
Bayesian Approach for Randomization of HeuristicAlgorithms of Discrete ProgrammingJonas Mockus, Audris Mockus, and Linas MockusAbstract. Discrete optimizationproblems are often solved using "heuristics"(expert opinions de�ning how to solve a family of problems). The paper isabout ways to speed up the search by combining several heuristics involvingrandomization. Using expert knowledge a prior distribution of optimizationresults as functions of heuristic decision rules is de�ned and is continuouslyupdated while solving a particular problem. This approach (BHA or BayesianHeuristic Approach) is di�erent from the traditional Bayesian Approach (BA)where the prior distribution is de�ned on a set of functions to be minimized.The paper focuses on the main objective of BHA that is improving anygiven heuristic by \mixing" it with other decision rules. In addition to pro-viding almost sure convergence such mixed decision rules often outperform (interms of speed) even the best heuristics as judged by the considered examples.However, the �nal results of BHA depend on the quality of the speci�c heuris-tic. That means the BHA should be regarded as a tool for enhancing the bestheuristics but not for replacing them.The paper is concluded by a short discussion of Dynamic VisualizationApproach (DVA). The goal of DVA is to exploit heuristics directly, bypassingany formal mathematical framework.The purpose of the paper is to inform the authors inventing and applyingvarious heuristics and about the possibilities and limitations of BHA hopingthat they will improve their heuristics using this powerful tool.1. General Ideas of Bayesian Heuristic ApproachThe traditional numerical analysis considers optimization algorithms whichguarantee some accuracy for all functions to be optimized. This includes the exactalgorithms (that is the worst case analysis). Limiting the maximal error requires acomputational e�ort that in many cases increases exponentially with the size of theproblem. The alternative is average case analysis where the average error is madeas small as possible. The average is taken over a set of functions to be optimized.The average case analysis is called the Bayesian Approach (BA) [Dia88, Moc89].There are several ways of applying the BA in optimization. The Direct BayesianApproach (DBA) is de�ned by �xing a prior distribution P on a set of functions f(x)and by minimizing the Bayesian risk function R(x) [DeG70, Moc89]. The riskfunction describes the average deviation from the global minimum. The distributionP is regarded as a stochastic model of f(x); x 2 Rm where f(x) might be a1991 Mathematics Subject Classi�cation. Primary 90C10,90C26; Secondary 62C10,65C05.1



2 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUSdeterministic or a stochastic function. In the Gaussian case assuming (see [Moc89])that the (n + 1)th observation is the last oneR(x) = 1p2�sn(x) �Z +1�1 min(cn; z)e� 12 ( y�mn(x)sn(x) )2dz:(1.1)Here cn = mini zi � �; zi = f(xi), mn(x) is the conditional expectation given thevalues of zi; i = 1; :::; n, dn(x) is the conditional variance, � > 0 is a correctionparameter and xn+1 = argminx R(x)is a point minimizing the risk (called the Bayesian decission).The objective of DBA (used mainly in continuous cases) is to provide as smallaverage error as possible while keeping the convergence conditions.The Bayesian Heuristic Approach (BHA) means �xing a prior distribution Pon a set of functions fK(x) de�ning the best values obtained using K times someheuristic h(x) to optimize a function v(y) of variables y 2 Rn [MEM+97]. Usuallythe components of y are discrete variables. The heuristic h(x) de�nes an expertopinion about the decision priorities. It is assumed that the heuristics or their"mixture" depend on some continuous parameters x 2 Rm, where m < n. We startthe detailed discussion with the Direct Bayesian Approach (DBA) because that isthe main instrument of the BHA.2. Direct Bayesian Approach (DBA)The Wiener process is common [Kus64, Sal71, TZ89] as a stochastic modelapplying the DBA in the one-dimensional case m = 1.The Wiener model implies that almost all the sample functions f(x) are con-tinuous, that increments f(x4) � f(x3) and f(x2) � f(x1), x1 < x2 < x3 < x4are stochastically independent, and that f(x) is Gaussian (0; x) at any �xed x > 0. Note that the Wiener process originally provided a mathematical model of aparticle in Brownian motion.The Wiener model is extended to multi-dimensional case, too [Moc89]. How-ever, simple approximate stochastic models are preferable if m > 1. These modelsare designed by replacing the traditional Kolmogorov consistency conditions be-cause they require the inversion of matrices of nth order for computing the con-ditional expectation mn(x) and variance dn(x) . The favorable exception are theMarkov processes including the Wiener one. Extending the Wiener process tom > 1 the Markovian property disappears.Replacing the regular consistency conditions by:- continuity of the risk function R(x)- convergence of xn to the global minimum- simplicity of expressions of mn(x) and sn(x)the following simple expression of R(x) is obtained using the results of [Moc89].R(x) = min1�i�nzi � min1�i�n kx� xik2zi � cn :



