
MACHINE-ASSISTED ANNOTATION OF FORENSIC IMAGERY

Sara Mousavi? Ramin Nabati? Megan Kleeschulte† Dawnie Steadman† Audris Mockus?

? Department of Electrical Engineering and Computer Science
†Department of Anthropology

The University of Tennessee Knoxville, USA

ABSTRACT

Image collections, if critical aspects of image content are ex-
posed, can spur research and practical applications in many
domains. Supervised machine learning may be the only feasi-
ble way to annotate very large collections. However, leading
approaches rely on large samples of completely and accurately
annotated images. In the case of a large forensic collection
that we are aiming to annotate, neither the complete annotation
nor the large training samples can be feasibly produced. We,
therefore, investigate ways to assist manual annotation efforts
done by forensic experts. We present a method that can pro-
pose both images and areas within an image likely to contain
desired classes. Evaluation of the method with human anno-
tators showed highly accurate classification and reasonable
segmentation accuracy that was strongly affected by transfer
learning. We hope this effort can be helpful in other domains
that require weak segmentation and have limited availability
of qualified annotators.

Index Terms— Semantic segmentation, Proposed annota-
tions, Pattern recognition, Forensic Imagery

1. INTRODUCTION

Certain image collections, such as images of human decompo-
sition, represent high potential value to forensic research and
law enforcement, yet are scarce, have restricted access, and
are very difficult to utilize. To utilize such image collections,
they need to be annotated with relevant forensic classes so that
a user can find images with the desired content. This work is
motivated by our attempt to annotate over one million photos
taken over seven years in a facility focused on studying human
decomposition.

Annotating images is a difficult task in general, with a
single image taking from 19 minutes [1] to 1.5 hours [2] on
average. Human decomposition images present additional dif-
ficulties. First, forensic data cannot be crowd-sourced due to
its graphic nature and need for anonymity. Second, annotating
forensic classes requires experts in human decomposition that
are hard to come by. Therefore, it is natural to consider ap-
proaches to support such manual effort with machine learning
(ML) techniques [3]. Unique challenges specific to forensic
images prevent direct application of state-of-the art techniques

described in, for example, [3]. This is mainly due to the pri-
mary focus of the annotation in being used by researchers,
not algorithms. Particularly, when it comes to creating rele-
vant training samples for ML approaches, we encountered the
following challenges and discuss them afterwards:

• It is not feasible to annotate images completely. In
other words, the user may choose to only annotate some
instances of a class in an image, or only a subset of
classes.

• The locations of forensically-relevant objects is not pre-
cisely outlined but, instead, roughly indicated via rect-
angular areas.

• It is not feasible to annotate a very large number of
examples of a forensic class.

The first challenge results from the numerous instances of cer-
tain classes (for example, there may be tens of thousands of
maggots in a single image, spread in multiple groups). Anno-
tators may only tag classes relevant to their investigation or
classes that they have sufficient expertise to identify accurately.
The second challenge is caused by the primary objective of
the annotator to provide indicators to other researchers and the
need to maximize the number of manually annotated images
irrespective of the ability of machine learning to generalize
from them (i.e. using simple rectangles instead of more time-
consuming masks). The last challenge is imposed by the
limited availability of forensic experts. Furthermore, since it
is not possible to annotate the entire set of images, the expert
needs to choose which images to annotate. Choosing images
randomly, as it turns out, is highly inefficient since such images
rarely contain relevant forensic classes.

LabelMe [4] and similar polygon-drawing interfaces have
been used to annotate image collections [2, 5, 6, 7]. The
annotators need to manually select the areas of interest and
label them with the correct label. Given the amount of time
needed to annotate a single image, such approaches are not
suitable for annotating one million forensic images.

