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ABSTRACT. Discrete optimization problems are often solved using ”heuristics”
(expert opinions defining how to solve a family of problems). The paper is
about ways to speed up the search by combining several heuristics involving
randomization. Using expert knowledge a prior distribution of optimization
results as functions of heuristic decision rules is defined and is continuously
updated while solving a particular problem. This approach (BHA or Bayesian
Heuristic Approach) is different from the traditional Bayesian Approach (BA)
where the prior distribution is defined on a set of functions to be minimized.

The paper focuses on the main objective of BHA that is improving any
given heuristic by “mixing” it with other decision rules. In addition to pro-
viding almost sure convergence such mixed decision rules often outperform (in
terms of speed) even the best heuristics as judged by the considered examples.
However, the final results of BHA depend on the quality of the specific heuris-
tic. That means the BHA should be regarded as a tool for enhancing the best
heuristics but not for replacing them.

The paper is concluded by a short discussion of Dynamic Visualization
Approach (DVA). The goal of DVA is to exploit heuristics directly, bypassing
any formal mathematical framework.

The purpose of the paper is to inform the authors inventing and applying
various heuristics and about the possibilities and limitations of BHA hoping
that they will improve their heuristics using this powerful tool.

1. General Ideas of Bayesian Heuristic Approach

The traditional numerical analysis considers optimization algorithms which
guarantee some accuracy for all functions to be optimized. This includes the exact
algorithms (that is the worst case analysis). Limiting the maximal error requires a
computational effort that in many cases increases exponentially with the size of the
problem. The alternative is average case analysis where the average error is made
as small as possible. The average is taken over a set of functions to be optimized.
The average case analysis is called the Bayesian Approach (BA) [Dia88, Moc89].

There are several ways of applying the BA in optimization. The Direct Bayesian
Approach (DBA) is defined by fixing a prior distribution P on a set of functions f(x)
and by minimizing the Bayesian risk function R(z) [DeG70, Moc89]. The risk
function describes the average deviation from the global minimum. The distribution
P is regarded as a stochastic model of f(x), © € R™ where f(x) might be a
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deterministic or a stochastic function. In the Gaussian case assuming (see [Moc89])
that the (n + 1)th observation is the last one
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Here ¢, = min; z; — €, z; = f(x;), mu(2) is the conditional expectation given the
values of z;, 1 = 1,...,n, dy(z) is the conditional variance, ¢ > 0 is a correction
parameter and

Tpy1 = argmin R(x)

is a point minimizing the risk (called the Bayesian decission).

The objective of DBA (used mainly in continuous cases) is to provide as small
average error as possible while keeping the convergence conditions.

The Bayesian Heuristic Approach (BHA) means fixing a prior distribution P
on a set of functions fx () defining the best values obtained using K times some
heuristic h(z) to optimize a function v(y) of variables y € R" [MEM™*97]. Usually
the components of y are discrete variables. The heuristic h(x) defines an expert
opinion about the decision priorities. It is assumed that the heuristics or their
"mixture” depend on some continuous parameters x € R™, where m < n. We start
the detailed discussion with the Direct Bayesian Approach (DBA) because that is
the main instrument of the BHA.

2. Direct Bayesian Approach (DBA)

The Wiener process is common [Kus64, Sal71, TZ89] as a stochastic model
applying the DBA in the one-dimensional case m = 1.

The Wiener model implies that almost all the sample functions f(x) are con-
tinuous, that increments f(z4) — f(zs) and f(z2) — f(z1), #1 < 22 < 23 < 24
are stochastically independent, and that f(x) is Gaussian (0, z) at any fixed z > 0

Note that the Wiener process originally provided a mathematical model of a
particle in Brownian motion.

The Wiener model is extended to multi-dimensional case, too [Moc89]. How-
ever, simple approximate stochastic models are preferable if m > 1. These models
are designed by replacing the traditional Kolmogorov consistency conditions be-
cause they require the inversion of matrices of nth order for computing the con-
ditional expectation my, (x) and variance d,(x) . The favorable exception are the
Markov processes including the Wiener one. Extending the Wiener process to
m > 1 the Markovian property disappears.

Replacing the regular consistency conditions by:

- continuity of the risk function R(x)

- convergence of x, to the global minimum

- simplicity of expressions of m,(z) and sy ()

the following simple expression of R(z) is obtained using the results of [Moc89].
[l — 2
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The aim of the DBA is to minimize the expected deviation. In addition, DBA has
some good asymptotic properties, too. It is shown in [Moc89] that
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where d* is density of x; around the global optimum f*, d, and f, are average den-
sity of #; and average value of f(z), and € is the correction parameter in expression
(1.1). That means that DBA provides convergence to the global minimum for any
continuous f(x) and greater density of observations z; around the global optimum
if n 1s large. Note that the correction parameter ¢ has a similar influence as the
temperature in simulated annealing. However, that is a superficial similarity since,
using DBA the good asymptotic behavior should be regarded just as an interesting
?by-product”. The reason is that Bayesian decisions are applied for the small size
samples where asymptotic properties are not noticeable.