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 3The aim of the DBA is to minimize the expected deviation. In addition, DBA hassome good asymptotic properties, too. It is shown in [Moc89] thatd�=da = �fa � f� + �� �1=2 ; n!1where d� is density of xi around the global optimum f�, da and fa are average den-sity of xi and average value of f(x), and � is the correction parameter in expression(1.1). That means that DBA provides convergence to the global minimum for anycontinuous f(x) and greater density of observations xi around the global optimumif n is large. Note that the correction parameter � has a similar in
uence as thetemperature in simulated annealing. However, that is a super�cial similarity since,using DBA the good asymptotic behavior should be regarded just as an interesting"by-product". The reason is that Bayesian decisions are applied for the small sizesamples where asymptotic properties are not noticeable.Choosing the optimal point xn+1 for the next iteration using DBA one solvesa complicated auxiliary optimization problem minimizing the expected deviationR(x) from the global optimum (see Figure 1). That makes the DBA useful mainlyfor the computationally expensive functions of a few (m < 20) continuous variables.This happens in wide variety of problems such as maximization of yield of di�eren-tial ampli�er, optimization of mechanical system of shock absorber, optimizationof composite laminates, estimation of parameters of immunological model and non-linear time series, planning of extremal experiments on thermostable polymericcomposition [Moc89].Using DBA the expert knowledge is included by de�ning the prior distribution.In BHA the expert knowledge is involved by de�ning the heuristics and optimizingtheir parameters using DBA.3. Bayesian Heuristic Approach (BHA)Using DBA the expert knowledge is included by de�ning the prior distribution.In BHA the expert knowledge is involved by de�ning the heuristics and optimizingtheir parameters using DBA.If the number of variables is large and the objective function is not expensive theBayesian Heuristic Approach (BHA) is preferable. That is the case in many discreteoptimization problems. As usual these problems are solved using heuristics basedon an expert opinion. Heuristics often involve randomization procedures dependingon some empirically de�ned parameters. The examples of such parameters arethe initial temperature if the simulated annealing is applied or the probabilitiesof di�erent randomization algorithms if their mixture is used. In these problemsthe DBA is a convenient tool for optimization of the continuous parameters ofvarious heuristic techniques. That is called the Bayesian Heuristic Approach (BHA)[MEM+97].The example of knapsack problem illustrates the basic principles of BHA indiscrete optimization. Given a set of objects j = 1; :::; n with values cj and weightsgj, �nd the most valuable collection of limited weight.maxy v(y); v(y) = nXj=1 cjyj ; nXj=1 gjyj � g:



4 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUSHere the objective function v(y) depends on n Boolean variables y = (y1; :::; yn),where yj = 1 if object j is in the collection, and yj = 0 otherwise. The well knowngreedy heuristics hj = cj=gj is the speci�c value of object j. The greedy heuristicalgorithm: "take the greatest feasible hj", is very fast but it may get stuck in somenon-optimal decision.A way to force the heuristic algorithm out of such non-optimal decisions is bytaking decision j with probability rj = �x(hj), where �x(hj) is an increasing func-tion of hj and x = (x1; :::; xm) is a parameter vector. The DBA is used to optimizethe parameters x by minimizing the best result fK(x) obtained applying K timesthe randomized heuristic algorithm �x(hj). That is the most expensive operationof BHA therefore the parallel computation of fK (x) should be used when possiblereducing the computing time in proportion to a number of parallel processors.Optimization of x adapts the heuristic algorithm �x(hj) to a given problem. Letus illustrate the parameterization of �x(hj) using three randomization functions:rli = hli=Pj hlj ; l = 0; 1;1 Here the upper index l = 0 denotes the uniformlydistributed component and l = 1 de�nes the linear component of randomization.The index 1 denotes the pure heuristics with no randomization where r1i = 1 ifhi = maxj hj and r1i = 0 , otherwise. In this case parameter x = (x0; x1; x1)de�nes the probabilities of using randomizations l = 0; 1;1 correspondingly. Theoptimal x may be applied solving di�erent but related problems, too [MEM+97].That is very important in the "on-line" optimization adapting the BHA algorithmsto some unpredicted changes.Another simple example of BHA application is by trying di�erent permutationsof some feasible solution y0. In this case heuristics are de�ned as the di�erencehi = v(yi) � v(y0) between the permuted solution yi and the original one y0.The well known simulated annealing algorithm illustrates the parameterization of�x(hj) depending on a single parameter x. Here the probability of accepting aworse solution is equal to e�hi=x, where x is the "annealing temperature".The comparison of BHA with exact B&B algorithms solving a set of the 
ow-show problems shows the table 1 from [MEM+97]. where S is the number ofTable 1. Comparing the BHA and the truncated B&BR = 100, K = 1, J = 10, S = 10, and O = 10Technique fB dB x0 x1 x1BHA 6.18 0.13 0.28 0.45 0.26CPLEX 12.23 0.00 | | |tools, J is the number of jobs, O is the number of operations, fB ; x0; x1; x1 arethe mean results, dB is the variance, and "CPLEX" denotes the standard MILPtechnique truncated after 5000 iterations. The table shows that in the randomlygenerated 
ow-shop problems the average make-span obtained by BHA was almosttwice less that obtained by the exact B&B procedure truncated at the same timeas BHA . The important conclusion is that stopping the exact methods before theyreach the exact solution is not a good way to obtain the approximate solution.The BHA has been used to solve the batch scheduling [MEM+97] and theclustering (parameter grouping) problems. In the clustering problem the only pa-rameter x was the initial annealing temperature [DS90].



