Law of Minor Release
More Bugs = Better Software Quality

Audris Mockus

Avaya Labs Research
211 Mt Airy Rd
Basking Ridge, NJ 07920

audris@avaya.com

Aug 20, 2013

Motivation

Are there fundamental time-lag relationships among software production
factors (Laws of Software Evolution)?

Can they be harnessed to improve software development?

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 2 /38

Studies of Software Evolution

Focus on long-term trends in, e.g., software size

» Such trends are caused by non-software factors
» World economy
» Business practices
» Technology change

» Not clear how to use in practice

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 3 /38

Studies of Software Evolution

Focus on long-term trends in, e.g., software size

» Such trends are caused by non-software factors
» World economy
» Business practices
» Technology change

» Not clear how to use in practice

Investigating SW evolution by observing only software

divining reality from shadows on a cave wall

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 3 /38

Proposed Solution

> Investigate short-term and repeating relationships with a clear
mechanism originating from the way software is created and used

» Use information from outside software development cave

» Answer practical questions
» Can we compare quality among releases to evaluate the effectiveness of
QA practices?
» Can quality be approximated with easy-to-obtain measures, e,g., defect
density?

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 4 /38

Approach

v

Start from clear assumptions

v

Observe fundamental relationships
Validate

Build more complex propositions using validated relationships

v

v

Define: Bug

A user-observed (and reported) program behavior (e.g., failure) that results
in a code change.

Define: Action Will Introduce a Bug
Action will increase the chances of a Bug occurring in the future.

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 5/ 38

First Fundamental Law of Software Evolution
Formulation
Code change will introduce bugs

Mechanism

» New code has defects

» New code exercises existing code differently

» Program behavior changes

Note: platform changes cause code changes

Evidence

» New releases bring new bugs
» Model: a business-driven feature change

= N ~ Poisson(\) fixes with delay T ~ Exp(p) [4]

A. Mockus (Avaya Labs Research) Law of Minor Release

Aug 2013 6 /38

Model prediction for one release

o
[Te)
L]
o |
=
L
[«5]
; o
S &
@
[<5)
e
1%}
£ R-
=
= 7
[<5
<5} VA
= S - .
.7 == New feature MRs
12 << = « Actual Repair MRs
od.a" 7> * = Predicted Repair MRs
T T ! T T
2001.0 2001.5 2002.0 2002.5

Calendar Weeks

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 7/ 38

Model prediction for 11 releases (using earlier release)

ré

q —— New feature MRs

] - - - Actual Repair MRs

Y S N ™ RRESEecee Predicted Repair MRs

I ril

40 - 2
& 30- §
(5] 18’ A
; [r4
i
5 -
n
- [r3
o 40-
Oz 30-
= 20- "
—. 10- AR
g 2
L -
= -
ri
1004 1906 1998 2000 2002

Calendar Weeks

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 8 /38

Corollary 1: Need to Normalize by Change to Obtain Quality

How to normalize by change?

» divide by the number of pre-release MRs
» divide by the LOC added or changed

Hypothesis 1

Increase 1T in the number of customer-found defects per
pre-release MR (a simple-to-obtain measure) affects users’
perception of software quality negatively |

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 9/ 38

Qualitative evidence: No

How to compare software releases?

“we tried to improve quality: get most experienced team members to
test, code inspections, root cause analysis, ..."

“Did it work? l.e., is this release better than previous one?”

Everyone uses defect density (e.g.,customer reported defects per 1000
changes or lines of code), but “it does not reflect the feedback from

customers.”

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 10 / 38

Let's Peek Outside the Software Development Cave

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 11 / 38

Does the increase in

the number of users and
the amount of usage

introduce bugs?

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

12 /38

Second Fundamental Law of Software Evolution

Formulation
Deploying to more users
will introduce bugs

Mechanism

» New use profiles

» Different environments

Evidence

30

N
a

Release with no users

Post Release

| ol “WMN N ohe JllW"lM\ﬂM‘“

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 13 / 38

has no bugs

MRs per Week Per son Momhs)

Third Fundamental Law of Software Evolution
Formulation
Longer (and heavier) use will introduce bugs

Mechanism

» New inputs and use cases are
encountered over longer periods 010 A< -

» More extreme environmental conditions [0 “M
happen over longer periods oLy 11001

1010101
0101110

Evidence

» Bugs tend to be encountered even after year(s) of usage
» See Commandments below

A. Mockus (Avaya Labs Research) Law of Minor Release

Aug 2013 14 / 38

Third Fundamental Law of Software Evolution
Formulation
Longer (and heavier) use will introduce bugs

Mechanism

» New inputs and use cases are
encountered over longer periods

» More extreme environmental conditions
happen over longer periods

Evidence

» Bugs tend to be encountered even after year(s) of usage
» See Commandments below

Does every user and every year of usage introduce the same
number of bugs?