Choosing the optimal point z,41 for the next iteration using DBA one solves
a complicated auxiliary optimization problem minimizing the expected deviation
R(x) from the global optimum (see Figure 1). That makes the DBA useful mainly
for the computationally expensive functions of a few (m < 20) continuous variables.
This happens in wide variety of problems such as maximization of yield of differen-
tial amplifier, optimization of mechanical system of shock absorber, optimization
of composite laminates, estimation of parameters of immunological model and non-
linear time series, planning of extremal experiments on thermostable polymeric
composition [Moc89].

Using DBA the expert knowledge is included by defining the prior distribution.
In BHA the expert knowledge is involved by defining the heuristics and optimizing
their parameters using DBA.

3. Bayesian Heuristic Approach (BHA)

Using DBA the expert knowledge is included by defining the prior distribution.
In BHA the expert knowledge is involved by defining the heuristics and optimizing
their parameters using DBA.

If the number of variables is large and the objective function is not expensive the
Bayesian Heuristic Approach (BHA) is preferable. That is the case in many discrete
optimization problems. As usual these problems are solved using heuristics based
on an expert opinion. Heuristics often involve randomization procedures depending
on some empirically defined parameters. The examples of such parameters are
the initial temperature if the simulated annealing is applied or the probabilities
of different randomization algorithms if their mixture 1s used. In these problems
the DBA is a convenient tool for optimization of the continuous parameters of
various heuristic techniques. That is called the Bayesian Heuristic Approach (BHA)
[MEM*97].

The example of knapsack problem illustrates the basic principles of BHA in
discrete optimization. Given a set of objects j = 1, ..., n with values ¢; and weights
¢;, find the most valuable collection of limited weight.

n
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Here the objective function v(y) depends on n Boolean variables y = (y1, ..., Yn),
where y; = 1 if object j is in the collection, and y; = 0 otherwise. The well known
greedy heuristics h; = ¢;/g; is the specific value of object j. The greedy heuristic
algorithm: "take the greatest feasible h;”, is very fast but it may get stuck in some
non-optimal decision.

A way to force the heuristic algorithm out of such non-optimal decisions 1s by
taking decision j with probability r; = ps(h;), where p(h;) is an increasing func-
tion of h; and # = (x4, ..., #,) is a parameter vector. The DBA is used to optimize
the parameters by minimizing the best result fx(x) obtained applying K times
the randomized heuristic algorithm p,(h;). That is the most expensive operation
of BHA therefore the parallel computation of fx () should be used when possible
reducing the computing time in proportion to a number of parallel processors.

Optimization of x adapts the heuristic algorithm p, (h;) to a given problem. Let
us illustrate the parameterization of py(h;) using three randomization functions:
rt = hl) Zj hé», !l = 0,1,00 Here the upper index { = 0 denotes the uniformly
distributed component and [ = 1 defines the linear component of randomization.
The index oo denotes the pure heuristics with no randomization where r7{° = 1 if
hi = max; h; and r° = 0, otherwise. In this case parameter x = (20, 21, Zo0)
defines the probabilities of using randomizations [ = 0, 1, co correspondingly. The
optimal # may be applied solving different but related problems, too [MEM7T97].
That 1s very important in the ”on-line” optimization adapting the BHA algorithms
to some unpredicted changes.

Another simple example of BHA application is by trying different permutations
of some feasible solution y”. In this case heuristics are defined as the difference
h; = v(y') — v(y°) between the permuted solution y° and the original one y°.
The well known simulated annealing algorithm illustrates the parameterization of
po(h;) depending on a single parameter z. Here the probability of accepting a
worse solution is equal to e~/ where z is the ”annealing temperature”.

The comparison of BHA with exact B& B algorithms solving a set of the flow-
show problems shows the table 1 from [MEM®T97]. where S is the number of

TaBLE 1. Comparing the BHA and the truncated B&B

R=100,K=1,J=10,5=10,and O =10
Technique  fg dp Zo 1 Zoo
BHA 6.18 0.13 0.28 045 0.26
CPLEX 12.23 0.00 — — —

tools, J is the number of jobs, O is the number of operations, fg, zg, 1, ¢ are
the mean results, dp is the variance, and "CPLEX” denotes the standard MILP
technique truncated after 5000 iterations. The table shows that in the randomly
generated flow-shop problems the average make-span obtained by BHA was almost
twice less that obtained by the exact B& B procedure truncated at the same time
as BHA . The important conclusion is that stopping the exact methods before they
reach the exact solution is not a good way to obtain the approximate solution.

The BHA has been used to solve the batch scheduling [MEM'97] and the
clustering (parameter grouping) problems. In the clustering problem the only pa-
rameter # was the initial annealing temperature [DS90].