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 5The main objective of BHA is improving any given heuristic by de�ning the bestparameters and/or the best \mixtures" of di�erent heuristics. The heuristic decisionrules mixed and adapted by BHA often outperform (in terms of speed) even thebest individual heuristics as judged by the considered examples. In addition, BHAprovides almost sure convergence. However, the �nal results of BHA depend on thequality of the speci�c heuristics including the expert knowledge. That means theBHA should be regarded as a tool for enhancing the heuristics but not for replacingthem.Many well known optimization algorithms such as Genetic Algorithms (GA)[Gol89], GRASP [MPPR97], and Tabu Search (TS) [Glo94], may be regardedas generalized heuristics that can be improved using BHA. There are a number ofheuristics tailored to �t speci�c problems. For example, the Gupta heuristic wasthe best one while applying BHA to the 
ow-shop problem [MEM+97].Genetic Algorithms [Gol89] is an important "source" of interesting and usefulstochastic search heuristics. It is well known [AV91] that the results of the ge-netic algorithms depend on the mutation and cross-over parameters. The BayesianHeuristic Approach could be used in optimizing those parameters.In the GRASP system [MPPR97] the heuristic is repeated many times. Dur-ing each iteration a greedy randomized solution is constructed and the neighborhoodaround that solution is searched for a local optimum. The "greedy" component con-structs a solution, one element at a time until a solution is constructed. A possibleapplication of the BHA in GRASP is in optimizing a random selection of a candi-date to be in the solution because di�erent random selection rules could be usedand their best parameters should be de�ned. BHA might be useful as a local com-ponent, too, by randomizing the local decisions and optimizing the correspondingparameters.In tabu search the issues of identifying best combinations of short and longterm memory and best balances of intensi�cation and diversi�cation strategies maybe obtained using BHA.Hence it seems that the Bayesian Heuristics Approach may be considered whenapplying almost any stochastic or heuristic algorithm of discrete optimization. Theproven convergence of a discrete search method (see, for example, [And96]) isan asset. Otherwise, the convergence conditions are provided tuning the BHA[MEM+97] if needed. 4. Process Scheduling4.1. Introduction. In [MR96a] a general approach to the short-term sched-uling problem of multipurpose batch and continuous operations has been described.A mathematical programming formulation that takes into account a number of thefeatures of realistic industrial problems has been presented. The formulation isbased on a continuous time representation, in which the planning horizon is di-vided into a number of intervals of unequal and unknown duration resulting in alarge mixed integer nonlinear program. In principle, the optimal solution of thisMINLP can be obtained by standard exact Generalized Benders Decomposition,Outer Approximation, or Branch and Bound techniques. However, in practice, itis known that such problem structures often result in exponential growth of solu-tion times with problem size, thus rendering most industrially-relevant problemsintractable.



6 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUSThis work is an attempt to address the above problem. It was suggested in[MR94] that the Bayesian Heuristic approach could be employed for the solutionof such problems. The BH framework allows us to adapt any speci�c heuristic fora given class of problems. Furthermore, by clever choice of a heuristic we can makethe numerical algorithm more e�cient. In [MR96b] a general simulated anneal-ing heuristic is used. In this work we employ a specialized Material RequirementsPlanning heuristic tuned for a class of batch and continuous scheduling problems.Computational experiments suggest that the BH approach combined with nonuni-form time discretization shows promise for the solution of batch and continuousscheduling problems. Section 4.2 summarizes the key aspects of the BH approach.Section 4.4 describes how the MRP heuristic [Orl75] is tuned to incorporate batchand continuous operations. Finally, section 4.8 illustrates the e�ectiveness of thistechnique vis-a-vis the standard branch and bound technique applied to the Uni-form Time Discretization approach (UDM).4.2. Bayesian Heuristic Approach in Process Scheduling. Algorithmsof exponential complexity are usually required to obtain the exact solution of globaland discrete optimization problems. Even in cases when an approximate solutionwhich lies within some tight error bounds is acceptable, the exponential complexityoften remains. The desire to guarantee satisfactory results for the worst case is animportant factor in forcing exponential complexity. Therefore in practice the solu-tion of many applied global and discrete optimization problems is often approachedusing heuristics.Most decision processes consist of a number of steps. For example, in batchscheduling problems these steps are: selecting a task, selecting a suitable equipmentunit to process the task, and determining the amount of material to be processedby this task. In each step, an object is selected from some decision set (for example,select a task from a given set of tasks which produce the necessary product). Aheuristic is a set of rules used to perform a step. For the classical knapsack problem,for example, this heuristic might be to select an object with maximal speci�c price(price over weight ratio). It may be helpful to think of this process as descendingthe decision tree by a path prede�ned by heuristic rules. In Figure 1 (upper part)the descent in a decision tree using the rule of always choosing the leftmost nodeis illustrated.The key idea of the BH approach is to randomize these heuristic rules. Insteadof descending the decision tree only once, the solution is repeated many times byselecting di�erent paths. Each path is selected by applying the heuristic rule withsome parameterized probability. Since the set of parameters for each descent in thedecision tree is di�erent, each set represents a di�erent solution replicate and thusthe best of them can be chosen for retention. In Figure 14.2 for each replicate theleft most node is chosen with some probability which is the same within a speci�creplicate but is di�erent for each replicate.The parameterization is another key feature of the BH approach. If we knowor expect that some heuristic \works" well, then we may increase the e�ciencyof the search by randomizing the parameters of the heuristic. Instead of solvinga multidimensional discrete optimization problem directly we tune the parametersof the randomized heuristic. This tuning process is a low dimensional continuousoptimization problem. We propose to solve this tuning problem using the Bayesianmethod of global optimization [Moc89].



