
Noname manuscript No.
(will be inserted by the editor)

ALFAA: Active Learning Fingerprint Based Anti-Aliasing
for Correcting Developer Identity Errors in Version
Control Systems

Sadika Amreen · Audris Mockus ·
Russell Zaretzki · Christopher Bogart ·
Yuxia Zhang

Received: date / Accepted: date

Abstract An accurate determination of developer identities is important for
software engineering research and practice. Without it, even simple questions
such as “how many developers does a project have?” cannot be answered. The
commonly used version control data from Git is full of identity errors and the
existing approaches to correct these errors are difficult to validate on large
scale and cannot be easily improved. We, therefore, aim to develop a scalable,
highly accurate, easy to use and easy to improve approach to correct soft-
ware developer identity errors. We first amalgamate developer identities from
version control systems in open source software repositories and investigate
the nature and prevalence of these errors, design corrective algorithms, and
estimate the impact of the errors on networks inferred from this data. We in-
vestigate these questions using a collection of over 1B Git commits with over
23M recorded author identities. By inspecting the author strings that occur
most frequently, we group identity errors into categories. We then augment
the author strings with three behavioral fingerprints: time-zone frequencies,
the set of files modified, and a vector embedding of the commit messages. We
create a manually validated set of identities for a subset of OpenStack devel-
opers using an active learning approach and use it to fit supervised learning
models to predict the identities for the remaining author strings in OpenStack.
We then compare these predictions with a competing commercially available
effort and a leading research method. Finally, we compare network measures

Sadika Amreen, Audris Mockus, Russell Zaretzki
University of Tennessee, Tennessee, USA
E-mail: samreen@vols.utk.edu, audris@utk.edu, rzaretzk@utk.edu

Christopher Bogart
Carnegie Mellon University, Pennsylvania, USA
E-mail: cbogart@andrew.cmu.edu

Yuxia Zhang
Peking University, Beijing, China
E-mail: yuxiaz@pku.edu.cn

2 Sadika Amreen et al.

for file-induced author networks based on corrected and raw data. We find
commits done from different environments, misspellings, organizational ids,
default values, and anonymous IDs to be the major sources of errors. We also
find supervised learning methods to reduce errors by several times in com-
parison to existing research and commercial methods and the active learning
approach to be an effective way to create validated datasets. Results also indi-
cate that correction of developer identity has a large impact on the inference of
the social network. We believe that our proposed Active Learning Fingerprint
Based Anti-Aliasing (ALFAA) approach will expedite research progress in the
software engineering domain for applications that involve developer identities.

Keywords Software Repository Mining, Identity Disambiguation, Random
Forest Classification, Record Linkage, Behavioral Fingerprinting, Social
Network Analysis

ALFAA 3

1 INTRODUCTION

Software engineering, especially empirical software engineering, relies on var-
ious measures of software developer activity to fit models of developer pro-
ductivity [27,12], project lead times [34], and code quality [31]. The recently
popular software engineering domain of Mining Software Repositories (MSR)
focuses on measuring software development based on data available in version
control and issue tracking systems. The basic software engineering questions
of developer productivity, project lead time, and the source code quality are
investigated and modeled using measures of individual developers (such as
project team size), developer actions (code changes and issues), level of devel-
oper experience, and interactions among developers. Complex industry tools
are built based on data from version control systems [11,30].

All this research and tools assume and require an accurate determination
of developer identity in order for the research results to be valid, models to be
accurate, and industrial tools to work correctly. While mature software devel-
opment organizations tend to keep good records of developer identity in their
issue tracking and version control systems, this is not the case for open source
projects or less mature software development groups. In fact, for outsiders,
it is not even clear how many people participate in an open source project
even though the project’s version control system is public. Recent software
engineering research heavily relies on plentiful data in open source projects.
Unfortunately, the version control systems used in such research and tools do
not represent developer identities accurately [4,16,29]. Errors include incorrect
and missing values, such as multiple or erroneous spellings, identity changes
that occur over time, group identities, and other issues Furthermore, even very
small identity errors may strongly affect the downstream analysis [52].

The literature utilizing data from software repositories has to address this
issue and includes topics spanning from developer collaboration [49,25], the
contributions of companies to open source software projects [20,51], predict-
ing faults in software [35], measuring developer productivity and expertise [7,
27], among numerous other examples. These issues have been recognized in
software engineering [15,3] and beyond [10]. To cope, studies in the software
engineering field tend to focus on individual projects or groups of projects
where the number of IDs that need to be disambiguated is small enough for
manual validation and devise a variety of heuristics to solve this formidable
problem.

The existing approaches to correcting developer errors tend to be not scal-
able and is often time consuming. An important reason for that is the the lack
of ground truth or the absence of validated identity corrections. This typically
requires manual validation and an intensive iterative adjustment of heuristics
used to correct the errors. This makes it impossible to correct millions of devel-
oper identities in billions of code commits in the open source ecosystem [24].

Another major problem with existing identity correction approaches is the
lack of clarity of how to make these heuristics more accurate or easier to tailor
to a specific dataset without an extensive amount of effort. This is partly due

4 Sadika Amreen et al.

to the lack of clear understanding of what types of identity errors are common
and why they are introduced. Finally, the identity correction approaches rely
primarily on string similarity of the spelling of developer names and email.
It would seem that traces of developer activities can also be used for identity
resolution as, for example, gait can be used to identify a person.

We try to address these shortcomings, as the following research questions:

1. What are the most common reasons for identity errors in version control
data?

2. Are there alternative measures to name and email similarity that can help
correct identity errors?

3. Is it possible to design a scalable approach that can improve upon match-
ing techniques used in research and commercial efforts within a software
engineering domain?

4. What is the impact of identity errors on actual collaboration networks
among developers?

In summary, we find several types of and reasons for identity errors (e.g.,synonyms
and homonyms); we introduce innovative behavioral fingerprints in addition
to traditional string matching techniques that improve the accuracy substan-
tially; we introduce a supervised learning approach called ALFAA (Active
Learning Fingerprint-based Anti-Aliasing) to identity matching in software
engineering domain that is highly accurate and scalable, easy to apply, and
can, in principle, increase in accuracy as additional training data are collected
and utilized. Furthermore, we propose and demonstrate the use of active learn-
ing [38] to produce a highly accurate predictor with minimal effort spent on
creating the training dataset.

We compare the accuracy of ALFAA on 16K OpenStack contributors to
a commercially funded effort and to one of the recent research methods. We
also demonstrate that it scales to a larger dataset of 2 million contributors
to several large software ecosystems. Finally, we assess how identity errors
affect file-induced developer collaboration networks [45]. We find that typos,
application defaults, organizational IDs, and the desire for anonymity are the
primary cause of errors in developer identity within a very large body of over
1 billion commits. The proposed behavioral fingerprints improve the accuracy
of the predictor even with a limited training sample. We find that the commer-
cial and recent research-based identity resolution methods for the OpenStack
problem have much lower accuracy than our proposed method and that the
errors in the actual identity data in OpenStack strongly impact the social net-
work measures. The identity errors represent a real problem that is likely to
affect results of many analysis or development tools, but these errors can be
addressed even for very large datasets using the proposed approach.

The novelty of our contribution first involves behavioral fingerprinting that
includes Doc2Vec method to find similarities among commit messages, thus
providing authorship likelihood measures even for commits with empty or
generic author string. Second, we propose the use of machine learning meth-
ods in identity resolution within software engineering context that improve

ALFAA 5

accuracy to a level comparable or higher than manual matching. This is a
radically different approach from the current state of the art of manually
designed heuristics. The trained models can be further improved simply by
adding larger training sample instead of requiring effort intensive design and
application of customizable heuristics. Models and data will be shared upon
publication. Third, we propose to use active learning to minimize effort to
generate training samples. Fourth, we identify several new sources of errors in
developer identity. Fifth, we evaluate accuracy of our approach on a large sam-
ple of 16K OpenStack contributors and compare it to a commercial method
and a recent research method on an extremely large sample of 2M contributors
in large ecosystems. We manually validate the performance and find ALFAA
to have significantly lower lumping errors.

The remainder of this article is organized as follows. Section 2 discusses
the current state-of-the-art practices in the domain of identity disambiguation.
Section 3 discusses the data collection process and its overview. Section 4 dis-
cusses the nature of errors associated with developer identities as well as their
reasons. Section 5 discusses the approach in solving the identity disambigua-
tion problem by correcting synonym errors and reports the results we obtained.
Section 6 compares the results produced by ALFAA to a commercial effort and
recent research method. Section 7 demonstrates the impact of identity errors
on networks by using a developer collaboration network and finally, Section 9
summarizes findings and provides conclusions. In addition, the following sec-
tions answer each of the research questions – Section 4 answers RQ1, Section 5
answers RQ2, Section 6 answers RQ3 and finally, Section 7 answers RQ4.

2 RELATED WORK

The issue of identity resolution through disambiguation or de-anonymization
falls under the broader field of ”Record Linkage”. The first mathematical
model for record linkage introduced in 1969 by Ivan Fellegi and Alan Sunter [13],
is used to identify duplicates when unique identifiers are unavailable. This
model serves as the basis of many record linkage methods practiced today.

2.1 Relevance of Identity Resolution

Identity resolution has been investigated in many fields such as on patent
data [44] to link records of the companies, organizations and individuals or
government agencies to which a patent is assigned, on US census data [48],
synthetic census data [10] and in the construction of web services that integrate
crowd-sourced data such as CiteSeer [22].

With the proliferation of online activities such as collaboration in software
development, identity resolution techniques have also become important in the
field of empirical software engineering research [15,3] to disambiguate identities
of people in a software ecosystem. Communication and coordination activities

6 Sadika Amreen et al.

are central to development of large software projects. These activities logged
on the mailing lists, issue trackers etc. are public for Open Source Software
development and these serve as useful traces of communication and coordina-
tion between participants. These data can be mined for various purposes such
as to build social diversity dataset from thousands of GitHub projects [43], to
assess a contributor’s total activity within projects [17] in Open Source Soft-
ware and across platforms [50] and in mailing lists [47]. We discuss some of the
applications as follows, outlined in existing research, where correct identity of
developers is critical.