BAYESIAN APPROACH FOR RANDOMIZATION OF HEURISTIC ALGORITHMS 5

The main objective of BHA is improving any given heuristic by defining the best
parameters and /or the best “mixtures” of different heuristics. The heuristic decision
rules mixed and adapted by BHA often outperform (in terms of speed) even the
best individual heuristics as judged by the considered examples. In addition, BHA
provides almost sure convergence. However, the final results of BHA depend on the
quality of the specific heuristics including the expert knowledge. That means the
BHA should be regarded as a tool for enhancing the heuristics but not for replacing
them.

Many well known optimization algorithms such as Genetic Algorithms (GA)
[Gol89], GRASP [MPPRI7], and Tabu Search (TS) [Glo94], may be regarded
as generalized heuristics that can be improved using BHA. There are a number of
heuristics tailored to fit specific problems. For example, the Gupta heuristic was
the best one while applying BHA to the flow-shop problem [MEM™T97].

Genetic Algorithms [Gol89] is an important "source” of interesting and useful
stochastic search heuristics. Tt is well known [AV91] that the results of the ge-
netic algorithms depend on the mutation and cross-over parameters. The Bayesian
Heuristic Approach could be used in optimizing those parameters.

In the GRASP system [MPPRI7] the heuristic is repeated many times. Dur-
ing each iteration a greedy randomized solution is constructed and the neighborhood
around that solution is searched for a local optimum. The ”greedy” component con-
structs a solution, one element at a time until a solution is constructed. A possible
application of the BHA in GRASP is in optimizing a random selection of a candi-
date to be in the solution because different random selection rules could be used
and their best parameters should be defined. BHA might be useful as a local com-
ponent, too, by randomizing the local decisions and optimizing the corresponding
parameters.

In tabu search the issues of identifying best combinations of short and long
term memory and best balances of intensification and diversification strategies may
be obtained using BHA.

Hence it seems that the Bayesian Heuristics Approach may be considered when
applying almost any stochastic or heuristic algorithm of discrete optimization. The
proven convergence of a discrete search method (see, for example, [And96]) is

an asset. Otherwise, the convergence conditions are provided tuning the BHA
[MEM97] if needed.

4. Process Scheduling

4.1. Introduction. In [MR96a] a general approach to the short-term sched-
uling problem of multipurpose batch and continuous operations has been described.
A mathematical programming formulation that takes into account a number of the
features of realistic industrial problems has been presented. The formulation is
based on a continuous time representation, in which the planning horizon is di-
vided into a number of intervals of unequal and unknown duration resulting in a
large mixed integer nonlinear program. In principle, the optimal solution of this
MINLP can be obtained by standard exact Generalized Benders Decomposition,
Outer Approximation, or Branch and Bound techniques. However, in practice, it
i1s known that such problem structures often result in exponential growth of solu-
tion times with problem size, thus rendering most industrially-relevant problems
intractable.



6 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUS

This work is an attempt to address the above problem. It was suggested in
[MR94] that the Bayesian Heuristic approach could be employed for the solution
of such problems. The BH framework allows us to adapt any specific heuristic for
a given class of problems. Furthermore, by clever choice of a heuristic we can make
the numerical algorithm more efficient. In [MR96b] a general simulated anneal-
ing heuristic is used. In this work we employ a specialized Material Requirements
Planning heuristic tuned for a class of batch and continuous scheduling problems.
Computational experiments suggest that the BH approach combined with nonuni-
form time discretization shows promise for the solution of batch and continuous
scheduling problems. Section 4.2 summarizes the key aspects of the BH approach.
Section 4.4 describes how the MRP heuristic [Orl75] is tuned to incorporate batch
and continuous operations. Finally, section 4.8 illustrates the effectiveness of this
technique vis-a-vis the standard branch and bound technique applied to the Uni-
form Time Discretization approach (UDM).

4.2. Bayesian Heuristic Approach in Process Scheduling. Algorithms
of exponential complexity are usually required to obtain the exact solution of global
and discrete optimization problems. Even in cases when an approximate solution
which lies within some tight error bounds is acceptable, the exponential complexity
often remains. The desire to guarantee satisfactory results for the worst case is an
important factor in forcing exponential complexity. Therefore in practice the solu-
tion of many applied global and discrete optimization problems is often approached
using heuristics.

Most decision processes consist of a number of steps. For example, in batch
scheduling problems these steps are: selecting a task, selecting a suitable equipment
unit to process the task, and determining the amount of material to be processed
by this task. In each step, an object is selected from some decision set (for example,
select a task from a given set of tasks which produce the necessary product). A
heuristic is a set of rules used to perform a step. For the classical knapsack problem,
for example, this heuristic might be to select an object with maximal specific price
(price over weight ratio). It may be helpful to think of this process as descending
the decision tree by a path predefined by heuristic rules. In Figure 1 (upper part)
the descent in a decision tree using the rule of always choosing the leftmost node
1s illustrated.