A. Mockus (Avaya Labs Research) Law of Minor Release

Aug 2013 14 / 38

Commandment 1: Don't Install Right After the Release Date

Formulation
Users who install close to the release date will
introduce more bugs

Mechanism

» Later users get builds with patches
» Services team understands better how to install/configure properly

» Workarounds for many issues are discovered

Evidence

Fraction of customers observing SW issue

> Quality 1 with time after the launch,
and is an order of magnitude better
one year later [5]

Fraction

00

oo o o oo o8 o
Time (vears) between launch and deployment

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 15 / 38

Commandment 2: Don't Panic After Install/Upgrade

Formulation
A user will introduce more bugs close to their
install/upgrade date

Mechanism

» Software is not hardware: parts do not wear off

» Misconfiguration or incompatibility with the environment

Evidence
8o . . .
g > Two thirds of customer issues (leading
2= to a software fix) are reported within
& o three months of install
2 O
£ > Sample: 87 release/product
S combinations
R
go
L o

1st month from install Three months from install

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 16 / 38

Corollary 1. Customer Quality

Formulation
Software release quality from users perspective is the fraction of:

» The number of customers who report a bug shortly after the
installation over

» The number of customers who install soon after the release date (e.g.,
within seven months)

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 17 / 38

Corollary 1. Customer Quality

Formulation
Software release quality from users perspective is the fraction of:

» The number of customers who report a bug shortly after the
installation over

» The number of customers who install soon after the release date (e.g.,
within seven months)

“We live or die by this measure”

VP for quality

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 17 / 38

Testing Hypothesis 1: Defect Density Reflects Customer
Quality

0.15

uanti
0.05 Q t¥).10

=fp= Customer Defects Per Pre-GA MR

0.00

ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 18 / 38

Testing Hypothesis 1: Defect Density Reflects Customer
Quality

[Tel
i
S
o
i
bd
z
<
>
o
[Tel
S
S
=== Customer Defects Per Pre-GA MR
=C= % of custmrs with defect within 3m. of install
8
S
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 18 / 38

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

[
L S
— [N
o
)
)
]
]
o
b better
Z‘O
z
<
>
o
[Tel
=
o -
-
*C
=== Customer Defects Per Pre—-GA MR
= C= 9% of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

18 / 38

Testing Hypothesis 1: Defect Density Reflects Customer
Quality

[
L S
— [N
o
)
)
]
]
o
— better
Z‘O
z
<
>
o
[Tel
=
o -
-
*C
=== Customer Defects Per Pre-GA MR
=C= % of custmrs with defect within 3m. of install
8
S
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 18 / 38

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

[
[Tel
— [N
o
)
)
]
o
b better BQtter worse
Z‘O
z
<
>
o
[Tel
=
o
-
*C
=== Customer Defects Per Pre—-GA MR
=C= % of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

18 / 38

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

[
L S
— [N
o
)
)
]
]
o
b better better
Z‘O
5
=1 et_ter_ « N worse
O -
[Tel
=
o
-
*C
=== Customer Defects Per Pre—-GA MR
=C= % of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

18 / 38

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

0.15

t¥).10

Quanti

0.05

0.00

Pertect @nde-corredaimaon?!

Law of Minor Release

[
S
.
)
)
]
T
]
better better
etter, . = worse worse
“ -
-
-
-
*C
=== Customer Defects Per Pre-GA MR
=C= % of custmrs with defect within 3m. of install
ri.1 ri.2 ri.3 r2.0 r2.1 r2.2

Aug 2013

Trying Another Product

<«
=)

0.5

=fb= Customer Defects Per Pre—-GA MR
A = C= Customer Defects/Installed System

0.4

uanti
0.2 Q 0.3ty

0.1

0.0

r5 r5.1 r6.0 r7.0 r7.1

Perfect anti-correlation again?!

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 19 / 38

aLickmeni=col
Why customers like high defect density?

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 20 / 38

Why customers like high defect density?

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 21/ 38

Why customers like high defect density?