– Data Consolidation: when trying to combine information from different
types of data sources in a coherent way where the available data con-
cerning persons involved in a project may be dispersed across different
repositories [18,37]. This can affect other studies that require consolidated
statistics on users.

– Code reuse and attribution: A study [2] to understand code usage and
attribution required survey of users on using multiple platforms such as
StackOverflow and GitHub aimed to answer questions such as how often
code is reused but not attributed. This required matching identities across
platforms as users are likely to have various representation of their IDs
across platforms. These kind of studies are required to address code main-
tenance and legal issues.

– Developer productivity measure: When a single individual uses multiple
IDs, it becomes hard to track the work of individuals such as developers
working on various projects on version control systems. This impacts pro-
ductivity measures of developers by showing lower than actual productivity
since a single developers activity may have been logged by more than a sin-
gle ID, or alternatively, higher than actual productivity because multiple
individuals have logged their activity using a single ID. It is important
to understand the central/influential players in a network and resolving
identities is key to its determination.

– Understanding social connected-ness and influence in developer commu-
nities: The information available in software repositories can be analyzed
through a variety of statistical and social (graph-based) approach. One such
application is in understanding social connected-ness in developer commu-
nities [42]. This kind of study helps to identify influential developers and
projects through analyzing collaborations - developers connected through
codes in version control systems, questions in mailing lists, bug reports and
fixes in issue trackers etc. It may be of interest to identify influential devel-
opers because their activities can act as guides to other peoples projects. It
may also help to identify the teachers in a developer community as active
developers frequently answer questions as well [1].

– Assessing Contributions: Developers of many open source projects want
to understand contributions from different companies (to ensure that each
member company contributes its fair share). OpenStack even hired a com-

ALFAA 7

mercial firm to address this problem but, as we show in our analysis, they
have not achieved very accurate results.

The issue of developer identities has been a serious problem in software
repository mining. It remains a challenging issue due to a number of rea-
sons, particularly, due the large volumes of poor quality data. This challenge
is further enhanced by the fact that complicated, labor intensive evaluation
techniques are required to validate methods of resolution as we will discuss in
the following sections.

2.2 Existing Techniques of Identity Resolution

Approaches such as merging identities with similar name labels, email ad-
dresses or any combination of these have been used in the past for disam-
biguation. However, Most of these are still reliant on simple string matching
heuristics. For example, an algorithm [3] designed specifically to detect iden-
tities belonging to developers who commit to code repositories and people
participating in a mailing list uses string similarity based on Levenshtein dis-
tance on first, last, and user name fields of developers and mailers coupled
with a threshold parameter. This assumes a name will be split into two parts
using white-space or commas as delimiters and user names can be derived
from the email address string. This algorithm was later modified to include
more characters as separators, extended to account for an arbitrary number of
name parts and include more individuals from bug repositories and then eval-
uated using different identity merge algorithms [18]. While these approaches
are reported to perform well only through string matching and thresholding,
for example, work using more sophisticated heuristics such as Latent Seman-
tic Analysis (LSA) on names of GNOME Git authors which was also used for
disambiguation [21], fail to address issues where developer identity strings are
problematic, i.e. incomplete or missing.

Other research on the data from the U.S. patent and trademark (USPTO) [44]
database uses a supervised learning approach based on a large set (over 150,000)
of hand labeled inventor records to perform disambiguation. This, therefore,
assumes an availability of sufficient and reliable ground truth data to perform
a supervised learning approach. A major challenges we face with disambigua-
tion is the lack of an adequate pool of hand labeled data to use for supervised
learning. Furthermore, these prior approaches fail to address the problem of
homonyms resolution i.e. where a single label may be used by multiple iden-
tities. This is critical because excluding problematic nodes from a network
can radically alter the properties of the social network as well as nodes (e.g.,
developer productivity, tenure with the project, etc).

The fact that there is insufficient ground truth for our dataset of devel-
opers from projects hosted on GitHub causes a hindrance to employing any
supervised learning approach directly. Past research on de-duplication of au-
thors in citations [38] has leveraged a technique called active learning, which
starts with limited labels and a large unlabeled pool of instances, thereby,

8 Sadika Amreen et al.

Table 1 Comparison of developer productivity with and without disambiguation of IDs

UserID NumCmt NumID Prod(True) Prod(Min) Prod(Max) chngMin(%) chngMax(%)
User1 148 10 97.93 0.66 52.93 14,700 85
User2 23 4 20.09 2.62 9.60 666 109
User3 2,602 12 346.09 0.13 308.85 260,100 12
User4 1,057 5 219.87 0.20 200.73 105,600 9
User5 13,960 8 282.49 0.02 146.95 1,395,900 92
User6 2,743 5 198.89 0.43 145.52 45,616 36
User7 1,346 6 132.95 0.09 68.94 134,500 92
User8 121 2 37.15 4.29 32.85 764 13
User9 579 7 130.31 0.45 77.87 28,850 67
User10 398 10 77.73 0.19 34.57 39,700 124
User11 200 17 18.13 0.09 6.70 19,900 170
User12 54 3 10.59 0.78 8.43 1,250 25
User13 497 5 75.23 0.45 43.14 16,466 74
User14 914 6 116.56 0.38 46.16 30,366 152
User15 183 4 40.33 0.22 20.05 18,200 101
User16 172 3 52.09 0.90 45.73 5,633 13
User17 193 4 35.23 0.36 20.08 9,550 75
User18 184 7 41.60 0.22 32.56 18,300 27
User19 39 4 2.03 0.05 1.35 3,800 50
User20 179 3 45.00 0.25 33.68 17,800 33
User21 35 5 6.92 0.59 2.37 1,066 191
User22 3,504 3 556.91 0.79 545.62 69,980 2
User23 8,555 3 1284.79 160.09 894.47 702 43
User24 24 3 10.79 1.34 4.94 700 118
User25 39 2 10.81 3.88 6.92 178 56

significantly reducing the effort in providing training data manually. The ac-
tive learning method uses an initial classifier to predict on some unlabeled
instances. The initial classifier produces some results (a higher fraction) with
high confidence and some others (a lower fraction) with lower confidence i.e.
the classifier’s confusion region. This confusion region can therefore be ex-
tracted and manually labeled for it to serve as the training data for the actual
classifier.

In summary, the current state of art in software engineering remains based
on designing a set of matching heuristics with manual verification. At the same
time, techniques used in other fields need tailoring for the types of problems
common in software engineering. We propose an approach that combines in-
formation from identity string and behavioral attributes and uses iterative
supervised machine learning to achieve highly accurate identity resolution for
synonym errors. As the training set for the learner increases, the approach
should become even more accurate, since the proposed models can take ad-
vantage of the richer training data.

2.3 Illustration of impact of identity resolution on estimates of developer
productivity

We used actual data for 25 open source developers who were selected using
author’s professional network. Colleagues were asked to use an online tool that
constructs an activity profile from commits made in public git repositories.
Colleagues that we knew are very active and others who we knew not to be very
active in open source were included in this sample. Each of the 25 participants
confirmed the disambiguation results produced by the method described in
the paper. These 25 developers used from two to 17 (median of five) distinct

ALFAA 9

Fig. 1 Extracted Components of Commits that are relevant to this study

identities resulting in a total of 141 distinct identities. If we assume these
developers to be working on the same project, that would lead to a dramatic
(more than five times) overestimation of the number of developers needed to
accomplish the tasks done by these 25 people. In Table 1, we consider how the
lack of disambiguation on this sample of developers would affect measures of
developer productivity. The first column shows anonymized user ID, the second
and fourth columns show the number of commits and productivity (commits
per year) made by that developer, and column three shows the number of
distinct IDs (used by the developer) that were found in the open source version
control systems. The next two columns indicate the minimum and maximum
productivity of the IDs belonging to that developer. Instead of aggregating
commits over all IDs belonging to the developer we calculate the number of
commits for each ID separately (the numerator) and the time-span of these
commits (the denominator). The last two columns shows by how many percent
the actual productivity exceeds that the minimum and maximum productivity
obtained when using a single ID belonging to the developer. As Table 1 shows,
the lack of disambiguation would result in severe underestimation of developer
productivity. This suggests that the disambiguation is essential in order to
produce accurate measures pertaining to software developers.

3 DATA SOURCES

Version Control System (VCS) is an ubiquitous tool in software development
and it tracks code modifications (commits). Each time a new commit is made,
the VCS records authorship, commit time, commit message, parent commit
and the full folder structure after the commit. Author string in a commit
consists of the author name (first and last) and their email addresses. We
determine files modified in a commit by comparing the full folder structure
prior to and after the commit. We have been collecting such data from projects
with public VCS since 2007 [26] and currently have 1.5B commits made by over
30M authors in over 60M VCS repositories. Figure 1 shows the information
extracted from commits that were required for the studies discussed in this
paper.

10 Sadika Amreen et al.

We set out to find a subset of this data that includes a sizable set of projects
where we could compare the results not only to research-based methods but
also to approaches used in industry. We, therefore, selected the OpenStack
ecosystem as it already had an implementation of disambiguation by Bitergia,
a commercial firm, which mapped multiple developer IDs to an unique iden-
tifier representing a single developer as well as mapping contributors to their
affiliated companies.

OpenStack1 is a set of software tools for building and managing cloud com-
puting platforms for both public and private clouds. It lets users deploy virtual
machines and can handle different tasks for managing a cloud environment on
the fly2. We discovered 1,294 repositories that are currently hosted on GitHub
and have 16,007 distinct author strings in the associated commits. Moreover,
to measure the scalability of our method, we selected an even larger collection
of projects from several large open source ecosystems having approximately
2M developer identities.