The key idea of the BH approach is to randomize these heuristic rules. Instead
of descending the decision tree only once, the solution is repeated many times by
selecting different paths. Each path is selected by applying the heuristic rule with
some parameterized probability. Since the set of parameters for each descent in the
decision tree is different, each set represents a different solution replicate and thus
the best of them can be chosen for retention. In Figure 14.2 for each replicate the
left most node is chosen with some probability which is the same within a specific
replicate but is different for each replicate.

The parameterization is another key feature of the BH approach. If we know
or expect that some heuristic “works” well, then we may increase the efficiency
of the search by randomizing the parameters of the heuristic. Instead of solving
a multidimensional discrete optimization problem directly we tune the parameters
of the randomized heuristic. This tuning process is a low dimensional continuous
optimization problem. We propose to solve this tuning problem using the Bayesian
method of global optimization [Moc89].
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FIGURE 1. Decision tree

Deterministic descent (upper part). Randomized descents (lower part).

The main advantage of the worst case rigorous approach is that it yields error
bounds on the solution. The main disadvantage 1s the focus on the worst possible
case for a given class of problems. If this class is large, then in order to obtain
sufficiently tight bounds many iterations may be required. This is the natural
“cost” of such a guarantee.

The main advantage of the Bayesian approach is its focus on average case
performance. An additional advantage of the BH approach is the possibility of
including expert knowledge in a natural and convenient way. The potential ability
to “learn” 1s also a positive feature of the BH approach. By learning we mean that
the decision parameters which are optimal for some problems of the given class may
be “good enough” for the rest of the class. The main disadvantage is that it is in
general not possible to obtain and maintain guaranteed bounds on the quality of
solution.

4.3. Penalty Function. The feasible region of the MINLP model defined in
the first part of this series [MR96a] is quite complex. However, Bayesian global
optimization methods are designed for a feasible region described by a hyper rectan-
gle. Thus we need some device to transform the feasible region to a hyper rectangle.
The penalty function is a convenient way to do this. Since both binary and con-
tinuous variables are present the penalty function must have two components: one
for the violation of the binary constraints and one for violation of the continuous
constraints. The right choice of penalty parameters is also important. If the values
of the parameters are chosen to be too large, then the optimization problem may
degenerate into the search for the “nearest” feasible decision. If the penalty pa-
rameters are chosen to be too small, then the constraints may be violated. We may
reach some compromise by increasing the penalty parameters after each iteration.
In general, the binary penalty parameter must be much greater than the continuous
one, because while some violation of the continuous constraints may be permissi-
ble, the binary constraints must be satisfied. Of course, one may ignore the strict
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nature of the binary constraints at the initial stages of global optimization, when
the optimum is still far away but then one must satisfy these constraints exactly
when approaching the global optimum.

4.4. Material Requirement Planning Heuristic. MRP is an inventory
management and production planning technique [Orl75] which, given a delivery
schedule for a final products, determines the initiating times for all raw materials
orders, for the production runs needed to prepare all required intermediate prod-
ucts, as well as the starting times for the production of the final product itself.
Given a delivery time for a product shipment, each branch of the product process-
ing tree is traced from the product in question and each component requirement
is calculated. If the inventory is inadequate, then a production order is issued for
that component. The tracing of each branch of the processing tree continues until
all raw materials requirements have either been met or ordered.

For scheduling problems relevant to the chemical industry we have to extend
this heuristic to handle unit and task assignment, batch size determination, and
other features. For purposes of this paper we will employ simple and natural heuris-
tic rules. Of course, these rules could be enhanced or augmented to give further
improvements in the results. The following is the list of heuristic rules:

e Product selection rule. The production run of each product in a batch and
continuous processing system has some due date. We begin with a product
which has the earliest due date. The rationale for this is that knowledge of
due dates close to start of the scheduling horizon is more concrete. When
production of this product is scheduled we recursively also schedule the
production of the intermediates required to produce it.

e Equipment item selection rule. To schedule production of a given product
or intermediate it is necessary to select a task and an equipment unit to
process this task. When there are few tasks producing the same product
we randomly assign the quantity of a product that the given task has to
produce. Then we select an equipment item which is available during the
time interval closest to the due date (a unit may become unavailable for
processing because it processes another task, it 1s shutdown for maintenance
ete.).

o Tusk start selection rule. Usually the size of the unit availability interval is
different than the task processing time. The rule will start a given task to
end exactly at the end of this interval.

For example, assume that task2 processing time on unitl is 1h. Further-
more, the interval chosen in the previous step is from 3pm to bpm. Then
task?2 is started at 4pm to end at bpm.