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 7|| l| l l ls s s| l l l l l l��� @@@��� AA @@@��vf vf f v fq q qf f f f v f f�� @@�� AA @@�� vv ff v f fq q qf f v f f f f�� @@�� AA @@�� : : : vf vf f f vq q qf f f f f v f�� @@�� AA @@��1-st replicate 2-nd replicate n-th replicateFigure 1. Decision treeDeterministic descent (upper part). Randomized descents (lower part).The main advantage of the worst case rigorous approach is that it yields errorbounds on the solution. The main disadvantage is the focus on the worst possiblecase for a given class of problems. If this class is large, then in order to obtainsu�ciently tight bounds many iterations may be required. This is the natural\cost" of such a guarantee.The main advantage of the Bayesian approach is its focus on average caseperformance. An additional advantage of the BH approach is the possibility ofincluding expert knowledge in a natural and convenient way. The potential abilityto \learn" is also a positive feature of the BH approach. By learning we mean thatthe decision parameters which are optimal for some problems of the given class maybe \good enough" for the rest of the class. The main disadvantage is that it is ingeneral not possible to obtain and maintain guaranteed bounds on the quality ofsolution.4.3. Penalty Function. The feasible region of the MINLP model de�ned inthe �rst part of this series [MR96a] is quite complex. However, Bayesian globaloptimizationmethods are designed for a feasible region described by a hyper rectan-gle. Thus we need some device to transform the feasible region to a hyper rectangle.The penalty function is a convenient way to do this. Since both binary and con-tinuous variables are present the penalty function must have two components: onefor the violation of the binary constraints and one for violation of the continuousconstraints. The right choice of penalty parameters is also important. If the valuesof the parameters are chosen to be too large, then the optimization problem maydegenerate into the search for the \nearest" feasible decision. If the penalty pa-rameters are chosen to be too small, then the constraints may be violated. We mayreach some compromise by increasing the penalty parameters after each iteration.In general, the binary penalty parameter must be much greater than the continuousone, because while some violation of the continuous constraints may be permissi-ble, the binary constraints must be satis�ed. Of course, one may ignore the strict



8 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUSnature of the binary constraints at the initial stages of global optimization, whenthe optimum is still far away but then one must satisfy these constraints exactlywhen approaching the global optimum.4.4. Material Requirement Planning Heuristic. MRP is an inventorymanagement and production planning technique [Orl75] which, given a deliveryschedule for a �nal products, determines the initiating times for all raw materialsorders, for the production runs needed to prepare all required intermediate prod-ucts, as well as the starting times for the production of the �nal product itself.Given a delivery time for a product shipment, each branch of the product process-ing tree is traced from the product in question and each component requirementis calculated. If the inventory is inadequate, then a production order is issued forthat component. The tracing of each branch of the processing tree continues untilall raw materials requirements have either been met or ordered.For scheduling problems relevant to the chemical industry we have to extendthis heuristic to handle unit and task assignment, batch size determination, andother features. For purposes of this paper we will employ simple and natural heuris-tic rules. Of course, these rules could be enhanced or augmented to give furtherimprovements in the results. The following is the list of heuristic rules:� Product selection rule. The production run of each product in a batch andcontinuous processing system has some due date. We begin with a productwhich has the earliest due date. The rationale for this is that knowledge ofdue dates close to start of the scheduling horizon is more concrete. Whenproduction of this product is scheduled we recursively also schedule theproduction of the intermediates required to produce it.� Equipment item selection rule. To schedule production of a given productor intermediate it is necessary to select a task and an equipment unit toprocess this task. When there are few tasks producing the same productwe randomly assign the quantity of a product that the given task has toproduce. Then we select an equipment item which is available during thetime interval closest to the due date (a unit may become unavailable forprocessing because it processes another task, it is shutdown for maintenanceetc.).� Task start selection rule. Usually the size of the unit availability interval isdi�erent than the task processing time. The rule will start a given task toend exactly at the end of this interval.For example, assume that task2 processing time on unit1 is 1h. Further-more, the interval chosen in the previous step is from 3pm to 5pm. Thentask2 is started at 4pm to end at 5pm.4.5. Schedule Generation. The process of schedule generation using therandomized heuristic is essentially the same as that described in section 4.4. Theonly di�erence is that instead of using the heuristic rules deterministically we makeour selection with some probability. Consider, for example, the product selectionrule. Instead of selecting a product with smallest due date, we select the productwith some probability r which is a function of its due date Ds. The probability rsof selecting the product s is expressed asrs = xa0 + (1� x)a1h(ds):(4.1)