4 CLASSIFYING ERRORS

In order to tailor existing identity resolution approaches (or create new ones),
we need a better understanding of the nature of the errors associated with the
records related to developer identity. For example, in census data a common
error may be a typo, a variation in the phonetic spelling of a name, or the
reversal of the first and last names, among others. Previous studies have iden-
tified errors as a result of transliteration, punctuation, irrelevant information
incorporated in names, etc. [21,9]. Furthermore, complications are at times
introduced by the use of tools. Author information in a Git commit (which
we study here) depends on an entry specifying user name and email in a Git
configuration file of the specific computer a developer is using at the moment.
Once Git commit is recorded, it is immutable like other Git objects, and cannot
be changed. Once a developer pushes their commits from the local to remote
repository, that author information remains. A developer may have multiple
laptops, workstations, and work on various servers, and it is possible and, in
fact, likely, that on at least one of these computers the Git configuration file
has a different spelling of their name and email. It is not uncommon to see
the commits done under an organizational alias, thus obscuring the identity
of the author. Some Git clients may provide a default value for a developer,
for example, the host name. Sometimes developers do not want their identi-
ties or their email address to be seen, resulting in intentionally anonymous
name, such as, John Doe or email, such as devnull@localhost. Developers may
change their name over time, for example, after marriage, creating a synonym
and other scenarios may be possible.

In order to correct this, we need to determine the common reasons causing
errors to be injected into the system. We therefore, inspected authors strings

1 https://www.openstack.org/
2 https://opensource.com/resources/what-is-openstack

ALFAA 11

Fig. 2 Types of Synonym and Homonym Errors Discovered through Card-Sort

from our collection (at the time there was approximately 1B commits). The
procedure used to determine the types of identity errors was as follows. First,
we inspected random subsets of author IDs to understand how or why these
errors occur. We then inspected the most common names and user names. The
reviewer was tasked with identifying anything unusual in the name or email.
Third, we also consider errors encountered in the manual labeling effort during
the active learning phase as discussed in Section 5. The resulting anomalies
were then grouped using the open card sort method [41]. This is a technique
of organizing information in which a person, given a set of cards (i.e. IDs in
this case) classifies them into any number categories named and created by the
person. In our case, this was done by two people. Each person read the card (i.e.
the IDs) and put them in separate bins representing a type of error. Initially,
one of the persons, found three categories of errors (synonym, homonym and
missing data) while the other found two (synonyms and homonyms). Upon
careful inspection of the three categories and items belonging to the missing
data bucket, missing data was merged into the homonym category because
it was equivalent to a homonym represented by an empty string. Using this
approach we found that the errors resulted in two primary categories: synonym
and homonym errors.

– Synonyms: Synonyms errors are introduced through spelling mistakes,
capitalization (or absence) of names, introduction of a middle name, last
name change due to marriage, abbreviation of a name, adding extra space(s),
adding period, reversal of first and last names, transliteration of non-ascii
characters, irrelevant information incorporated into names. These errors
can arise from one or a combination of the above cases and are intro-
duced when a person uses different strings for names, user-names or email
addresses. For example, ‘utsav dusad <utsavdusad @gmail.com>’ and ‘ut-

12 Sadika Amreen et al.

savdusad <utsavdusad@gmail.com>’ are identified as synonyms. Spelling
mistakes such as ‘Paul Luse <paul.e.luse @intel.com>’ and ‘paul luse
<paul.e.luse@itnel.com>’ are also classified as synonyms, as ‘itnel’ is likely
to be a misspelling of ‘intel’.

– Homonyms: Homonym errors are introduced when an individual pro-
vides IDs that cannot be tied to a single individual. For example, these
may be identifications related to generic roles (‘Admin’, ‘root’, ‘dev’),
names of projects (‘Jenkins’, ‘Travis CI’, ‘Ubuntu’, ‘Openstack’, ‘Vagrant’),
names of organizations (‘cisco’, ‘cmart’, ‘walmart’). The ID may also be
any string that seeks to preserve anonymity or are simply placeholders
injected by tools (‘nobody’, ‘your name’, ‘test’, ‘anonymous’, ‘me’, ‘John
Doe’). Other examples include miscellaneous terms such as ‘Bot’, ‘EC2
Users’, ‘Server’ etc. For example, the ID ‘saper <saper@saper.info>’ may
be used by multiple entities in the organization. For example ‘Marcin
Cieslak <saper@saper.info>’ is an entity who may have committed un-
der the above organizational alias. Homonym errors are also introduced
when a user leaves the name or email field empty, for example, ‘chrisw
<unknown>’. A brief frequency analysis showed that the most frequent
names in the dataset such as ‘nobody’, ‘root’, and ‘Administrator’ are a
result of homonym errors as shown in Table 2

Table 2 Data Overview: The 10 most frequent names and emails

Name Count First Name Count Last Name Count Email Count User Name Count

unknown 140859 unknown 140875 unknown 140865 <blank> 16752 root 72655
root 66905 root 66995 root 67004 none@none 9576 nobody 35574
nobody 35141 David 45091 nobody 35141 devnull@localhost 8108 github 19778
Ubuntu 18431 Michael 40199 Ubuntu 18560 student@epicodus.com 5914 ubuntu 18683
(no author) 6934 nobody 35142 Lee 10826 unknown 3518 info 18634
nodemcu-custom-build 6073 Daniel 34889 Wang 10641 you@example.com 2596 <blank> 17826
Alex 5602 Chris 29167 Chen 9792 anybody@emacswiki.org 2518 me 14312
System Administrator 4216 Alex 28410 Smith 9722 = 1371 admin 12612
Administrator 4198 Andrew 26016 Administrator 8668 Unknown 1245 mail 11253
<blank> 4185 John 25882 User 8622 noreply 913 none 11004

The findings for RQ1 are, therefore, shown in Figure 2, with the various
subcategories and corresponding examples for the two broad categories (syn-
onyms and homonyms) we found the errors to belong to. We would like to note
that in the remainder of this paper we focus mainly on synonym resolution.
While our method, especially the fingerprinting part, is suitable for homonym
resolution, the process requires a different experimental setup (assigning au-
thors to commit, not disambiguating author identities) that are beyond the
scope of this work.

5 DISAMBIGUATION APPROACH

Following traditional record linkage methodology and identity linking in soft-
ware [3] we first split the information in the developer ID into several fields
and define similarity metrics for all author pairs. We also incorporate the term

ALFAA 13

frequency-adjustment measure for each of the attributes in a pair. Finally, we
add similarity between behavioral fingerprints. We generate a table of these
similarity measures for all 256,224,049 author pairs generated from 16,007
developer IDs in the OpenStack dataset.

5.1 String Similarity Measures

Each author string is stored in the following format - “name <email>”, e.g.
“Hong Hui Xiao <xiaohhui@cn.ibm.com>”. We define the following attributes
for each user.

1. Author: String as extracted from source as shown in the example above
2. Name: String up to the space before the first ‘<’
3. Email: String within the ‘<>’ brackets
4. First name: String up to the first space, ‘+’, ‘-’, ‘ ’, ‘,’, ‘.’ and camel case

encountered in the name field
5. Last name: String after the last space, ‘+’, ‘-’, ‘ ’, ‘,’, ‘.’ and camel case

encountered in the name field
6. User name: String up to the ‘@’ character in the email field

Additionally, we introduce a field ‘inverse first name’ whereby in the com-
parison between two authors it is compared to the last name in the other
record. We introduce this field to make sure that our algorithm captures cases
where authors reverse the order of their first and last names. In the case
where there is a string without any delimiting character in the name field, the
first name and last name are replicated. For example, bharaththiruveedula
<bharath ves@hotmail.com>would have ‘bharaththiruveedula’ replicated in
the first, last and the name field. We calculate both Levenshtein and the
Jaro-Winkler similarity as we have seen in previous studies [3,21], which are
standard measures for string similarity, for each author pair. To do this, we use
an existing implementation of the measures in the RecordLinkage [39] package
in R, namely the levenshteinSim() and jarowinkler() functions. In a prelimi-
nary investigation, we found that the Jaro-Winkler similarity produces better
scores which are more reflective of similarity between author strings than the
Levenshtein score and, therefore, use this measure in the proposed method.
The Jaro Similarity is defined as

simj =

0, if m = 0
1

3

(
m

|s1|
+

m

|s2|
+

m− t

m

)
otherwise

where si is the length of string i, m is the number of matching characters and
t is half the number of transpositions. The Jaro-Winkler Similarity modified
the Jaro similarity so that differences at the beginning of the string has more
significance than differences at the end. It is defined as

simw = simj + lp(1− simj)

14 Sadika Amreen et al.

where l is the length of a common prefix at the start of the string up to a
maximum of four characters and p (<= 0.25) is a scaling factor for how much
the score is adjusted upwards for having common prefixes.

5.2 Frequency Adjustment Score

If two developer IDs share an uncommon name, it provides greater confi-
dence than the IDs that share a more common name such as “John”. Denote
N(′John′) as the number of developers using this first name. If each developer
produced the same number of commits, then the conditional probability that
one specific developer was an author of a randomly selected commit (having
author first name ’John’) would be 1

N(John) . This demonstrates that common

names do not provide strong evidence of a specific developer identity, while
the rare names do. In the extreme case, if there is only one developer with a
particular name, all commits containing that name should come from the same
developer (the conditional probability 1

N(UniqueName) = 1
1 would be 1). Fur-

thermore, certain names like “nobody” or “root” do not carry any information
about the authorship and should be disregarded in the similarity detection.
This extra information, if properly encoded, could be exploited by a machine
learning algorithm making disambiguation decisions. We, therefore, count the
number of occurrences of the attributes for each author as defined in Sec-
tion 5.1 i.e. name, first name, last name, user name and email for our dataset.
We provide this information to the machine learning algorithm as a separate
variable we refer to as frequency adjustment score. We could provide two vari-
ables: an indicator variable that takes a value of one when the name is fictitious
and zero otherwise and another variable that contains the absolute frequency
of the specific attribute (.i.e., 1

N(John)). This approach would, unfortunately,

double the number of predictors and, in turn, slow the fitting procedure and
increase the chances of overfitting the data. To avoid that problem, we chose to
combine these two variables into a single predictor. Specifically, this variable
depends on the absolute frequency of the string in the corpus. The more fre-
quent the string is, the smaller this score is. The algorithm can then learn that
for the perfectly matching names that are highly frequent the match does not
provide much evidence that they belong to the same person. Furthermore, we
set this variable for a pair of name, a first name, a last name, or a user name
to exp(−10) if at least one element of the pair belongs a string identified as
potentially fictitious. exp(−10) was chosen because we found the value to be
much smaller than that for the most frequent non-fictitious names. We further
took the logarithm of the frequency adjustment score because the resulting
scores were distributed highly unevenly. In such cases a logarithm is useful is
when we are discussing measurements with a different orders of magnitude i.e.
100 vs 1,000 vs 1,000,000. The logarithm smooths our measurements so that
it is easier for a user (or, in our case, an algorithm) to distinguish between
significant scores, similar to the Richter scale in earthquake dynamics where

ALFAA 15

each unit corresponds to a ten-fold increase in energy. Its more user friendly
to score things -7 versus -8 as opposed to 10ˆ-7 vs 10ˆ-8.