4.5. Schedule Generation. The process of schedule generation using the
randomized heuristic is essentially the same as that described in section 4.4. The
only difference is that instead of using the heuristic rules deterministically we make
our selection with some probability. Consider, for example, the product selection
rule. Instead of selecting a product with smallest due date, we select the product
with some probability » which is a function of its due date ;. The probability r
of selecting the product s is expressed as

(4.1) rs = wxag+ (1 —x)arh(ds).
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Here « is the parameter defined in the previous step of the BHA algorithm 1, M is
the number of the products in the list , and the heuristic h(d;) = exp{—D;}. We
chosen an exponential function that the probability to select a product with late
due date would be very small. As we see, the products with smallest due dates
are chosen with highest probability, thus we preserve the character of the MRP
heuristic while making it random. In a similar manner we deal with the other
rules.

The generated schedule may be infeasible because of violations of the state
capacity constraints. It is possible that the state capacity is exceeded or that a
negative amount of material exists in a given state. These situations are handled
by penalizing the variations from the minimal and the maximal state capacity values
and adding this penalty to the objective function. The objective function is readily
evaluated by calculating the storage and utility costs, the profit gained by satisfying
demands less than raw material costs.

4.6. Bayesian Heuristic Algorithm. The key component of the BH frame-
work is the randomized heuristic function. This function corresponds to the objec-
tive function in the global optimization. Once the randomized heuristic function
is defined, we may optimize its parameters using the Bayesian global optimization
method [Moc89] and as byproduct we obtain the optimum profit. For purposes of
this paper we employ a parametric first order polynomial function of the Material
Requirements Planning (MRP) heuristic as the randomized heuristic. The feasible
region of this heuristic is quite complex, therefore a penalty function is used to
transform the feasible region to a hyper rectangle. When using the MRP heuristic
only the amount of material in the given state is allowed to exceed state capacity
while all other constrains, binary and continuous, are not allowed to be violated.
Thus we need only one penalty parameter for the continuous constraints. Theoret-
ically, the value of the penalty parameter has to be much bigger than unit price
of product to ensure a steep enough increase in penalty when we leave the feasible
region. However, this value should not be too large so that the increase in penalty
is quite smooth. Empirically we found the value of 500 to yield the best results for
the test examples, although for other problems its value may be different.

In section 4.4 a version of the MRP heuristic for batch and continuous tasks
was described . If d; is some decision (select a product, a suitable equipment unit,
or task start), then h(d;) is the heuristic function. The function r(z, h(d;)) is a
randomized heuristic function which gives the probability of the decision d;. z is
the randomization parameter. We used

r(z, h(d;)) = zag + (1 — x)arh(d;)
where

apg =
1
M
2i=1 hl(di)

and M is the number of possible decisions. The heuristic rules are as defined in
section 4.4. Thus the Bayesian Heuristic Algorithm can be represented by the
following simple steps:

1
M’

ap = )
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Step 1. Fix parameter z using the global Bayesian method [Moc89]. !

Step 2. Generate a schedule by using the randomized MRP heuristic (see sections
4.4 and 4.5);

Step 3. Evaluate the schedule for this parameter;

Step 4. If the schedule is feasible (there is no penalty) and the value of the best
schedule so far did not increase for 10 iterations then go to step 6;

Step 5. Go to step 1;

Step 6. Fix binary variables to the values given by the best schedule. ? Substitute
the values of these binary variables into the model to reduce the problem to
a linear program. Then the solution of the linear program gives the exact
starting times, batch sizes, and processing rates.

We see that the scheduler generates sequences and assignments while the LP model
is producing the exact schedule. The LP model is derived from the Non-Uniform
Discrete-Time Model (NUDM) model (see [MR94]) by substituting the sequencing
and assignment variables which are fixed by the scheduler. This disaggregation of
the scheduling problem allows us to solve the large scale MINLP problem by using
a combination of heuristic algorithm and an efficient LP solver.

The key issue in using the BH approach is that together with the best schedule
we also acquire the best randomization parameter z, or, in other words, we tailor
the heuristic for a given class of problems. Initially we are parameterizing the
heuristic, thus giving it a few extra degrees of freedom. By varying parameters
in an intelligent way, so that the expected outcome 1s maximized, we find the
parameter values which yields the best profit.

4.7. Relationship of the Bayesian Heuristic Approach with Simulated
Annealing and Genetic Algorithms. The Bayesian Heuristic Approach has
a direct and deep relationship with simulating annealing and genetic algorithms.
For example, consider (4.1). Tt indicates that products with smaller due date are
selected with higher probability. However, there is a non zero probability of selecting
a product with a higher due date. This flexibility which is allowed by the heuristic
randomization effectively increases the search space. In the simulated annealing
case, the same effect is achieved by accepting a point with lower objective value.

Genetic algorithms through an evolution process proceed from some initial
population A to final population B (see Figure 2).

This evolution process is basically managed by the mutation and crossover
probabilities which are constant throughout the entire evolution process. In the
Bayesian Heuristic Approach, in effect multiple evolutions occur. Initial population
A evolves to some intermediate population I; via evolution which depends on some
evolution parameter x1, 1. e. mutation and crossover probabilities are defined by
this parameter. The intermediate population I evolves to some other intermediate

I This provides the asymptotic convergence with probability one. That is the first feature of
the Bayesian Heuristic Approach. For the convergence proof see [MEM™ 97].