Fluid Annotation [3] assists annotators in fully annotating
images by providing initial annotations, that can be edited as
needed. Fluid annotation uses Mask-RCNN [8] as the pri-
mary deep learning model. For Mask-RCNN and other deep-
learning based techniques such as Deeplabv3+ and YOLO [9,
10] to work, large, complete, and clean training datasets such



Fig. 1: A sample image from ITS-HD. The image highlights
the texture-like nature of the data. The image resolutions vary
from 2400× 1600 up to 4900× 3200.

as Open Images, Image Net and COCO [11, 12, 1] are required.
Such approaches without additional training do not work for
a dataset with a complete different set of object classes. Our
attempts to train Mask-RCNN on the photos of human decom-
position had extremely poor performance (even with transfer
learning) due to incomplete set of annotations, approximate
bounding boxes, and relatively few labeled instances per class.

Other approaches to reduce the annotation effort involve
using weakly annotated data, image-level or object- level anno-
tations, for object detection [13, 14, 15] and semantic segmen-
tation [16, 17, 18, 19]. Although these approaches have been
successful to some extent, there is still a large performance
gap between the models trained on full segmentation masks
and those trained on image-level or object-level labels.

The main goal of this work is to simplify and speed-up
the annotation process of forensic imagery by developing a
machine-assisted semantic segmentation system called Pro-
posed Annotations (PA) that recommends potential annotations
to annotators to simply accept or decline.

Semantic segmentation needs a large training set. Our
technique relies on the fact that human decomposition images
are dominated by texture-like patterns (Figure 1) repeated
throughout a class. Our method, therefore, can work with a
simple classifier and small training data. It utilizes the classifier
in combination with a region selection technique to produce
potential annotations and presents them to expert annotators.

In addition, our approach can be used to estimate probabil-
ities of a specific forensic class being present in un-annotated
images. While this is possible with other semantic segmenta-
tion methods, it is of particular use in forensic data, where a
major problem faces the annotator: how to design sampling
strategies to select images for manual annotation from the
collection of one million images.

Therefore, our contribution in this work is twofold. First,
we present a novel semantic segmentation technique using a
classifier and a region selector for forensic data, leveraging
their pattern-like nature. Second, we use this method to pro-
pose not only new regions of interest for annotation, but also
new images that are likely to contain classes of interest.

The rest of the paper is as follows. Section 2 details our
method and implementation. Section 3 discusses the results of
our work and the paper is concluded in Section 4.

Fig. 2: An overview of the structure of PA. Blue, orange
and green boxes represent data preparation, classification, and
segmentation stages respectively.

Fig. 3: The architecture of Model1 (top), and the VGG-based
Model2 (bottom) is shown.

2. PROPOSED ANNOTATIONS (PA)

PA is comprised of a classifier and a region selection method.
The classifier is trained on images that contain a single class.
It is then used along with a region selection method to detect
regions of new images. The classified regions are then merged
into larger segments resulting in semantic segmentation. An
overview of this process is shown in Figure 2.

This process has three main steps: data preparation (Sec-
tion 2.2), classification (Section 2.3) and semantic segmenta-
tion (Section 2.4).

2.1. Human Decomposition Dataset
Our image collection includes photos that depict decomposing
corpses donated to the Forensic Anthropology Center at the
University of Tennessee. The photos are taken periodically
from various angles to show the different stages of body de-
composition. The collection spans from 2011 to 2016, and has
over one million images. We call this dataset ITS-HD: Images
Tracking Stages of Human Decomposition.

The annotation for a small subset of this dataset has been
done manually by four forensic experts resulting in 2865 anno-
tated images. However, as previously mentioned, these images
are not fully annotated.

A sample image from ITS-HD is shown in Figure 1. The
cadaver is mostly camouflaged in the background patterns.

The forensic classes used in this work along with the num-
ber of annotated instances for each, are shown in Table 1.



Table 1: An overview of the forensic classes of ITS-HD used
in this work. The number of annotated instances is shown.