Specifically, we calculate the frequency adjustment score between author
pairs, authors a1 and a2, for each of these attributes as follows:

ffreq =

log10

1

fa1 × fa2

if a1 and a2 are non-fictitious

−10 otherwise

where fa1 and fa2 are the absolute frequency of names of authors a1 and a2
respectively. We generate a list of 200 common strings of names, first names,
last names and user names and emails from the full data set of authors (the
first 10 shown in Table 2) and manually remove names that appear to be non-
fictitious, i.e. names that could truly belong to a person such as Lee, Chen,
Chris, Daniel etc. This gives us a compilation of a set of fictitious names.

5.3 Behavioral Fingerprints

In addition to the spelling of the name and contact information, developers
might leave their individual signatures in the version control systems. For ex-
ample, the way commit messages are composed, the set of files are modified,
or the time zones of the commits, may all contain information that can be
used to identify an individual. To capture such traces of developer actions,
we designed three similarity measures - (1) Similarity based on files modified
— two author IDs modifying similar sets of files are more likely to represent
the same person. (2) Similarity based on time zone — two author IDs com-
mitting in the same time zone indicate geographic proximity and, therefore,
have higher likelihood of being the same individual. (3) Similarity based on
commit message text — two author IDs sharing writing style and vocabulary
increase chances that they represent the same entity. Operationalizations of
these behavioral fingerprints are given below.

5.3.1 Files modified

Each modified file is inversely weighted using the number of distinct au-
thors who have modified it (for the similar reasons common names are down-
weighted as evidence of identity). The pairwise similarity between authors, a1
and a2, is derived by adding the weights of the files, Wf, touched by both
authors. A similar metric was found to work well for finding instances of suc-
cession (when one developer takes over the work of another developer) [28].
The weight of a file is defined as follows where Af is a set of authors who has
modified file f.

Wf =
1

Af
,where Af = |af1 , ..., afn|

16 Sadika Amreen et al.

Sima1a2
=

na1a2∑
i=1

Wfi ,where na1a2
= |fa1

∩ fa2
|

5.3.2 Time zone

We discovered 300 distinct time zone strings (due to misspellings) from the
commits and created a ‘author by time zone’ matrix that had the count of
commits by an author at a given time-zone. All time zones that had less
than 2 entries (authors) were eliminated from further study. Each author was
therefore assigned a normalized time-zone vector (with 139 distinct time zones)
that represents the pattern of his/her commits. Similar to the previous metric,
we weighted each time zone by the inverse number of authors who committed
at least once in that time-zone. We multiply each author’s time zone vector
by the weight of the time zone. We define author ai’s time-zone vector as:

(TZV t
ai

) =

(
Ct

ai

At

)
,

Here, (Ct
ai

) is the vector representing the commits of an author ai in the
different time zones t and (At) is the vector representing the number of authors
in the different time zones. The pairwise similarity metric between author a1
and author a2 is calculated using the cosine similarity as:

tzda1a2 = cos sim(TZVa1 , TZV a2)

where TZVa1 and TZVa2 are the authors’ respective vectors.

5.3.3 Text similarity

We use the Gensim’s implementation 3 of the Doc2Vec [23] algorithm to gen-
erate vectors that embed the semantics and style of the commit messages
of each author. All commit messages for each individual who contributed at
least once to one of the OpenStack projects were gathered from the collection
described above and a Doc2Vec model was built. DocVec, unlike Word2Vec,
allows to embed (estimate vectors) not only for each word in the text, but for
the document descriptors (tags or author IDs in our case) as well. We used
distributed memory version of paragraph vector with the vector size 200, short
window of three (since commit messages are quite short), negative sampling of
20, hierarchical sampling, and removed words that were present in fewer than
15 commit messages. The 200-dimensional vector was short enough for quick
computation, yet it was long enough to encapsulate the variation of informa-
tion in the commit messages 4. Our earlier experiments on commit messages
found this set of parameters to yield satisfactory results (of 80% accuracy for
top on a sample of 600 commit messages done by 21 developers). The resulting

3 https://radimrehurek.com/gensim/index.html
4 On large and diverse bodies of text, a larger vector size of 300 is recommended [36]

ALFAA 17

Fig. 3 Concept of the Disambiguation Process

vectors for each of the 16,007 authors were used to calculate pairwise cosine
similarity between authors.

However, there are several potential drawbacks of these distance metrics.
For example, high scores for files touched may mean that two different in-
dividuals are working on the same project thereby editing the same files at
alternating times. High document similarity may mean that the authors share
similar vocabulary in the commit messages which may also be influenced by
the work on the same project. Fortunately, the machine learning algorithm
would discover these patterns from the training data and would find combina-
tions of the similarity scores (that may be either high or low), that correspond
to true matches. As we show later in the results, the behavioral similarity
measures are important predictors for disambiguation.

5.4 Data Correction

The data correction process can be divided into 3 phases as shown in Figure 3.

1. Define predictors - Compute string similarity, frequency adjustment score,
and behavioral similarity

2. Active learning - Use a preliminary classifier to extract a small set from
the large collection of data and generate labels for further classification.

3. Classification - Perform supervised classification, transitive closure, extract
clusters to correct, and dis-aggregate incorrectly clustered IDs.

5.4.1 PHASE 1: Define Predictors for the Learner

Once we have defined the attributes (name, first name, last name, email,
username) for which we want to calculate string similarity, we use relevant

18 Sadika Amreen et al.

Table 3 Confusion region from the preliminary classifier

Model1 Model2 Model3

Link Link No-Link
Link No-Link Link
No-Link Link Link
No-Link No-Link Link
No-Link Link No-Link
Link No-Link No-Link

functions implemented in the RecordLinkage library [39] to obtain the Jaro-
Winkler similarity between each pair of attributes: authors’ name, first name,
last name, user name, email and the first author’s first name to the 2nd au-
thor’s last name (we refer to this as the inverse first name). In addition to the
string similarities based on these fields, we also include the term frequency
adjustment score, as is commonly done in record matching literature. The
highly frequent values tend to carry less discriminative power than infrequent
email addresses or names. Finally, we include three fingerprint metrics — files
touched, time-zone, and commit log text. The resulting data is used as an
input to the next phase, i.e. the active learning process.

5.4.2 PHASE 2: Active Learning

Supervised classification requires ground truth data and manual classification
is time consuming. It is also error-prone - we found some differences between
two raters and further errors discovered in the Active Learning phase where the
learner indicated manual classification error that was verified by both raters.
Since manual classification of all possible pairs is impossible (it would require
roughly 100 people each working 9000 hours to hand label the Openstack
collection we have now), it is necessary to identify a small subset of instances so
that the classifier would produce accurate results on the remainder of the data.
Selecting a random sample of pairs to compare for manual labeling is not likely
to work either: in our case, the chance that 2000 randomly selected pairs from
256M author pairs would belong to the same person is close to zero (assuming,
on average, two developer IDs per person, 2000 pairs would represent 10−5

fraction of the entire sample). Active Learning [38] is an idea that can be use to
minimize manual classification effort. In a nutshell, a variation in predictions
of a preliminary classifier fitted on different subsets of the classified data are
manually resolved. It helps ensure that the pairs that are most likely to be
confused by the learner are added to the training data. The expensive manually
classified training data, therefore, is only collected where the initial classifier
is not consistent. As found in other work [38], we also discovered that this
approach achieves very high accuracy with relatively few manually classified
pairs.

Active Learning Design Details
In order to seed the training set for the active learning procedure, we

have to resolve the problem of how to select a set of initial pairs for manual

ALFAA 19

labeling. If we randomly select authors, the fraction of matches obtained will
be very low as described above. To increase the proportion of matches in
this seed data, we identify non-homonym developer IDs where there were at
least two distinct emails for the same name (first and last) or where there
were at least two distinct names for the same email. We then sample 2,825
pairs from this set, so that either for each pair either name or email is the
same. This number was obtained by calculating the number of pairs we can
manually validate in a one week sprint working 2 hours per day. These 2,825
pairs were manually labeled as a match (1) or a non-match (0). We found
2,016 matches and 809 non-matches in this set. We also calculated the string
similarity and behavioral similarity for each pair in this set. We then randomly
partitioned this data into ten parts and fit three classifiers on nine parts of
the data (each of these 9 parts had overlapping and different observations).
Typical active learning approach would then use these classifiers to predict
matches on the data outside these pairs. However, since manual labels may
be prone to errors, we add an additional step of using these three models to
predict matches on the data that has already been manually labeled. Each
classifier was used to predict outcomes for the all 2,825 pairs. As expected, the
three classifiers trained on different training subsets yielded slightly different
predictions. There were 2,345 pairs where all three learners did not agree (i.e
at least one learner had a prediction different from the other two). This is the
confusion region of the learner, as shown in Table 3. The predictions from the
learners contained some instances where the manual labels were incorrectly
assigned. We made appropriate correction in the manually classified data and
the resulting set was used as the training data for the next iteration of the
active learner.

We used all 16 attributes (name, email, first name, last name, user name,
inverse first name, name frequency adjustment, email frequency adjustment,
last name frequency adjustment, first name frequency adjustment, user name
frequency adjustment, files touched, time-zone, and text similarity) in the
initial Random Forest model. We obtained the importance of each predictor
in this initial model and dropped the attributes with low importance from all
subsequent models.