We have to note, however, that parameter x is fixed based on the value of the profit of the
previously generated schedules. Thus the second feature of a given global Bayesian method is that
it fixes the next z to a value for which it expects to get maximal profit. Of course, it may be that
this new x value does not give the best profit, thus we need to use additional iterations.

These two features were key reasons for using the global Bayesian method. The second
feature makes the search more efficient than a pure random Monte-Carlo search while the first
enables a more thorough exploration of the decision space.

2These variables correspond to the sequencing and assignment of tasks.
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FI1GURE 2. Bayesian approach versus genetic algorithms

Genetic algorithm. Single evolution (upper part). Bayesian approach. Multiple
evolutions (lower part). Here #; is chosen so that to maximize conditional
expected fitness of ¢-th population.

population Is via evolution which depends on another evolution parameter xs.
This process 1s repeated many times. The best population is selected as the final
population. Another important feature besides multiple evolutions is that each
x; 18 selected based on the fitness of the previous populations so as to maximize
the conditional expected fitness of i-th population. In such a way, the process is
not a purely random one but is aimed to maximize the fitness. By changing the
mutation and crossover probabilities the tendency of genetic algorithms to produce
local solutions is mitigated.

Another key difference of the BHA from simulated annealing and genetic algo-
rithms is learning. In simulated annealing or genetic algorithms parameters, such
as initial temperature or mutation probability etc., are found experimentally by
studying a number of scheduling problems. However, in the Bayesian Heuristic
Approach these parameters are tuned for each problem of a given class and do
not need to be fixed for all classes. Thus, in contrast to simulating annealing and
genetic algorithms, the Bayesian approach allows learning to occur for the problem
at hand.

The further drawback of simulated annealing and genetic algorithms is that
when applied to discrete or mixed integer problems they generate a large number
of infeasible solutions. Thus a big percentage of the computation time is wasted
in the generation of these infeasible solutions. The similar situation was observed
when trying to employ simulation annealing heuristic within the Bayesian Heuristic
Heuristic Approach [MR96b]. Because of this, only small size problems could be
solved. Using the BHA with MRP heuristics one overcomes this problem and 70%
percent of the generated schedules were feasible. This can be explained by the fact
that MRP heuristic fits better to a given class of scheduling problems and thus
generates mostly realizable schedules.

4.8. Scheduling Results. We compared the BHA algorithm with solution
of the MILP uniform discretization model using branch and bound enumeration
(B&B) [ZPMR94]. Results are reported for several test examples, both batch and
continuous. The detailed numerical data for these examples is available electron-
ically from the resplib account (resplib@ecn.purdue.edu) in the form of RCSPec
language files.

We summarize the results in Table 2. Computational experiments were per-
formed on a HP 9000/755 workstation using the commercially available CPLEX
solver. The column “BH profit” shows the profit value obtained before performing
the LP solution phase, i.e. the profit value given only by the statistical part of the
algorithm. As we see, the LP solution does not significantly increase the value of



12 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUS

TaABLE 2. B&B and BHA comparison for examples of batch and
continuous processes

B&B BHA
Problem Profit Time Profit Time Number BH
($) (sec) (%)  (sec) of repli- profit
cates (%)
batchl 3230 6 100 0.46 12 77.91
batch4 60534 1.7 99.99 290 13 93.79
batch3 105756 8.6 99.97 3.85 20 99.18

exII1 1400 66 100 3.65 15 100
cpctspl 4724 0.6 100 0.06 11 100
cpctsp2 8122 188.5 100 0.20 11 100
cpetsp3 12015 * 99.60 3.01 16 99.6

cipac2 20879 * 100.54 31.8 29 100.39
cipacl 22800 824.6 107.77 27.3 29 107.77

the profit. However we can not draw definite conclusions about the need of the
LP solution step from this case study alone. We have to note that while for batch
processes (batchl, batch3, batch4, exIII, cpctsp) BHA gives solutions slightly worse
than the branch & bound approach, for continuous processes BHA (cipacl, cipac2)
gives better results than UDM. This can be explained by the inherent discrete na-
ture of the UDM which is not suited for continuous tasks. Time variable can have
only discrete values in the UDM case, while processing time of continuous tasks
assumes continues values and thus can not be represented as discrete variables.
NUDM works much better than UDM for problems with sequence dependent tasks
(cipac2, cpctspl, cpetsp2, cpetsp3) also. This is due to the fact that NUDM han-
dles sequence dependent changeovers in a more efficient way, i.e. uses resource-task
network representation as opposed to the state-task network representation used by
the UDM. It is shown that constraints handling sequence dependent changeovers
based on the resource-task network representation are tighter than those based on
the state-task network representation . It is worth noting that with increasing num-
ber of sequence dependent tasks (cpctspl, cpetsp2, cpetsp3) the solution time of
B&B grows exponentially while the corresponding time of BHA grows only polyno-
mial. * means that optimal solution for the examples cpctsp3 and cipac2 was not
reached by B&B since the solution time was unreasonably large. The B&B tree
was terminated after 20000 nodes. The computational time for the batch4 example
is worse in BHA case due the fact that MRP heuristic is not very well suited for
such processes (batch4 example contains zero wait states). It is possible to modify
BHA account for the zero wait states by aggregating the two tasks connected by
zero wait state together.