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 9Here x is the parameter de�ned in the previous step of the BHA algorithm 1, M isthe number of the products in the list , and the heuristic h(ds) = expf�Dsg. Wechosen an exponential function that the probability to select a product with latedue date would be very small. As we see, the products with smallest due datesare chosen with highest probability, thus we preserve the character of the MRPheuristic while making it random. In a similar manner we deal with the otherrules.The generated schedule may be infeasible because of violations of the statecapacity constraints. It is possible that the state capacity is exceeded or that anegative amount of material exists in a given state. These situations are handledby penalizing the variations from the minimal and the maximal state capacity valuesand adding this penalty to the objective function. The objective function is readilyevaluated by calculating the storage and utility costs, the pro�t gained by satisfyingdemands less than raw material costs.4.6. Bayesian Heuristic Algorithm. The key component of the BH frame-work is the randomized heuristic function. This function corresponds to the objec-tive function in the global optimization. Once the randomized heuristic functionis de�ned, we may optimize its parameters using the Bayesian global optimizationmethod [Moc89] and as byproduct we obtain the optimum pro�t. For purposes ofthis paper we employ a parametric �rst order polynomial function of the MaterialRequirements Planning (MRP) heuristic as the randomized heuristic. The feasibleregion of this heuristic is quite complex, therefore a penalty function is used totransform the feasible region to a hyper rectangle. When using the MRP heuristiconly the amount of material in the given state is allowed to exceed state capacitywhile all other constrains, binary and continuous, are not allowed to be violated.Thus we need only one penalty parameter for the continuous constraints. Theoret-ically, the value of the penalty parameter has to be much bigger than unit priceof product to ensure a steep enough increase in penalty when we leave the feasibleregion. However, this value should not be too large so that the increase in penaltyis quite smooth. Empirically we found the value of 500 to yield the best results forthe test examples, although for other problems its value may be di�erent.In section 4.4 a version of the MRP heuristic for batch and continuous taskswas described . If di is some decision (select a product, a suitable equipment unit,or task start), then h(di) is the heuristic function. The function r(x; h(di)) is arandomized heuristic function which gives the probability of the decision di. x isthe randomization parameter. We usedr(x; h(di)) = xa0 + (1� x)a1h(di)where a0 = 1M ;a1 = 1PMi=1 h(di) ;and M is the number of possible decisions. The heuristic rules are as de�ned insection 4.4. Thus the Bayesian Heuristic Algorithm can be represented by thefollowing simple steps:



10 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUSStep 1. Fix parameter x using the global Bayesian method [Moc89]. 1Step 2. Generate a schedule by using the randomized MRP heuristic (see sections4.4 and 4.5);Step 3. Evaluate the schedule for this parameter;Step 4. If the schedule is feasible (there is no penalty) and the value of the bestschedule so far did not increase for 10 iterations then go to step 6;Step 5. Go to step 1;Step 6. Fix binary variables to the values given by the best schedule. 2 Substitutethe values of these binary variables into the model to reduce the problem toa linear program. Then the solution of the linear program gives the exactstarting times, batch sizes, and processing rates.We see that the scheduler generates sequences and assignments while the LP modelis producing the exact schedule. The LP model is derived from the Non-UniformDiscrete-Time Model (NUDM) model (see [MR94]) by substituting the sequencingand assignment variables which are �xed by the scheduler. This disaggregation ofthe scheduling problem allows us to solve the large scale MINLP problem by usinga combination of heuristic algorithm and an e�cient LP solver.The key issue in using the BH approach is that together with the best schedulewe also acquire the best randomization parameter x, or, in other words, we tailorthe heuristic for a given class of problems. Initially we are parameterizing theheuristic, thus giving it a few extra degrees of freedom. By varying parametersin an intelligent way, so that the expected outcome is maximized, we �nd theparameter values which yields the best pro�t.4.7. Relationshipof the BayesianHeuristic Approach with SimulatedAnnealing and Genetic Algorithms. The Bayesian Heuristic Approach hasa direct and deep relationship with simulating annealing and genetic algorithms.For example, consider (4.1). It indicates that products with smaller due date areselected with higher probability. However, there is a non zero probability of selectinga product with a higher due date. This 
exibility which is allowed by the heuristicrandomization e�ectively increases the search space. In the simulated annealingcase, the same e�ect is achieved by accepting a point with lower objective value.Genetic algorithms through an evolution process proceed from some initialpopulation A to �nal population B (see Figure 2).This evolution process is basically managed by the mutation and crossoverprobabilities which are constant throughout the entire evolution process. In theBayesian Heuristic Approach, in e�ect multiple evolutions occur. Initial populationA evolves to some intermediate population I1 via evolution which depends on someevolution parameter x1, i. e. mutation and crossover probabilities are de�ned bythis parameter. The intermediate population I1 evolves to some other intermediate1This provides the asymptotic convergence with probability one. That is the �rst feature ofthe Bayesian Heuristic Approach. For the convergence proof see [MEM+97].We have to note, however, that parameter x is �xed based on the value of the pro�t of thepreviously generated schedules. Thus the second feature of a given global Bayesian method is thatit �xes the next x to a value for which it expects to get maximal pro�t. Of course, it may be thatthis new x value does not give the best pro�t, thus we need to use additional iterations.These two features were key reasons for using the global Bayesian method. The secondfeature makes the search more e�cient than a pure random Monte-Carlo search while the �rstenables a more thorough exploration of the decision space.2These variables correspond to the sequencing and assignment of tasks.