5.4.3 PHASE 3: Classification

Once the labeled data set is created, we use it to train random forest models
and perform a 10-fold cross validation with results shown in Table 4. The
classifier-predicted pairwise matches are completed via transitive closure to
obtain the final predictor of identity matches 5. The result of the transitive
closure is a set of connected components with each cluster representing a single
author. Once the clusters are obtained, we consider all clusters containing 10 or

5 We found that more accurate predictors can be obtained by training the learner only
on the matched pairs, since the transitive closure typically results in some pairs that are
extremely dissimilar, leading the learner to learn from such pairs and, subsequently, produce
many more false positives

20 Sadika Amreen et al.

Table 4 Confusion Matrix of 10-fold cross validation of the Random Forest Model: 1 rep-
resents a match while 0 represents a non-match

0 1 0 1 0 1 0 1 0 1
0 549,609 4 548,179 3 549,469 2 551,136 5 550,108 5
1 0 992 2 1,110 0 1,082 0 1,039 3 1,014

0 1 0 1 0 1 0 1 0 1
0 549,204 1 549,402 1 547,958 4 548,730 4 549,569 2
1 2 1,075 1 1,033 0 1,021 0 1,084 0 1,010

more elements to investigate if multiple developers may have been grouped into
a single component. The resulting 20 clusters - 44 elements in the largest and
10 elements in the smallest cluster among these, were then manually inspected
and grouped. This manual effort included the assessment of name, user name
and email similarity, projects they worked on, as well as looking up individual’s
profiles online where names/emails were not sufficient to assign them to a
cluster with adequate confidence. An example of cluster reassignment is given
in Table 5 where we dis-aggregated a single large cluster of 11 IDs to 3 smaller
clusters. The first column is the author ID, the second is the cluster number
the ID was assigned to by the algorithm, the third column is the manually
assigned cluster number after dis-aggregation. We noticed that, the largest
cluster of size of 44 in fact was based on homonym ‘root’. Therefore, we dis-
aggregated the entire cluster to form 44 single-element clusters. The output
of this phase is a cleaned data set in which we have corrected synonym errors
via machine learning and fixed some of the homonym errors by inspecting the
largest clusters. We use the corrected set as a reference or ‘golden’ data set
representing developer identities in the further analysis of OpenStack data.

5.5 Results

We evaluate the models using the standard measure of correctness - precision
and recall - using the true positive (tp), true negative (tn), false positive (fp)
and false negative (fn) outcomes produced by the models. An outcome is true
positive when the model predicts a match correctly. This means the model
predicted a match between an ID pair, when the ID pair is truly a match. An
outcome is true negative when the model predicts a non-match correctly. This
means the model predicted a non-match between an ID pair, when the ID pair
is truly a non-match. An outcome is false positive when the model predicts
a match incorrectly. This means the model predicted a match between an
ID pair, when the ID pair is truly a non-match. Finally, an outcome is false
negative when the model predicts a non-match incorrectly. This means the
model predicted a non-match between an ID pair, when the ID pair is truly
a match. We obtained an average precision of 99.9% and an average recall of
99.7% from the 10-fold cross validation of the random forest model shown in
Section 4.

ALFAA 21

Table 5 Cluster Cleanup through Manual Disaggregation

Author Identity Cluster# New Cluster#

AD <adidenko@mirantis.com> 22 1
Aleksandr Didenko <adidenko@mirantis.com> 22 1
Alexander Didenko <adidenko@mirantis.com> 22 1
Sergey Vasilenko <stalker@makeworld.ru> 22 2
Sergey Vasilenko <sv854h@att.com> 22 2
Sergey Vasilenko <sv@makeworld.ru> 22 2
Sergey Vasilenko <svasilenko@mirantis.com> 22 2
Sergey Vasilenko <xenolog@users.noreply.github.com> 22 2
Vasyl Saienko <vsaienko@mirantis.com> 22 3
vsaienko <vsaienko@cz5578.bud.mirantis.net> 22 3
vsaienko <vsaienko@mirantis.com> 22 3

Precision =
tp

tp + fp
,Recall =

tp

tp + fn

Since record matching is a slightly different problem from traditional clas-
sification, previous work done on identity matching introduces two additional
error metrics: splitting and lumping [40] as they are easier to interpret than
standard precision and recall for the domain of identity matching. Lumping
occurs when multiple developer IDs are identified to belong to a single devel-
oper. The number of lumped records is defined as the number of records that
the disambiguation algorithm incorrectly mapped to the largest pool of IDs
belonging to a given developer. Splitting (i.e. 1 - Recall) occurs when an ID
belonging to a single developer is incorrectly split into IDs representing several
developers. The number of split records is defined as the number of developer
IDs that the disambiguation algorithm fails to map to the largest pool of IDs
belonging to a given developer.

Table 6 Largest cluster Corresponding to Single Entity with Highest Aliases After Disag-
gregation

AuthorID AuthorID

Greg Holt <gholt@rackspace.com> tlohg <z-github@brim.net>
Greg Holt <greg@brim.net> tlohg <gholt@rackspace.com>
Greg Holt <gregory.holt@gmail.com> gholt <z-launchpad@brim.net>
Greg Holt <gregory˙holt@icloud.com> gholt <z-github@brim.net>
Greg Holt <z-github@brim.net> gholt <gregory.holt+launchpad.net@gmail.com>
Gregory Holt <gholt@racklabs.com> gholt <gholt@rackspace.com>
gholt <devnull@brim.net> gholt <gholt@brim.net>

These two metrics only focus on the largest pool of IDs belonging to a single
developer and ignores the other clusters of IDs corresponding to the same
unique developer. To address that the work in [44] modifies these measures to
evaluate all pairwise comparison of author records made by the disambiguation

22 Sadika Amreen et al.

Fig. 4 Results from disambiguation from OpenStack developers

algorithm. We follow the latter approach and create a confusion matrix of the
pairwise links both from the golden data set and from the links created by the
classifier:

Splitting =
fn

tp + fn
, Lumping =

fp

tp + fn

The cross-validation shows that 0.3% of the cases were split and 0.1% of the
cases were lumped. We use one of these models to predict links or non-links for
our entire dataset of over 256M pairs of records. The classifier found 31,044
links and we generated an additional 3,293 links through transitive closure.
Therefore, we have 34,337 pairs linked after running the disambiguation algo-
rithm. Using this, we constructed a network that had 10,835 clusters that were
later manually inspected and disaggregated using the procedure described in
subsection 5.4.3. Finally, we were left with 10,950 clusters, each representing
an author, with 14 elements in the largest cluster, corresponding to the high-
est number of aliases by a single individual as shown in Table 6. The results
extracted in each phase is illustrated in Figure 4.

The results in Table 7 report the prediction performance where the predic-
tion model was fit with and without the behavioral metrics. The table allows us
to answer RQ2 (do behavioral metrics increase accuracy). We obtained seven
times higher precision error that increases from 0.1% to 0.7% and recall error
increases 1.7 times from 0.3% to 0.5% when behavioral metrics are dropped
from the models.

We would like to stress that the tolerance for identity errors is extremely
low. For example in [52], only 6% identity errors lead to about 20% error in
counting the number of developers and about 52% error in calculating the
time of stay of developers within a repository. As observed in [52], developers
who are more active are much more likely to have identity errors. As a result,
even small errors may get massively magnified. For example, in absolute terms,
matching 256M pairs for the OpenStack data (of about 16,000 authors), 0.1%
error would mean 256,000 mis-classified links that may also be magnified by

ALFAA 23

Table 7 Comparison of the Results with and without behavioral fingerprinting

Metric Without Behavioral Fingerprint (%) With Behavioral Fingerprint (%)
Precision 99.3 99.9
Recall 99.5 99.7
Splitting 0.4 0.3
Lumping 0.6 0.1

a transitive closure of the the matched pairs. Therefore, one mis-classification
can easily cascade into much bigger problems. For research that relies on such
data, this poses a difficult problem. While the empirical study we conducted
did not reach the ideal level of zero errors, we expect that the proposed al-
gorithm, after being trained with sufficient amount of data, could potentially
reach this highly desirable threshold. A measure of the importance of the fea-
tures used in the classification shows that two out of the three behavioral
fingerprints were the second and third most important variables. The most
important feature was the name of the user. We look at the mean decrease in
accuracy when each of the features are dropped from the classification process,
and removing the behavioral fingerprints had the largest impact after remov-
ing the name feature. Mean decrease in accuracy is impacted by the features
in the following order (high to low): name, time-zone, files-modified, email,
first-name frequency adjustment, inverse first name, last-name frequency ad-
justment, username, text-similarity, last-name and firstname.

An empirical study quantifying the impact is discussed in Section 7. In
summary, the answer to RQ2 is positive: the behavioral fingerprints increase
the accuracy of synonym resolution.

6 EVALUATION

In this section we try to answer questions related to the accuracy of the man-
ually labeled training data and to compare our approach to two alternatives
from the commercial and research domains. It is important to note that we are
evaluating our algorithm trained on a small amount of training data and, as
with other machine learning techniques, we expect it to have higher accuracy
with more training data that would be added in the future.

6.1 Accuracy of the training data

The absence of ground truth requires us to investigate the accuracy of the
training data. Two independent human raters (authors who are PhD students
in Computer Science) were presented with the spreadsheet containing 1,060
pairs of OpenStack author IDs and marked it using the following protocol.
Each rater was instructed to inspect each pair of author IDs (full name and
email) listed in the spreadsheet and supplemented by author’s affiliations (see
Section 6.2, the dates of their first and last commits in the OpenStack projects,

24 Sadika Amreen et al.

and their behavioral similarity scores. Each rater was instructed to mark au-
thor pair as a match (1) if the two identities are almost certainly from the
same person, a non-match (0) if they are certainly not from the same person,
and provide a number in between zero and one reflecting the raters subjec-
tive probability that they are representing the same person. Each rater was
instructed to use the above mentioned information (listed next to the pair
in the spreadsheet) to make their decision and were instructed to search for
developers on Github or Google if they did not feel confident about their de-
cision. For cases where both raters marked either zero or one we found 1,011
instances of agreement and 17 cases of disagreement between the two raters.
By thresholding the 32 cases that had probability value greater than zero and
less than one to the nearest whole, we obtained 1,042 instances of agreement
(98.3%) and 18 cases of disagreement (1.69%).

We also compare the ten-fold cross-validation predictions described above
with the second rater (whose input was not used for training). The numbers
of disagreements between the second rater and the predictions over ten folds
ranged from 11 (1.03%) to 18 (1.69%) (a mean of 15.18). The second rater
had, therefore, similar or better agreement with the prediction than with the
first rater.