4.9. Scheduling Conclusions. In [MR96a] a general formulation of the
short-term scheduling problem for complex multipurpose batch and continuous
operations is presented. However, the size of the resulting MINLP raised seri-
ous concerns regarding the practical applicability of the NUDM. In this paper we
provide an algorithm to overcome this limitations.

This algorithm is based on the BH approach to discrete optimization and a
clever choice of heuristic is the key issue. If the heuristic is a very general one (as
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simulated annealing in [MR96b]) then the class of problems solved is large as is
the computational time. If the heuristic is a special one (as MRP in our case) then
the class of problems solved is smaller as is the computational time. Of course,
problems which do not fit a given heuristic are solved also but the computational
effort required can be unpredictably high (batch4 is a good example). Thus one of
the directions for future work may well be the expert system which recognizes the
structure of the problem and suggests a heuristic to solve this problem.

Usually processing data is uncertain (task processing times fluctuate around the
mean value due to the quality of feed, due dates are not well known in advance etc.).
The BH approach is a statistical framework and thus theoretically accommodates
stochastic data. Thus the other promising future direction can be identified as an
application of the BH approach to scheduling problems with uncertainty. NUDM
allows one to model various uncertainties in time and size parameters without
modifications since time and size are continuous variables (for the UDM uncertainty
in processing times require major modifications).

5. Software for Global Optimization

5.1. Background. The global optimization software was initiated consider-
ing the results of international ”competition” of different algorithms of global opti-
mization (see [DST8]). The experience in real life optimization problems and some
recent results were also used selecting the set of optimization algorithms. The set
of algorithms of global optimization includes

e four versions of the Bayesian search,

e a version of clustering,

e a version of uniform deterministic grid,
e a version of pure Monte Carlo search.

Usually 1t is reasonable to start optimization by a global method and to finish it
by some local method. An exception is two global algorithms: the Torn version
of clustering [TZ89], and the Zilinskas version of the Bayesian technique [TZ89].
Both of these algorithms contain some simple local search algorithms. The local
search 1s not necessary for those two methods, but it may be useful.

There are three local optimization methods:

e a method of variable metrics type with Lagrangian multipliers and penalty
functions for constrained optimization of smooth functions (see [Sch86]),

e a method of simplex type of Nelder and Mead with penalty functions for
constrained optimization of non-differentiable functions.

e amethod of stochastic approximation type for ”noisy” functions (see [Moc89]).

5.2. Application Areas. Each subroutine represents a global or a local method.
The choice of method has to follow the idea that the computational complexity of
the method should roughly correspond to that of the objective function:

e For computationally ”expensive” functions the Bayesian methods could be
recommended. Those methods need a large amount of auxiliary calculations
to make each observation more efficient.

e For 7cheap” functions the simple grid methods, like Monte Carlo or a uni-
form deterministic grid (see [Sob67]), can be better. Here observations are
not so efficient, but auxiliary calculations are negligible. This explains a
relative efficiency of simple methods when optimizing simple functions.
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e The clustering techniques (see [TZ89]) may be the best choice, if we expect
the number of local minima to be small.

o A relatively simple Bayesian technique is available [TZ89] for global opti-
mization of one-dimensional functions;

e There are optimization problems where objective functions can be roughly
represented as a sum of components depending on different variables. Here
the Bayesian method of line search along the coordinates usually shows very
good results. This method globally optimizes one variable at a time by
one-dimensional Bayesian search. The difference of this method from other
methods of global optimization is that it depends on the starting point. Thus
a deviation from the global minimum can be made as small as desired by ap-
plying a multi-start procedure with different uniformly distributed starting
points.

5.3. Constraints. All the global methods optimize in a rectangular region.
Therefore we represent the linear and non-linear inequality constraints as some
penalty functions. The same applies to the local method of stochastic approxima-
tion type. In local methods of simplex and variable metrics type the linear and
the non-linear constraints can be defined directly. This may be done by constraint
subroutines, supplied by the user in addition to the objective function.

5.4. Software Versions. The global optimization software is in four versions:

e portable Fortran Library,

e interactive software for Turbo C compiler and DOS operating system,

e interactive software for C++ compiler and UNIX operating system and X-
Window system.

e interactive software for Java

One may notice a cycle of portability in this sequence of software versions. The
sequence is started from by the portable Fortran library and is concluded by Java
language. The two systems in between are more difficult to port. The Turbo
C system 1s for DOS-compatible operating systems and C++ is for the UNIX
environment. Fortran, Turbo C and C++ versions are described in [MEM*97].
Now we briefly consider the Java version.