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 11lA - lBlA -x1 lI1 -x2 lI2 - ` ` ` - lCFigure 2. Bayesian approach versus genetic algorithmsGenetic algorithm. Single evolution (upper part). Bayesian approach. Multipleevolutions (lower part). Here xi is chosen so that to maximize conditionalexpected �tness of i-th population.population I2 via evolution which depends on another evolution parameter x2.This process is repeated many times. The best population is selected as the �nalpopulation. Another important feature besides multiple evolutions is that eachxi is selected based on the �tness of the previous populations so as to maximizethe conditional expected �tness of i-th population. In such a way, the process isnot a purely random one but is aimed to maximize the �tness. By changing themutation and crossover probabilities the tendency of genetic algorithms to producelocal solutions is mitigated.Another key di�erence of the BHA from simulated annealing and genetic algo-rithms is learning. In simulated annealing or genetic algorithms parameters, suchas initial temperature or mutation probability etc., are found experimentally bystudying a number of scheduling problems. However, in the Bayesian HeuristicApproach these parameters are tuned for each problem of a given class and donot need to be �xed for all classes. Thus, in contrast to simulating annealing andgenetic algorithms, the Bayesian approach allows learning to occur for the problemat hand.The further drawback of simulated annealing and genetic algorithms is thatwhen applied to discrete or mixed integer problems they generate a large numberof infeasible solutions. Thus a big percentage of the computation time is wastedin the generation of these infeasible solutions. The similar situation was observedwhen trying to employ simulation annealing heuristic within the Bayesian HeuristicHeuristic Approach [MR96b]. Because of this, only small size problems could besolved. Using the BHA with MRP heuristics one overcomes this problem and 70%percent of the generated schedules were feasible. This can be explained by the factthat MRP heuristic �ts better to a given class of scheduling problems and thusgenerates mostly realizable schedules.4.8. Scheduling Results. We compared the BHA algorithm with solutionof the MILP uniform discretization model using branch and bound enumeration(B&B) [ZPMR94]. Results are reported for several test examples, both batch andcontinuous. The detailed numerical data for these examples is available electron-ically from the rcsplib account (rcsplib@ecn.purdue.edu) in the form of RCSPeclanguage �les.We summarize the results in Table 2. Computational experiments were per-formed on a HP 9000/755 workstation using the commercially available CPLEXsolver. The column \BH pro�t" shows the pro�t value obtained before performingthe LP solution phase, i.e. the pro�t value given only by the statistical part of thealgorithm. As we see, the LP solution does not signi�cantly increase the value of



12 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUSTable 2. B&B and BHA comparison for examples of batch andcontinuous processesB&B BHAProblem Pro�t Time Pro�t Time Number BH($) (sec) (%) (sec) of repli- pro�tcates (%)batch1 3230 6 100 0.46 12 77.91batch4 60534 1.7 99.99 2.90 13 93.79batch3 105756 8.6 99.97 3.85 20 99.18exIII 1400 66 100 3.65 15 100cpctsp1 4724 0.6 100 0.06 11 100cpctsp2 8122 188.5 100 0.20 11 100cpctsp3 12015 * 99.60 3.01 16 99.6cipac2 20879 * 100.54 31.8 29 100.39cipac1 22800 824.6 107.77 27.3 29 107.77the pro�t. However we can not draw de�nite conclusions about the need of theLP solution step from this case study alone. We have to note that while for batchprocesses (batch1, batch3, batch4, exIII, cpctsp) BHA gives solutions slightly worsethan the branch & bound approach, for continuous processes BHA (cipac1, cipac2)gives better results than UDM. This can be explained by the inherent discrete na-ture of the UDM which is not suited for continuous tasks. Time variable can haveonly discrete values in the UDM case, while processing time of continuous tasksassumes continues values and thus can not be represented as discrete variables.NUDM works much better than UDM for problems with sequence dependent tasks(cipac2, cpctsp1, cpctsp2, cpctsp3) also. This is due to the fact that NUDM han-dles sequence dependent changeovers in a more e�cient way, i.e. uses resource-tasknetwork representation as opposed to the state-task network representation used bythe UDM. It is shown that constraints handling sequence dependent changeoversbased on the resource-task network representation are tighter than those based onthe state-task network representation . It is worth noting that with increasing num-ber of sequence dependent tasks (cpctsp1, cpctsp2, cpctsp3) the solution time ofB&B grows exponentially while the corresponding time of BHA grows only polyno-mial. * means that optimal solution for the examples cpctsp3 and cipac2 was notreached by B&B since the solution time was unreasonably large. The B&B treewas terminated after 20000 nodes. The computational time for the batch4 exampleis worse in BHA case due the fact that MRP heuristic is not very well suited forsuch processes (batch4 example contains zero wait states). It is possible to modifyBHA account for the zero wait states by aggregating the two tasks connected byzero wait state together.4.9. Scheduling Conclusions. In [MR96a] a general formulation of theshort-term scheduling problem for complex multipurpose batch and continuousoperations is presented. However, the size of the resulting MINLP raised seri-ous concerns regarding the practical applicability of the NUDM. In this paper weprovide an algorithm to overcome this limitations.This algorithm is based on the BH approach to discrete optimization and aclever choice of heuristic is the key issue. If the heuristic is a very general one (as