CLASS NAME #SAMPLES CLASS NAME #SAMPLES

MAGGOTS 1375 EGGS 533
SCALE 716 MOLD 339
PURGE 709 MARBLING 241
MUMMIFICATION 557 PLASTIC 107

2.1.1. Manual annotation
To enable manual annotation of the small subset, we built an
online platform that allows browsing, querying, and annotating
ITS-HD. The annotator starts by first selecting a rectangular
bounding box around the region of interest and then enters
the appropriate class name in an input dialog. The bounding
boxes’ coordinates along with the class names are stored in a
database.
2.2. Data Preparation

Preparing training data is a crucial step for making a highly
accurate classifier. Due to the similarity of some forensic
classes to the background, both in terms of color and texture,
we added an additional class to the actual forensic classes
for “background”. We then cropped areas designated as the
forensic classes from the annotated images and used the class
name to label each cropped section. Therefore, each annotation
became a new training image by itself. For the images cropped
for “background”, in order to create a diverse range of training
data, we used a sliding window to extract smaller images from
each training image. We re-sized all images to 224*224 and,
as is commonly done, we also generated additional training
data from the existing annotations using data augmentation.

2.3. Classification
We used a CNN with a multinomial logistic regression classi-
fier to train a model for classifying regions of the un-annotated
images. The preponderance of texture-rich classes did not call
for very deep neural networks. We started with Model1 that
uses a simple neural network shown in Figure 3:top. The CNN
network in this model has three convolutional and two fully
connected layers. We used normalization after each layer and
also a drop-out of 0.5 before the last layer. In addition to
Model1, we also experimented with Model2 , a standard VGG
[20] with two fully connected layers added on top (Figure
3:bottom). Images generated from section 2.2 were used to
train and validate these two models. We trained Model1 from
scratch. However for Model2, we tested both pre-trained
weights obtained from ImageNet as well as random weights.

2.4. Semantic Segmentation
Locating the forensic objects within images is done using the
classifier described in section 2.3. Algorithm 1 shows how
semantic segmentation is done in PA. Regions of un-annotated
images are fed into the classifier model to be classified. The re-
gions are generated by sliding a window of size 224*224 with

a stride of 200. Since the training data is not fully annotated,
many regions within an image may contain classes that the
classifier has not been trained on. To reduce the number of
such false positives, we use a threshold of 0.85 to accept a
classification done on a region, otherwise it will be ignored.

The contiguous classified regions of the images need to
be organized so that neighbor regions belonging to the same
class are proposed as a single composite segment. To do
so, we group the classified regions by first finding overlaps.
Then, we create an adjacency matrix of size n × n where n
is the number of regions for the class. A cell (i, j) (for two
regions i and j) is set to 1 if the two regions overlap. We
then create a graph from the adjacency matrix and find the
connected components of the graph for each class using the
iGraph library [21]. Next, we find the convex hull for each
connected component. The resulting hulls are presented to
the annotator as proposed annotations. The confidence of a
recommended annotation is calculated based on the average
confidence of the individual regions within that component.

Algorithm 1 Semantic segmentation in our method
1: procedure SEGMENT(image)
2: for every region in image do
3: CLASSIFY(region)
4: Store region’s coordinate, class id and confidence
5: end for
6: for every c in classes do
7: Find all regions classified in class c
8: Create an adjacency matrix of regions
9: Create connected-components to group neighboring regions

10: Draw the convex hull of each group
11: Calculate score for each colored area
12: end for
13: Present the segmentation as proposals to the annotator
14: end procedure

3. RESULTS AND DISCUSSION
To evaluate PA, we measure the accuracy in comparison to the
manual annotation done by a forensic expert. The results in-
clude the performance of Model1 and Model2. We also tested
the effects of including the background as a separate class in
both models and also the effect of transfer learning on Model2.
Section 3.1 describes tuning parameters for both models and
evaluation setup. Section 3.2 discusses our findings.

