Path in the graph G!
bitDP – Example (Reading the table)

• Make a bitDP table based on the graph:

![Graph Image]

<table>
<thead>
<tr>
<th>Vertex/Mask</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
bitDP – Example (Reading the table)

- Make a bitDP table based on the graph:

<table>
<thead>
<tr>
<th>Vertex/Mask</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
bitDP – Example (Reading the table)

• Consider Mask at 0xB (1011):
 • Vertices Visited: 0, 1, 3

<table>
<thead>
<tr>
<th></th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Is there a path between those three that:
 • Ends at 0? Yes
 • Ends at 1? No
 • Ends at 3? Yes
Held-Karp (via bitDP) – Performance Analysis

Vertices in \mathcal{G}

Seconds

Intel Core i7-7700
3.60 GHz

DFS
Held-Karp (via bitDP)
Honourable Mention
Maze Generation, Part II

You thought I was done...
Entombed for Atari 2600 (1982)
Entombed for Atari 2600

- Released in 1982.

- Simple design. Player moves through a maze trying to avoid enemies. Contact with enemies results in a game over.

- Maze moves upwards.

- If a player is stuck in a dead end, it’s also a game over.
Entombed for Atari 2600 – The Technical Details

• Storing all possible mazes in memory is impossible.
• Mazes were generated “on-the-fly”.
• Right side is just a mirrored version of the left side.
• Didn’t use Disjoint-Sets with Union-Find. How did they do it?
Entombed for Atari 2600 – Maze Generation

• Programmer was **drunk** and developed an “algorithm” for it.

• A cell is set by looking at 5 nearby squares, then looking up information in a lookup table.

• Generates a playable maze… every time… somehow.
Entombed for Atari 2600 – Maze Generation

• Why does this work? **No one knows why.**

• When programmer was interviewed, he said it came from another programmer.

• Said “He told me it came upon him when he was drunk and whacked out of his brain”.

• It’s even on the Wikipedia page for “List of unsolved problems in computer science”.

```
1 1 0 1
1 1 ?
```
Entombed for Atari 2600 – Lookup Table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
How does it relate to Graph Theory?

- It’s unsolved, and we know other maze generation algorithms are constructed from graphs, maybe there’s an explanation that involves Graph Theory?
- Apparently, you have to be drunk to make cool stuff…
One more thing...
Maze Generation. Define M as a maze generated with the Entombed truth table. Prove that M will always be a playable maze from top to bottom.

I have no idea. Have mercy please.
References

Discussion
Questions

• Given a 3D model M of n vertices, how many triangles are drawn if done via Triangle List?

• What is the $\lg^* (2^{2^{65536}})$? Alternatively, what is the $\lg^* (^{6}2)$?

• What does bitDP stand for?
Graph Theory Applications in Video Games

Clara Nguyễn
COSC 594 – 2020/03/11