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 13simulated annealing in [MR96b]) then the class of problems solved is large as isthe computational time. If the heuristic is a special one (as MRP in our case) thenthe class of problems solved is smaller as is the computational time. Of course,problems which do not �t a given heuristic are solved also but the computationale�ort required can be unpredictably high (batch4 is a good example). Thus one ofthe directions for future work may well be the expert system which recognizes thestructure of the problem and suggests a heuristic to solve this problem.Usually processing data is uncertain (task processing times 
uctuate around themean value due to the quality of feed, due dates are not well known in advance etc.).The BH approach is a statistical framework and thus theoretically accommodatesstochastic data. Thus the other promising future direction can be identi�ed as anapplication of the BH approach to scheduling problems with uncertainty. NUDMallows one to model various uncertainties in time and size parameters withoutmodi�cations since time and size are continuous variables (for the UDM uncertaintyin processing times require major modi�cations).5. Software for Global Optimization5.1. Background. The global optimization software was initiated consider-ing the results of international "competition" of di�erent algorithms of global opti-mization (see [DS78]). The experience in real life optimization problems and somerecent results were also used selecting the set of optimization algorithms. The setof algorithms of global optimization includes� four versions of the Bayesian search,� a version of clustering,� a version of uniform deterministic grid,� a version of pure Monte Carlo search.Usually it is reasonable to start optimization by a global method and to �nish itby some local method. An exception is two global algorithms: the Torn versionof clustering [TZ89], and the Zilinskas version of the Bayesian technique [TZ89].Both of these algorithms contain some simple local search algorithms. The localsearch is not necessary for those two methods, but it may be useful.There are three local optimization methods:� a method of variable metrics type with Lagrangian multipliers and penaltyfunctions for constrained optimization of smooth functions (see [Sch86]),� a method of simplex type of Nelder and Mead with penalty functions forconstrained optimization of non-di�erentiable functions.� a method of stochastic approximation type for "noisy" functions (see [Moc89]).5.2. ApplicationAreas. Each subroutine represents a global or a local method.The choice of method has to follow the idea that the computational complexity ofthe method should roughly correspond to that of the objective function:� For computationally "expensive" functions the Bayesian methods could berecommended. Those methods need a large amount of auxiliary calculationsto make each observation more e�cient.� For "cheap" functions the simple grid methods, like Monte Carlo or a uni-form deterministic grid (see [Sob67]), can be better. Here observations arenot so e�cient, but auxiliary calculations are negligible. This explains arelative e�ciency of simple methods when optimizing simple functions.



14 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUS� The clustering techniques (see [TZ89]) may be the best choice, if we expectthe number of local minima to be small.� A relatively simple Bayesian technique is available [TZ89] for global opti-mization of one-dimensional functions;� There are optimization problems where objective functions can be roughlyrepresented as a sum of components depending on di�erent variables. Herethe Bayesian method of line search along the coordinates usually shows verygood results. This method globally optimizes one variable at a time byone-dimensional Bayesian search. The di�erence of this method from othermethods of global optimization is that it depends on the starting point. Thusa deviation from the global minimumcan be made as small as desired by ap-plying a multi-start procedure with di�erent uniformly distributed startingpoints.5.3. Constraints. All the global methods optimize in a rectangular region.Therefore we represent the linear and non-linear inequality constraints as somepenalty functions. The same applies to the local method of stochastic approxima-tion type. In local methods of simplex and variable metrics type the linear andthe non-linear constraints can be de�ned directly. This may be done by constraintsubroutines, supplied by the user in addition to the objective function.5.4. Software Versions. The global optimization software is in four versions:� portable Fortran Library,� interactive software for Turbo C compiler and DOS operating system,� interactive software for C++ compiler and UNIX operating system and X-Window system.� interactive software for JavaOne may notice a cycle of portability in this sequence of software versions. Thesequence is started from by the portable Fortran library and is concluded by Javalanguage. The two systems in between are more di�cult to port. The TurboC system is for DOS-compatible operating systems and C++ is for the UNIXenvironment. Fortran, Turbo C and C++ versions are described in [MEM+97].Now we brie
y consider the Java version.5.5. Java Version.5.5.1. Global Minimizer for Java (GMJ). The GMJ system [Gry98] is a classframework for implementing and testing global optimization algorithms(METHODS), functions to be optimized (TASKS), and and visual representa-tions classes (ANALY SIS).5.5.2. Running GMJ. The GMJ system can be run as a Java Applet or as JavaApplication. The advantage of running it as Java Applet is obvious-it can be usedover the Web. The advantage of the Java Application is that the most recent Javafeatures supported by the Java Development Kit (JDK) can be used.5.5.3. Con�guring Applet. The sample �le gmj:html shows how to set con�g-uration parameters of the gmj applet. The < applet > tag looks like this:<applet code="lt.ktu.gmj.ui.GMJ.class"codebase="Lib"align="baseline"width="450"height="450"