3.1. Evaluation Setup
PA is implemented using Keras, TensorFlow and Python. We
used MongoDB as our database. For both CNN networks we
used the SGD optimizer with a learning rate of 0.001.

Over two hundred distinct classes of samples were present
in the dataset. To select a more manageable number of classes
for the experiments, we first excluded classes with fewer than
100 ground truth instances and asked forensic experts to se-
lect the most important classes for the forensic community.
We used one third of images per class for validation and the
remaining images for training.



a: Original image b: Ground-truth c: Model1’s result d: Model2’s result
Fig. 4: Detected forensic classes using Model1-bg and Model2-bg-tl are shown in (c) and (d) respectively. Sub-figures (a), and
(b) show the original image and the ground truth respectively. Concave annotations are a result of overlaps between two convex
hulls where one overlays part of the other.

To evaluate the performance of our PA, we randomly se-
lected 46 images and asked a forensic expert to provide us with
the ground truth annotation masks only for the forensic classes
used in this work. These images were annotated carefully and
completely with polygonal selections, taking about 3 hours
to complete. We evaluated the performance of our proposed
annotations against these round truths.

3.2. Discussion

Table 2 shows the performance of PA. We calculated mean
average precision (mAP) for the classification done by both
Model1 and Model2 over all classes. We also calculated mean
average recall and precision over all classes (mAR, mAP) for
our semantic segmentation against the ground truth. These
values are used as mAP and mAR in Table 2.

The mean average precision is calculated as the ratio of
correct predicted pixels over the total predicted pixels for each
class. This value is then averaged for each class over all 46
images. We used a similar method for mAR, however we used
the the ratio of correct predicted pixels to the total ground truth
pixels for each class.

Table 2 shows that transfer learning improves the perfor-
mance of Model2. Comparing Model2 with Model2-tl, we
can see that transfer learning has improved both mAP of the
classifier model and mAR of the semantic segmentation.

Comparing Model2 with Model1 in Table 2, we believe
that we might get even better results using Model1 if we first
train it on another dataset such as ImageNet, considering the
fact that Model1 is a very simple model and its training takes
less time compared to Model2.

A trade off between using a model with high recall or
high precision can also be observed from the table. For the
purpose of suggesting classes to a human annotator, it is more
important to detect a forensic class if it exists, as opposed
to exactly pinpointing the location of the class within the
image. Thus, we want to have a model with higher recall and
a reasonable mAP . Our results also show that including the
background as a class improves mAP for segmentation.

Figure 4 shows a segmentation using Model1 without trans-
fer learning and Model2 with transfer learning, and compares
it to the ground truth. Both models were trained on 8 forensic
classes plus the background class. We can see that a better
segmentation is obtained when transfer learning is employed.

Table 2: Performance of classifier models and semantic seg-
mentation in PA. bg and tl stand for background and transfer
learning.

Semantic Segmentation Classification
Method mAP mAR mAP

Model2-bg-tl 0.26 0.45 0.95
Model2-tl 0.15 0.59 0.92
Model2 0.30 0.28 0.79
Model1 0.16 0.32 0.84

Model1-bg 0.17 0.23 0.88

4. CONCLUSION

In this work, we discuss an annotation-assistance system that
proposes annotations within an image as well as images likely
to contain a desired class to forensic experts. At the core
of our system we introduce a semantic segmentation method
composed of a classifier in conjunction with a sliding-window-
based region selection method. We also evaluate its applica-
bility in the context of imagery documenting human decom-
position where classes are primarily determined by patterns.
We demonstrate the feasibility of semantic segmentation in
this domain using a relatively small set of training samples.
As is expected with small training samples, transfer learning
has been effective. Inclusion of the background as a class
also brought improvements, possibly because background is
at times difficult to distinguish from focal classes.

In the future, we would like to evaluate if our method
would work with other types of texture-like data. In addition,
we plan to utilizing body pose detection methods to improve
the ability to exclude background and increase the accuracy of
our system for forensic class segmentation.
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