We thus have established the degree to which the two raters agree on the
decision, but not necessarily that either of the raters was correct. To validate
rater’s opinions we, therefore, administered a survey to a randomly selected
set of authors. The survey provided respondents with a set of commits with
distinct author strings. All commits, however, were predicted to have been
done by the respondent and each respondent was asked to indicate which of
the commits were the ones made by them. From a randomly selected 400
developers sixty-nine emails bounced due to the delivery problems. After 20
days we obtained 45 valid responses, resulting in a response rate of 13%. No
respondents indicated that commits predicted to be theirs were not submitted
by them, for an error rate of 0 out of 45. This allows us to obtain the bound
on the magnitude of error. For example, if the algorithm has the error rate of
5%, then we would have less than one in ten chances to observe 0 out of 45
observation to have errors6.

After establishing high accuracy of the training data we proceed to compare
our approach to an approach that was implemented by professional commercial
effort.

6.2 Comparison with a commercial effort

Openstack is developed by a group of companies, resulting in an individual and
collective interest in auditing the development contribution of each firm work-
ing on Openstack. This task was outsourced to Bitergia7, which is a company
dedicated to performing software analytics. We collected the disambiguation

6 Assuming independence of observations and using binomial distribution.
7 https://bitergia.com/

ALFAA 25

data on OpenStack authors produced by Bitergia. The data was in a form of
a relational (mysql) database that had a tuple with each commit sha1 and
developer ID and another table that mapped developer ID (internal to that
database) to developer name (as found in a commit). The Bitergia data had
only 10,344 unique author IDs that were mapped to 8,840 authors (internal
database IDs). We first restricted the set of commits in our dataset to the set of
commits that were in the Bitergia database and selected the relevant subset of
authors (10,344 unique developer IDs) from our data for comparison to ensure
that we are doing the comparison on exactly the same set of authors. Bitergia
algorithm misses 17,587 matches predicted by our algorithm and introduced
six matches that our algorithm does not predict. In fact, it only detected 1,504
matches of over 22K matches (under 7%) predicted by our algorithm. Bitergia
matching predicted 8,840 distinct authors or 41% more than our algorithm
which estimated 6,271 distinct authors. As shown in Table 8, it has almost 50
times higher splitting error than manual classification, though it almost never
lumps two distinct authors. We, therefore, conclude that the prediction done
by the commercial effort has substantially lower accuracy.

6.3 Comparison with a research study

Next, we compare our method to a recent research method8 that was applied
on data from 23,493 projects [43] from GHTorrent to study social diversity in
software teams. From this point forward, we refer to that method as “Recent”.
Method Recent starts by creating a record containing elements of the name
and email address as shown on the left of Figure 1. It then forms candidate
pools of identities linked by matching name parts, then uses a heuristic to
accept or reject each pool based on counts of different similarity “clues”. The
authors then iteratively adapted this automatic identity matching by manu-
ally examining the pools of matched emails and adjusting the heuristic. To
ensure that the heuristics in Recent were applied in a way consistent with
their prior use, we asked the first author of the original paper [43] to run it
on our datasets and adjust it analogously to how he had adjusted for his own
studies9. We first compare the results of Recent to our approach on the entire
set of 16K OpenStack authors and then on a larger dataset described below.
Table 8 provides comparisons where the labels generated using method in the
left column to be the ground truth. The “Comparison” column compares all
methods to the first model from the 10 fold cross-validation which is consid-
ered to be the “assumed ground truth. The error is not zero for row ALFAA vs
ALFAA, because it provides an average error over nine remaining models from
the 10 fold cross-validation. We see that there is a good agreement between
the raters: splitting error of 0.0139 and lumping error of 0.0139. The average
ten-fold cross-validation error of ALFAA on the Rater 1 labeled data is 4.63

8 https://github.com/bvasiles/ght unmasking aliases
9 The author got much better results than we could obtained using their published code

without modifications.

26 Sadika Amreen et al.

Table 8 Comparison of ALFAA against others

Set Assumed Ground Truth Comparison Precision Recall Split Lump

Training R1 R2 0.9861 0.9861 0.0139 0.0139
Set ALFAA ALFAA 0.9990 0.9970 0.0030 0.001

ALFAA R2 0.9936 0.9823 0.0177 0.0063
Full ALFAA Bitergia 0.9991 0.4688 0.5312 0.0004
OpenStack ALFAA Recent 0.9480 0.8891 0.1109 0.0487

(0.0139/0.003) times and 13.9 (0.0139/0.001) times lower, though. The agree-
ment between ALFAA and Rater 2 is similar to that between Rater 1 and Rater
2, suggesting that ALFAA has captured the heuristics implicit in the training
set. Commercial effort has a much higher split error but it almost never lumps
distinct individuals together. The last comparison of ALFAA vs Recent shows
that ALFAA is 7.97 times more accurate than Recent with respect to splitting
(0.1109/0.0139), and 3.5 times with respect to lumping (0.0487/0.0139). This
is possible due to the large training sample that allows the Random Forest
algorithm to devise a much more accurate decisions on matching than could
be possible through a manual design of a heuristic.

We expect that this model will be used by other researchers and some of
them may create additional training data. In such cases, as the training set
would increase, we expect the accuracy of the supervised learning to continue
to increase, hopefully approaching extremely low error rates.

6.3.1 Manual validation of results from Recent and ALFAA

We found that ALFAA produced 1,876,595 matches that were not identified by
Recent. Recent produced 363,818 matches that were not matched by ALFAA.
In order to understand and validate the differences we design an experiment
to compare the results of Recent to ALFAA generated from a set of 16,008
Openstack authors. As the size of the full data set is too large for manual
validation (over 256M pairs), we sample a small section of the data for manual
inspection. The sampling is done using the following procedure.

– Remove all self-matched observations from consideration i.e. where ID1
and ID2 are identical

– Remove all observations that have positive outcomes i.e. match, for both
ALFAA and Recent

– Set1: Randomly sample 500 observations where ALFAA yields a positive
outcome and Recent does not

– Set2: Randomly sample 500 observations where Recent yields a positive
outcome and ALFAA does not

– Combine Set1 and Set2 and randomly extract 500 observations from the
combined set without replacement. Let’s call this Sample1. The remaining
observations will be in Sample2. This step ensures that no bias is introduced
when using human raters while generating ground truth.

ALFAA 27

We created random samples of 1000 pairs of IDs until it had more than
50% cases where email of ID1 was not identical to email of ID2 because recent
automatically matched IDs that had the same email. We sampled 500 obser-
vations from each of these two sets and found that 418 observations in Set1
and 312 in Set2 did not have identical emails. We used two raters (all PhD
students in Computer Science,) to label each observation as a match (1), a
non match(0), and uncertain (0.5) keeping the following in mind besides the
individual rater’s judgment.

– If first names and last names match and neither are homonyms label as 1.
– If names are somewhat similar (case difference, partial match, abbreviated

etc.) and emails indicate personal and work (deduced from email domains)
label as 1 Example: jonathanramirez <jonathanramirezmeza@gmail.com
>,Jonathan Ramirez <jonathan@Jonathan-BMP.iptvṁicrosoftċom>

– If name in ID1 matches username in ID2 label as 1 Example: Elliot Fehr
<elliot@weebly.com>, Elliot <elliotfehr@gmail.com>

– If a name has high empirical frequency (appears frequently in the dataset)
label as 0.5

– If a name has high cultural frequency (known to be common in a nationality
or culture) label as 0.5

– If one or both of the ID(s) is/are homonym(s) label as 0.5 Example: cof-
feemug <coffeemug@dell-desktop.example.com>, Slava Akhmechet<coffeemug
@Elyas-MacBook-Pro.local>

– If there are multiple names present in the IDs, then label 0.5 Example:
Jonathan Berkhahn and Raina Masand <rmasand@pivotal.io>, Ruth By-
ers and Raina Masand <rmasand@pivotal.io>

We selected all instances that were labeled as a match (1) or a non-match
(0) by both raters. In other words, we dropped all instances that were labeled
a 0.5 by any one rater. We extracted 534 such observations out of the 1000
labeled instances. There were 47 cases of disagreement between the two raters
with a Cohen’s Kappa of 0.722 which we conclude is satisfactory as Cohen’s
Kappa between 0.6 and 0.8 is considered to be substantial agreement according
to Landis and Koch [19]. We found 184 pairs from results produced by ALFAA
and 350 pairs from results produced by Recent in this set.

Rater 1 validation results for ALFAA: Out of the 178 pairs that were
matched by ALFAA, rater 1 found 7 instances where ALFAA wrongly matched
a pair of IDs and 177 instances where ALFAA correctly matched a pair of IDs.
This means that ALFAA achieved 3.8% False Positive rate 96.2 True Positive
rate from Rater 1.

Rater 1 validation results for Recent: Out of the 350 pairs that were
matched by Recent, rater 1 found 80 instances where Recent wrongly matched
a pair of IDs and 270 instances where Recent correctly matched a pair of
IDs. This means that Recent achieved 22.8% False Positive rate 77.14% True
Positive rate from Rater 1.

Rater 2 validation results for ALFAA: Out of the 178 pairs that
were matched by ALFAA, Rater 2 found 28 instances where ALFAA wrongly

28 Sadika Amreen et al.

matched a pair of IDs and 156 instances where ALFAA correctly matched a
pair of IDs. This means that ALFAA achieved 15.2% False Positive rate 84.8%
True Positive rate from Rater 2.

Rater 2 validation results for Recent: Out of the 350 pairs that were
matched by Recent, rater 2 found 94 instances where Recent wrongly matched
a pair of IDs and 256 instances where Recent correctly matched a pair of
IDs. This means that Recent achieved 26.8% False Positive rate 73.14% True
Positive rate from Rater 2.

In conclusion, ALFAA and Recent achieved an average false positive rate
of 9.5% and 24.85% respectively. This shows that Recent is 2.61 times more
prone to lumping error than ALFAA. To be able to report the splitting error,
we would need to conduct a similar experiment by sampling from the set
containing pairs that were labeled as a non-match (0) by ALFAA and the set
containing pairs that were labeled as a non-match (0) by Recent, which is both
time and labor intensive, and therefore, we keep it beyond the scope of this
paper.