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 15archive="gmj.jar"><param name="TASKS"value= "lt.ktu.gmj.tasks.Sin|Undefined"><param name="METHODS"value="lt.ktu.gmj.methods.Mig1| lt.ktu.gmj.Bayes1"><param name="ANALYSIS"value= "lt.ktu.gmj.analysis.Convergence|lt.ktu.gmj.analysis.Spectrum|lt.ktu.analysis.Projection"></applet>Here:code speci�es the applet class and should not be changedcodebase speci�es the relative URL of the applet class archive �le and user class�les. The URL is relative to the location of the HTML �le where the < applet >tag resides or is absolute path.archive lists the class archive �leswidth and height speci�es the applet size, as it appears in the HTML page.The parameter TASKS lists tasks which are available when the applet loads.Complete class names (package and class name) are separated by j symbol.The parameter METHODS lists methods which are supported when the ap-plet loads.The parameter ANALY SIS lists visual analysis classes which are supportedwhen the applet loads.5.5.4. Con�guring Stand-Alone Application. The Java Runtime Environment(JRE) is required when running GMJ as a stand-alone application.Before running GMJ, a CLASSPATH should be con�gured, so that the GMJclasses can be found by the JRE. For Windows NT the command might look likethis:SET CLASSPATH=#CLASSPATH#;c:\gmj\gmj.jarthe application is started by loading the lt:ktu:gmj:ui:GMJ class:java lt.ktu.gmj.ui.GMJLike the applet the application accepts three optional parameters: tasks, methods,and analysis objects.5.5.5. Display and Control. GMJ displays a tab control that has three choices:method, task and operation. The appropriate pages can be selected by clicking onthe page tabs. The detail discussion is in [Gry98].5.6. Software Availability. The software .The interactive UNIX C++ software (LINUX 1.2.8. version) and the libraryof portable Fortran subroutines (LINUX 1.2.8. and DOS versions) are included in[MEM+97], and available on ftp : ==optimum:mii:lt=pub6. Dynamic Visualization Approach (DVA)We started the description of algorithms from the formal Direct BayesianApproach (DBA). Then we considered semi-formal Bayesian Heuristic Approach



16 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUS(BHA). An informal interactive optimization is needed if an optimization problemis not well de�ned. This may arise, for example, if the mathematical model, in-cluding the objective function, must be updated during the course of optimizationprocess.The informal interactive approach attempts to represent an optimization prob-lem in a visual form that is domain speci�c and is intuitive to the domain expert.The visual representations can vary signi�cantly across the domains. In the ex-amples the dynamic visual representation of a smooth function in time and spaceturned out to be e�ective in several domains. The domain speci�c visual repre-sentation can e�ciently convey information about a complex model and help makequalitative judgments about model's adequacy and optimality.The e�ciency of informal interactive optimization depends on dynamic visu-alization techniques. We regard dynamic visualization as an important tool usingheuristics in an informal interactive way and thus will refer to it as a Dynamic Visu-alization Approach. Two basic techniques of dynamic visualization are consideredin [MEM+97]:� space-time smoothing;� image search.Those techniques are explained in [MEM+97, EM96] through real life examples.We mentioned Dynamic Visualization Approach (DVA) just to illustrate di�erentways of using heuristics, from pure formal Bayesian Approach (by priori distribu-tion on a set of objective functions) to semi-formal Bayesian Heuristic Approach(by priori distribution on a set of parameters of randomized heuristics and their"mixtures") and pure interactive DVA (directly by the expert opinion using visualrepresentation).In the Java optimization system (see section 5.5) the possibility of the do-main speci�c visualization is included by the ANALY SIS classes. This way theBayesian Heuristic Approach and the Dynamic Visualization are integrated. Thesimplest DV techniques such as convergence lines, projections and the objectivefunction distributions are rather general. The more advanced visualization tech-niques are domain speci�c and should be developed while designing the TASKSclasses representing speci�c objective functions.References[And96] S. Andradottir. A global search method for discrete stochastic optimization. SIAMJournal, Optimization, 6:513{530, 1996.[AV91] I.P. Androulakis and V. Venkatasubramanian. A genetic algorithmic: Framework forprocess design and optimization. Computers in Chemical Engineering, 15:217{228,1991.[DeG70] M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.[Dia88] P. Diaconis. Bayesian numerical analysis. In Statistical Decision Theory and RelatedTopics, pages 163{175. Springer Verlag, 1988.[DS78] L.C.W. Dixon and G.P. Szego. Towards global optimisation 2. North Holland, Ams-terdam, 1978.[DS90] G. Dzemyda and E. Senkiene. Simulated annealing for parameter grouping. In Trans-actions. Information Theory, Statistical Decision Theory, Random Processes, pages373{383, Praque, 1990.[EM96] William Eddy and Audris Mockus. Dynamic visualization in modeling and optimiza-tion of ill de�ned problems, case studies and generalizations. In C. A. Floudas andPanos M. Pardalos, editors, State of the Art in Global Optimization: Computational
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