5.5. Java Version.

5.5.1. Global Minimizer for Java (GMJ). The GMJ system [Gry98] is a class
framework for implementing and testing global optimization algorithms
(METHODS), functions to be optimized (TASKS), and and visual representa-
tions classes (AN ALY SIS).

5.5.2. Running GMJ. The GMJ system can be run as a Java Applet or as Java
Application. The advantage of running it as Java Applet is obvious-it can be used
over the Web. The advantage of the Java Application is that the most recent Java
features supported by the Java Development Kit (JDK) can be used.

5.5.3. Configuring Applet. The sample file gmj.html shows how to set config-
uration parameters of the gmj applet. The < applet > tag looks like this:
<applet code="1lt.ktu.gmj.ui.GMJ.class"

codebase="Lib"
align="baseline"
width="450"
height="450"
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archive="gmj.jar">

<param name="TASKS"
value= "1t.ktu.gmj.tasks.Sin|Undefined">

<param name="METHODS"
value="1t .ktu.gmj.methods.Migi| 1t.ktu.gmj.Bayes1">

<param name="ANALYSIS"
value= "1t.ktu.gmj.analysis.Convergence|
1t.ktu.gmj.analysis.Spectrum|lt.ktu.analysis.Projection'>

</applet>
Here:

code specifies the applet class and should not be changed

codebase specifies the relative URL of the applet class archive file and user class
files. The URL is relative to the location of the HTML file where the < applet >
tag resides or is absolute path.

archive lists the class archive files

width and height specifies the applet size, as it appears in the HTML page.

The parameter TASK S lists tasks which are available when the applet loads.
Complete class names (package and class name) are separated by | symbol.

The parameter M ETHODS lists methods which are supported when the ap-
plet loads.

The parameter ANALY SIS lists visual analysis classes which are supported
when the applet loads.

5.5.4. Configuring Stand-Alone Application. The Java Runtime Environment
(JRE) is required when running GMJ as a stand-alone application.

Before running GMJ, a CLASSP AT H should be configured, so that the GMJ
classes can be found by the JRE. For Windows NT the command might look like
this:

SET CLASSPATH=#CLASSPATH#;c:\gmj\gmj.jar
the application 1s started by loading the [t.ktu.gmj.ui. GM J class:
java lt.ktu.gmj.ui.GMJ

Like the applet the application accepts three optional parameters: tasks, methods,
and analysis objects.

5.5.5. Display and Control. GMJ displays a tab control that has three choices:
method, task and operation. The appropriate pages can be selected by clicking on
the page tabs. The detail discussion is in [Gry98].

5.6. Software Availability. The software .

The interactive UNIX C++ software (LINUX 1.2.8. version) and the library
of portable Fortran subroutines (LINUX 1.2.8. and DOS versions) are included in
[MEM'97], and available on ftp : //optimum.mii.lt/pub

6. Dynamic Visualization Approach (DVA)

We started the description of algorithms from the formal Direct Bayesian
Approach (DBA). Then we considered semi-formal Bayesian Heuristic Approach



16 JONAS MOCKUS, AUDRIS MOCKUS, AND LINAS MOCKUS

(BHA). An informal interactive optimization is needed if an optimization problem
is not well defined. This may arise, for example, if the mathematical model, in-
cluding the objective function, must be updated during the course of optimization
process.

The informal interactive approach attempts to represent an optimization prob-
lem in a visual form that is domain specific and is intuitive to the domain expert.
The visual representations can vary significantly across the domains. In the ex-
amples the dynamic visual representation of a smooth function in time and space
turned out to be effective in several domains. The domain specific visual repre-
sentation can efficiently convey information about a complex model and help make
qualitative judgments about model’s adequacy and optimality.

The efficiency of informal interactive optimization depends on dynamic visu-
alization techniques. We regard dynamic visualization as an important tool using
heuristics in an informal interactive way and thus will refer to it as a Dynamic Visu-
alization Approach. Two basic techniques of dynamic visualization are considered
in  MEM*97]:

e space-time smoothing;
e image search.

Those techniques are explained in [MEM™97, EM96] through real life examples.
We mentioned Dynamic Visualization Approach (DVA) just to illustrate different
ways of using heuristics, from pure formal Bayesian Approach (by priori distribu-
tion on a set of objective functions) to semi-formal Bayesian Heuristic Approach
(by priori distribution on a set of parameters of randomized heuristics and their
“mixtures”) and pure interactive DVA (directly by the expert opinion using visual
representation).

In the Java optimization system (see section 5.5) the possibility of the do-
main specific visualization is included by the ANALY SIS classes. This way the
Bayesian Heuristic Approach and the Dynamic Visualization are integrated. The
simplest DV techniques such as convergence lines, projections and the objective
function distributions are rather general. The more advanced visualization tech-
niques are domain specific and should be developed while designing the TASKS
classes representing specific objective functions.
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