6.4 Evaluation on a large set of identities

To evaluate the feasibility of ALFAA on large scale we created a list of 1.8
million identities from commits to repositories in Github, Gitlab and Biocon-
ductor for packages in 18 software ecosystems. The repositories were obtained
from libraries.io data [32] for the Atom, Cargo, CocoaPods, CPAN, CRAN, Go,
Hackage, Hex, Maven, NPM, NuGet, Packagist, Pypi, and Rubygems ecosys-
tems; extracted from repository websites for Bioconductor10, LuaRocks11 and
Stackage12, and from Github searches for Eclipse plugins.

The application of Recent algorithm mapped the 1,809,495 author IDs to
1,411,531 entities as the algorithm was originally configured (1.28 aliases per
entry), or 1,052,183 distinct entities after the heuristic was adjusted by its
author, identifying an average of 1.72 aliases per entry. Upon applying our
own algorithm to this dataset, we mapped the set to 988,905 — identifying
an average of 1.83 aliases per entity. It is important to note that we did not
incorporate any additional training beyond the original set of manually marked
pairs and we expect the accuracy to increase further with an expanded training
dataset.

Notably, to apply ALFAA for 1.8M IDs, we need 3.2 × 1012 string com-
parisons for each field (first name, last name, etc) and the same number of
comparisons for each behavioral fingerprint. The full set of engineering de-
cisions needed to accomplish the computation and prediction is beyond the
scope of this paper, but the outline was as follows. To compare strings we
used an allocation of 1.5 million core hours for Titan supercomputer at Oak

10 https://www.bioconductor.org
11 https://luarocks.org
12 https://www.stackage.org/lts-10.5

ALFAA 29

Ridge Leadership Computing Facility (OLCF) 13. The entire calculation was
done in just over two hours after optimizing the implementation in pbdR [33]
on 4096 16-core nodes. The approach can, therefore, scale to the entire set of
over 23M author IDs in over 1B public commits. To compare behavioral fin-
gerprints we exploited network properties (authors touch only a small number
of all files) to reduce the number of comparisons by several orders of mag-
nitude. Finally, it took us approximately two weeks to train Doc2Vec model
on approximately 9M developer identities and 0.5B commits using Dell server
with 800G RAM and 32 cores.

7 MEASURING IMPACT ON DEVELOPER COLLABORATION
NETWORK

In this section of our work, we discuss RQ4, the impact of identity errors
in a real world scenario of constructing a developer collaboration network.
More specifically, we measure the impact of disaggregation (or split) errors by
comparing the raw network to its corrected version. To create the collabora-
tion network (a common network used in software engineering collaboration
tools [8]), we start from a bipartite network of OpenStack with two types of
nodes: nodes representing each author ID and nodes representing each file, we
refer to as G. The edges connecting an author node and a file node represent
the files modified by the author. This bipartite network is then collapsed to a
regular author collaboration network by creating links between authors that
modified at least one file in common. We then replace multiple links between
the authors with a single link and remove authors’ self links as well. The new
network, which has 16,007 author nodes, depicts developer collaboration, we
refer to as G′. We apply our disambiguation algorithm on G′and aggregate au-
thor nodes that belong to the same developer and produce a corrected network
which we refer to as G′′. The network and its transformations are illustrated
in Figure 5.

Fig. 5 Correcting Disaggregation Errors in a Developer Network

13 https://www.olcf.ornl.gov/

30 Sadika Amreen et al.

To evaluate the impact of correction from G′to G′′, we follow prior work in-
vestigating the impact of measurement error on social network measures [45].
We look at four node-level measurements of network error, i.e. degree cen-
trality [14], clustering coefficient [46], network constraint [6] and eigenvector
centrality [5]. For each node-level measure we compute a vector M. For exam-
ple, in Figure 2, vector M has the degree centrality of G, G′ and G′′. Similar to
the approach discussed in [45] we compute two vectors M2 and M2′ for graph
G′′using each node level measure and compute Spearman’s rho between these
two vectors. We obtain Spearman’s rho for degree centrality to be 0.8619, clus-
tering coefficient to be 0.8685, network constraint to be 0.8406 and eigenvalue
centrality to be 0.8690. The correlations below 0.95 for any of these measures
are considered to indicate major disruptions to the social network [45]. In our
case all of these measures are well below 0.95. We can also look at the quan-
tiles of these measures: for example one quarter of developers in the corrected
network have 210 or fewer peers, but in the uncorrected network that figure is
113 peers. The eigen-centrality has an even larger discrepancy: for one quarter
of developers it is below 0.024 for the corrected and 0.007 (or more than four
times lower) for the uncorrected network. Therefore, to answer RQ4, we find
that developer identity errors have a high impact on collaboration networks.

8 LIMITATIONS

Our findings have a number of limitations. First, the proposed behavioral
fingerprints may not be optimal for authorship assignment and other types
of fingerprints may lead to a more accurate disambiguation. The results we
got, however, show fairly high accuracy, suggesting that the specific choices we
made appear to be reasonable as it is not clear how much more the accuracy
can be increased. However, exploring other behavioral fingerprints should be
considered in future work.

Second, our training and validation data rely on manual labeling by raters
and not actual ground truth. To correct for the bias of individual raters, we
used several raters to manually label the data and found that there was a high
agreement among raters. To get to the actual ground truth, we contacted a
small sample developers via a survey asking them to identify if the commits
done by alternative IDs were in fact produced by them. We found low errors,
but the response rate to the survey was fairly low. Therefore, it may be possible
that the accuracy of the matches for the non-respondents of the survey may
differ from what we observe with the respondents.

There may be a sampling bias as well, i.e., the errors for OpenStack identi-
ties may different from errors in the other projects and ecosystems. We, there-
fore applied our method and compared with a recent state-of-the-art method
on a much large sample of identities from 18 distinct software ecosystems and
found that it performs well there. We conducted additional manual labeling
of the data on the mismatches to determine which of the methods was more
accurate.

ALFAA 31

It is possible that identity errors may not impact research results much. We,
therefore, looked into the question if the identity errors actually lead to errors
in commonly constructed social networks. We found that even relatively small
rate of identity errors to have a substantial impact on social network errors.
While it would be ideal, to gauge the impact of ALFAA versus Recent in this
context, we feel that this question is better addressed in the future work with
additional analysis.

We mention in Section 4 that identity errors are can be classified broadly
under two parts – Synonym and Homonym errors. The synonym resolution
requires matching between pairs of authors, where the ground truth can be
somehow determined based on the similarity of names, emails or other sources.
It is harder to correct homonym IDs - for example it is impossible for a hu-
man rater to determine whether “anonymous <anonymous@gmail.com>” is
the same as “Greg Holt <gregory.holt@gmail.com>” solely based on these two
strings. Therefore, a modified approach is required for resolving homonyms.
The proper identity of author needs to be determined for each commit sepa-
rately (as multiple commits with the same homonym belong to distinct indi-
viduals). Using behavioral fingerprints of each commit (that has a homonym
as an author ID) can help identify the most likely author. However, such ex-
periment needs a careful design and ground truth has to be obtained at the
resolution of each individual commit.

Finally, it is not clear if the proposed method would generalize to other
domains or scale well. For example, would it work with data generated from
tools other than Git? It is difficult to answer such questions without further
studies, but given that the supervised learning approach was already being
used in other domains suggest that the answer may be positive.

9 CONCLUSIONS

Through this work we have proposed a new approach (ALFAA) for correcting
identity errors in software engineering context and apply it on OpenStack
ecosystem. We find it to be several times more accurate than a commercial
effort and a recent research method. More importantly, ALFAA does not rely
on hand-crafted heuristics, but can, in contrast, increase its accuracy by simply
incorporating additional training data. In fact, it is designed to work with
the minimum amount of manual validation effort through the active learning
approach.

To answer RQ1, we examined a very large collection of commits and found
that the identity errors were substantially different from the types of errors
that are common in domains such as administrative records (drivers licenses,
population census), publication networks, or patent databases. Using Open
Card-Sort approach we found that there are two primary types of errors (syn-
onym and homonym errors) and further six sub-types within synonym errors
and five within homonyms. These sub-types may be superimposed in some
instances. While the data appears to have fewer phonetic spelling errors, it

32 Sadika Amreen et al.

does contain similar typos. Additional errors involve template names or usage
of names that imply desire for anonymity as well as missing data. Further-
more,the fraction of records with error appears to be much higher than in the
other domains.

To answer RQ2 we summarize additional code commit information as be-
havioral fingerprints or vector embeddings of the very high-dimensional space
represented by files modified, the times of these modifications, and the word
embeddings of the commit messages. Such behavioral fingerprints can provide
information needed to disambiguate common instances of homonyms due to
tool templates or desire for anonymity.

To answer RQ3 we compared of our disambiguation approach with a com-
mercial effort and with a recent research method. We found that our approach
yielded several times lower errors, suggesting that it does represent a real im-
provement over the state of practice. Finally, to answer RQ4, we assessed the
impact of measurement errors on the resulting networks. We found that use of
uncorrected data would lead to major differences in resulting networks, thus
raising questions about the validity of results for research studies that rely on
such networks.

Our replication scripts and data are shared in a public repository14. We
hope that with additional training data contributed, the models we share
would become more accurate and that the proposed method and associated
tool will make it easier to conduct research and to build tools that rely on
accurate identification of developer identities and, therefore, lead to future
innovations built on developer networks.

Acknowledgements

This research material is based on work supported by the National Science
Foundation (NSF) grants IIS-1633437 and IIS-1901102. We would like to thank
our collaborators at the Open Source Supply Chains and Avoidance of Risk
(OSCAR) team at the University of Tennessee and from the Institute for
Software Research (ISR) at the Carnegie Mellon University for their valuable
feedback on this work.