Customers don't care about defect density

» Most customers try to avoid bugs
» By not jumping to a major dot zero release

» By not installing immediately when new release is available

Software salesmen don’t care about defect density

» They want their customers to avoid bugs
» By warning about products that are likely to cause problems

Software support people don't care about defect density

» They want their customers to report as few problems as possible
» By delaying wide installation of new releases

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 21/ 38

Lemma 1. Major Releases Have Few Customers

Minor releases have two to five times more customers

5
o

w

3

X times m2()re customers

1

Note: based on 38 major and 49 minor releases in 22 products

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 22 /38

Commandment 3
Thou Shell Have a Constant Rate of Customer Issues

Mechanism

» The only thing customers like less than a Bug is

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 23 /38

Commandment 3
Thou Shell Have a Constant Rate of Customer Issues

Mechanism

» The only thing customers like less than a Bug is
» The bug that does not get fixed for a long time

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 23 /38

Commandment 3
Thou Shell Have a Constant Rate of Customer Issues

Mechanism
» The only thing customers like less than a Bug is
» The bug that does not get fixed for a long time

» Team handling customer issues can not expand and collapse
instantaneously and has limited throughput

Evidence

roduct
150

p

Monthly number of
new customer issues is
relatively constant

100

Numé;oer of new issues for one

2011-07 2011-12 2012-05 2012-10 2013-03

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 23 /38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems tay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator ysh§m7s msfa : in opposite eE:flze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems Stay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator yts,hfem75|nsfa(3: in opposite eE:flzetoCh € release
within 7m o directions ort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems Stay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator yts,hfem75|nsfa(3: in opposite eE:flzetoCh € release
within 7Tm o directions ort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems Stay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator yts,hfem75|nsfa(3: in opposite eE:flzetoCh € release
within 7Tm o directions ort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator Affected systems Stay Customer reported
constant defects
I I
Systemsinstalled O The size of the rel
Denominator Ysh,em75 msfa : in opposite eE?;ze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator Affected systems Stay Customer reported
constant defects
]]
Systemsinstalled O Thesize of the rel
Denominator ysh§m7s msfaG: in opposite eEi;zeOh e reiease
within 7m o directions ort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator Affected systems Stay Customer reported
constant defects
| |
Systemsinstalled " The size o the el
Denominator ysh§m5|nsfa e in opposite e#zeoh e release
within 7m of GA directions Effort/Changes
A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013

24 / 38

Discussion

» There exist Laws of Software Evolution, but

» Focus on short-term, repeating relationships with a clear mechanism
» Look outside SW cave to observe them
» Chose practical questions

» Practice hints

» Development process view does not represent customer views
» Maintenance — the most important quality improvement activity

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 25 / 38

References |

ﬁ Audris Mockus.

Empirical estimates of software availability of deployed systems.
In 2006 International Symposium on Empirical Software Engineering, pages 222-231, Rio de Janeiro, Brazil,
September 21-22 2006. ACM Press.

@ Audris Mockus.

Organizational volatility and its effects on software defects.

In ACM SIGSOFT / FSE, pages 117-126, Santa Fe, New Mexico, November 7-11 2010.
ﬁ Audris Mockus and David Weiss.

Interval quality: Relating customer-perceived quality to process quality.
In 2008 International Conference on Software Engineering, pages 733-740, Leipzig, Germany, May 10-18
2008. ACM Press.

@ Audris Mockus, David M. Weiss, and Ping Zhang.
Understanding and predicting effort in software projects.
In 2003 International Conference on Software Engineering, pages 274—284, Portland, Oregon, May 3-10 2003.
ACM Press.

@ Audris Mockus, Ping Zhang, and Paul Li.

Drivers for customer perceived software quality.
In ICSE 2005, pages 225-233, St Louis, Missouri, May 2005. ACM Press.

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 26 / 38

Abstract |

Traditionally software evolution models consider long-term trends, but at such scales the primary driving factors are
extrinsic to software: the changes in technology landscape or business environment. However, shorter software
cycles recur in a predictable manner and can be best explained by a customer-provider equilibrium that leads to an
apparent paradox of software quality: the best quality releases have the most defects. In OSS and in commercial
products customers/end users are critical contributors to software quality improvement: they discover and report
defects that can not (or are too costly to) be discovered otherwise. As new functionality is delivered in major
releases, reliability conscious customers typically stay on the sidelines until the second minor release with properly
working features, bug fixes, and stability improvements arrive. The major releases, thus, are used by fewer customers
and, consequently, have fewer customer-reported issues. Understanding such predictable software cycles and the

mechanisms underlying them is essential for effective software quality improvement and customer satisfaction.

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 27 / 38

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402
http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, and improving software development. He
designs data mining methods to summarize and augment software change data, interactive
visualization techniques to inspect, present, and control the development process, and statistical
models and optimization techniques to understand the relationships among people,
organizations, and characteristics of a software product. Audris Mockus received B.S. and M.S.
in Applied Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991 he
received M.S. and in 1994 he received Ph.D. in Statistics from Carnegie Mellon University. He
works at Avaya Labs Research. Previously he worked in the Software Production Research

Department of Bell Labs.

A. Mockus (Avaya Labs Research) Law of Minor Release Aug 2013 28 / 38