References

1. Badashian, A.S., Esteki, A., Gholipour, A., Hindle, A., Stroulia, E.: Involvement, con-
tribution and influence in github and stack overflow. In: Proceedings of 24th Annual
International Conference on Computer Science and Software Engineering, pp. 19–33.
IBM Corp. (2014)

2. Baltes, S., Diehl, S.: Usage and attribution of stack overflow code snippets in github
projects. Empirical Software Engineering pp. 1–37 (2018)

14 https://github.com/ssc-oscar/ALFAA-Replication

ALFAA 33

3. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email so-
cial networks. In: Proceedings of the 2006 International Workshop on Mining Soft-
ware Repositories, MSR ’06, pp. 137–143. ACM, New York, NY, USA (2006). DOI
10.1145/1137983.1138016. URL http://doi.acm.org/10.1145/1137983.1138016

4. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.: The
promises and perils of mining git. In: 2009 6th IEEE International Working Conference
on Mining Software Repositories, pp. 1–10. IEEE (2009)

5. Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology
92(5), 1170–1182 (1987). DOI 10.1086/228631. URL https://doi.org/10.1086/228631

6. Burt, R.S.: Structural Holes. Harvard University Press (1992)
7. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: a framework

for assessing the impact of technical and work dependencies on software development
productivity. In: Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, pp. 2–11. ACM (2008)

8. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M.: Identification of coordina-
tion requirements: implications for the design of collaboration and awareness tools. In:
Proceedings of the 2006 20th anniversary conference on Computer supported coopera-
tive work, pp. 353–362. ACM (2006)

9. Christen, P.: A comparison of personal name matching: Techniques and practical issues.
In: Sixth IEEE International Conference on Data Mining - Workshops (ICDMW’06),
pp. 290–294 (2006). DOI 10.1109/ICDMW.2006.2

10. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for match-
ing names and records. In: KDD WORKSHOP ON DATA CLEANING AND OBJECT
CONSOLIDATION (2003)

11. Czerwonka, J., Nagappan, N., Schulte, W., Murphy, B.: Codemine: Building a software
development data analytics platform at microsoft. IEEE software 30(4), 64–71 (2013)

12. Edberg, D.T., Bowman, B.J.: User-developed applications: An empirical study of appli-
cation quality and developer productivity. Journal of Management Information Systems
13(1), 167–185 (1996)

13. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American Sta-
tistical Association 64(328), 1183–1210 (1969). DOI 10.1080/01621459.1969.10501049.
URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049

14. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Networks
1(3), 215 – 239 (1978). DOI https://doi.org/10.1016/0378-8733(78)90021-7. URL
http://www.sciencedirect.com/science/article/pii/0378873378900217

15. German, D., Mockus, A.: Automating the measurement of open source projects. In: Pro-
ceedings of the 3rd workshop on open source software engineering, pp. 63–67. University
College Cork Cork Ireland (2003)

16. German, D.M.: Mining cvs repositories, the softchange experience. In: 1st international
workshop on mining software repositories, pp. 17–21. Citeseer (2004)

17. Gharehyazie, M., Posnett, D., Vasilescu, B., Filkov, V.: Developer initiation and so-
cial interactions in oss: A case study of the apache software foundation. Empirical
Software Engineering 20(5), 1318–1353 (2015). DOI 10.1007/s10664-014-9332-x. URL
https://doi.org/10.1007/s10664-014-9332-x

18. Goeminne, M., Mens, T.: A comparison of identity merge algorithms
for software repositories. Science of Computer Programming 78(8), 971
– 986 (2013). DOI https://doi.org/10.1016/j.scico.2011.11.004. URL
http://www.sciencedirect.com/science/article/pii/S0167642311002048

19. Hallgren, K.A.: Computing inter-rater reliability for observational data: an overview
and tutorial. Tutorials in quantitative methods for psychology 8(1), 23 (2012)

20. Jergensen, C., Sarma, A., Wagstrom, P.: The onion patch: migration in open source
ecosystems. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pp. 70–80. ACM (2011)

21. Kouters, E., Vasilescu, B., Serebrenik, A., van den Brand, M.G.J.: Whos who in gnome:
using lsa to merge software repository identities. In: 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE (2012)

22. Lawrence, S., Giles, C.L., Bollacker, K.: Digital libraries and autonomous citation in-
dexing. Computer 32(6), 67–71 (1999). DOI 10.1109/2.769447

34 Sadika Amreen et al.

23. Le, Q., Mikolov, T.: Distributed representation of sentences and documents. In: Pro-
ceedings of the 31 st International Conference on Machine Learning, vol. 32. JMLR,
Beijing,China (2014). URL https://cs.stanford.edu/ quocle/paragraph vector.pdf

24. Ma, Y., Bogart, C., Amreen, S., Zaretzki, R., Mockus, A.: World of code: An infras-
tructure for mining the universe of open source vcs data. In: Proceedings of the 2019
International Conference on Mining Software Repositories (2019)

25. Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J.M., Ortuño-Perez, M.: Using so-
cial network analysis techniques to study collaboration between a floss community and
a company. In: B. Russo, E. Damiani, S. Hissam, B. Lundell, G. Succi (eds.) Open
Source Development, Communities and Quality, pp. 171–186. Springer US, Boston, MA
(2008)

26. Mockus, A.: Amassing and indexing a large sample of version control systems: towards
the census of public source code history. In: 6th IEEE Working Conference on Mining
Software Repositories. IEEE (2009). URL papers/amassing.pdf

27. Mockus, A.: Succession: Measuring transfer of code and developer productivity. In:
Proceedings of the 31st International Conference on Software Engineering, pp. 67–77.
IEEE Computer Society (2009)

28. Mockus, A.: Succession: Measuring transfer of code and developer productivity. In: 2009
International Conference on Software Engineering. ACM Press, Vancouver, CA (2009).
URL papers/succession.pdf

29. Mockus, A.: Engineering big data solutions. In: ICSE’14 FOSE, pp. 85–99 (2014). URL
http://dl.acm.org/authorize?N14216

30. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identifying
expertise. In: Proceedings of the 24th international conference on software engineering,
pp. 503–512. ACM (2002)

31. Nagappan, N., Murphy, B., Basili, V.: The influence of organizational structure on
software quality. In: 2008 ACM/IEEE 30th International Conference on Software En-
gineering, pp. 521–530. IEEE (2008)

32. Nesbitt, A., Nickolls, B.: Libraries.io Open Source Repository and Dependency Meta-
data (2017). DOI 10.5281/zenodo.808273. URL https://doi.org/10.5281/zenodo.808273

33. Ostrouchov, G., Chen, W.C., Schmidt, D., Patel, P.: Programming with big data in r.
URL http://r-pbd. org (2012)

34. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Software:
Practice and experience 41(9), 975–996 (2011)

35. Pinzger, M., Nagappan, N., Murphy, B.: Can developer-module networks pre-
dict failures? In: Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pp. 2–
12. ACM, New York, NY, USA (2008). DOI 10.1145/1453101.1453105. URL
http://doi.acm.org/10.1145/1453101.1453105

36. Řeh̊uřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks,
pp. 45–50. ELRA, Valletta, Malta (2010)

37. Robles, G., Gonzalez-Barahona, J.M.: Developer identification methods for integrated
data from various sources. In: Proceedings of the 2005 International Workshop on
Mining Software Repositories, MSR ’05, pp. 1–5. ACM, New York, NY, USA (2005).
DOI 10.1145/1082983.1083162. URL http://doi.acm.org/10.1145/1082983.1083162

38. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’02, pp. 269–278. ACM, New York, NY, USA (2002). DOI
10.1145/775047.775087. URL http://doi.acm.org/10.1145/775047.775087

39. Sariyar, M., Borg, A.: The recordlinkage package: Detecting errors in data. The
R Journal 2(1), 61–67 (2010). URL https://journal.r-project.org/archive/2010-
2/RJournal 2010- Sariyar+Borg.pdf

40. Smalheiser, N.R., Torvik, V.I.: Author name disambiguation. Annual Review of Infor-
mation Science and Technology 43(1), 1–43 (2011). DOI 10.1002/aris.2009.1440430113.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/aris.2009.1440430113

41. Spencer, D., Warfel, T.: Card sorting: a definitive guide. Boxes and Arrows p. 2 (2004)

ALFAA 35

42. Thung, F., Bissyande, T.F., Lo, D., Jiang, L.: Network structure of social coding in
github. In: 2013 17th European Conference on Software Maintenance and Reengineering,
pp. 323–326. IEEE (2013)

43. Vasilescu, B., Serebrenik, A., Filkov, V.: A data set for social diversity studies of github
teams. In: Proceedings of the 12th Working Conference on Mining Software Repositories,
pp. 514–517. ACM (2015). URL https://dl.acm.org/citation.cfm?id=2820601

44. Ventura, S.L., Nugent, R., Fuchs, E.R.: Seeing the non-starts: (some) sources of bias
in past disambiguation approaches and a new public tool leveraging labeled records.
Elsevier (2015)

45. Wang, D.J., Shi, X., McFarland, D.A., Leskovec, J.: Measurement error in network data:
A re-classification. Social Networks 34(4), 396–409 (2012)

46. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393,
440–442 (1998). DOI 10.1038/30918

47. Wiese, I.S., d. Silva, J.T., Steinmacher, I., Treude, C., Gerosa, M.A.: Who is who in
the mailing list? comparing six disambiguation heuristics to identify multiple addresses
of a participant. In: 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 345–355 (2016). DOI 10.1109/ICSME.2016.13

48. Winkler, W.E.: Overview of record linkage and current research directions. Tech. rep.,
BUREAU OF THE CENSUS (2006)

49. Wolf, T., Schrter, A., Damian, D., Panjer, L.D., Nguyen, T.H.D.: Mining task-based
social networks to explore collaboration in software teams. IEEE Software 26(1), 58–66
(2009). DOI 10.1109/MS.2009.16

50. Xiong, Y., Meng, Z., Shen, B., Yin, W.: Mining developer behavior across github and
stackoverflow. In: The 29th International Conference on Software Engineering and
Knowledge Engineering, pp. 578–583 (2017). DOI 10.18293/SEKE2017-062

51. Zhou, M., Mockus, A., Ma, X., Zhang, L., Mei, H.: Inflow and retention in oss com-
munities with commercial involvement: A case study of three hybrid projects. ACM
Transactions on Software Engineering and Methodology (TOSEM) 25(2), 13 (2016)

52. Zhu, J., Wei, J.: An empirical study of multiple names and email addresses in oss
version control repositories. In: Proceedings of 16th International Conference on Mining
Software Repositories (MSR). IEEE/ACM (2019)

