
The Paradox of Software Quality

Why More Bugs Indiate Better Software?

Audris Mokus

Avaya Labs Researh

211 Mt Airy Rd

Basking Ridge, NJ 07920

audris�avaya.om

Nov 7, 2013



Motivation

Are there fundamental time-lag relationships among software prodution

fators?

Can they be harnessed to improve software development?

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 2 / 29



Empirial Studies of Software Development

Typial investigated relationships in software, e.g., size and defets

◮
Are aused by external-to-software fators

◮
Short term trends: produt adoption, extent of usage

◮
Long term trends: world eonomy, business pratie, tehnology

◮
Have unlear mehanism of ation

◮
Typially not usable in pratie

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 3 / 29



Empirial Studies of Software Development

Typial investigated relationships in software, e.g., size and defets

◮
Are aused by external-to-software fators

◮
Short term trends: produt adoption, extent of usage

◮
Long term trends: world eonomy, business pratie, tehnology

◮
Have unlear mehanism of ation

◮
Typially not usable in pratie

Investigating SW evolution

by observing only software

≡ Divining reality from

shadows on a ave wall

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 3 / 29



Proposed Solution

◮
Investigate short-term and reurring relationships with a lear

mehanism originating from the way software is reated and used

◮
Use information from outside software development ave

◮
Answer atual software engineering questions

◮
How to to evaluate the e�etiveness of QA praties?

◮
e.g., by omparing two releases of software

◮
Do easy-to-get measures, e.g., defets, approximate quality?

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 4 / 29



Approah

◮
Start from lear assumptions

◮
Observe fundamental relationships

◮
Validate

◮
Build more omplex propositions using validated relationships

De�ne: Bug

A user-observed (and reported) program behavior (e.g., failure) that results

in a ode hange.

De�ne: Ation Will Introdue a Bug

Ation will inrease the hanes of a Bug ourring in the future.

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 5 / 29



Assumed bakground knowledge

Developers reate software by making hanges to ode

◮
All hanges are reorded by a Version Control System

◮
A release of software is simply a dynami superposition of hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines unhanged

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 6 / 29



Assumed bakground knowledge

Developers reate software by making hanges to ode

◮
All hanges are reorded by a Version Control System

◮
A release of software is simply a dynami superposition of hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines unhanged

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 6 / 29



Assumed bakground knowledge

Developers reate software by making hanges to ode

◮
All hanges are reorded by a Version Control System

◮
A release of software is simply a dynami superposition of hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines unhanged

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 6 / 29



Assumed bakground knowledge

Developers reate software by making hanges to ode

◮
All hanges are reorded by a Version Control System

◮
A release of software is simply a dynami superposition of hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines unhanged

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 6 / 29



Assumed bakground knowledge

Developers reate software by making hanges to ode

◮
All hanges are reorded by a Version Control System

◮
A release of software is simply a dynami superposition of hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines unhanged

Other attributes: date, developer, defet number,

submit omment: e.g, �Fix bug 3987 - rashing when menu item is

seleted�

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 6 / 29



First Fundamental Law of Software Evolution

Formulation

Code hange will introdue bugs

Mehanism

◮
New ode has defets

◮
New ode exerises existing ode di�erently

◮
Program behavior hanges

Note: platform hanges ause ode hanges

Evidene

◮
New releases bring new bugs

◮
Model: a business-driven feature implementation ode hange leads to

N ∼ Poisson(λ) �xes with delay T ∼ Exp(µ) [1℄

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 7 / 29



Model predition for one release

2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kly
 C

ha
ng

es
 (P

er
so

n 
W

ee
ks

)

New feature changes
Actual fix changes
Predicted fix changes

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 8 / 29



Model predition for 11 releases (using earlier release)

Calendar Weeks

W
ee

kly
 C

ha
ng

es
 (P

er
so

n W
ee

ks
)

0
10
20
30
40

1994 1996 1998 2000 2002

r1 r7

r2

0
10
20
30
40

r8
0

10
20
30
40

r3 r9

r4

0
10
20
30
40

r10
0

10
20
30
40

r5 r11

r6
New feature changes
Actual fix changes
Predicted fix changes

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 9 / 29



Corollary 1: Need to Normalize by Change to Obtain Quality

How to normalize by hange?

◮
Divide by the number of pre-release hanges

◮
Divide by the LOC added or hanged

Hypothesis 1

Inrease ↑ in the number of ustomer-found defets per

pre-release hange (a simple-to-obtain measure) affets

users' pereption of software quality negatively ↓

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 10 / 29



Qualitative evidene: No

Quotes from a quality manager

�we tried to improve quality: get most experiened team members to

test, do ode inspetions, ondut root ause analysis, ...�

�Did it work? I.e., is this release better than previous one?�

Everyone uses defet density (e.g.,ustomer reported defets per 1000

hanges or lines of ode), but �it does not re�et the feedbak from

ustomers.�

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 11 / 29



Let's Peek Outside the Software Development Cave

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 12 / 29



Does the inrease in

the number of users and

the amount of usage

introdue bugs?

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 13 / 29



Seond Fundamental Law of Software Evolution

Formulation

Deploying to more users

will introdue bugs

Mehanism

◮
New use pro�les

◮
Di�erent environments

Evidene

MR
s p

er 
We

ek
 (P

ers
on

 M
on

ths
)

Post Release

0

5

10

15

20

25

30 V 5.6 V 6.0

Release with no users

has no bugs

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 14 / 29



Third Fundamental Law of Software Evolution

Formulation

Longer (and heavier) use will introdue bugs

Mehanism

◮
New inputs and use ases are

enountered over longer periods

◮
More extreme environmental onditions

happen over longer periods

Evidene

◮
Bugs tend to be enountered even after year(s) of usage

◮
See Commandments below

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 15 / 29



Third Fundamental Law of Software Evolution

Formulation

Longer (and heavier) use will introdue bugs

Mehanism

◮
New inputs and use ases are

enountered over longer periods

◮
More extreme environmental onditions

happen over longer periods

Evidene

◮
Bugs tend to be enountered even after year(s) of usage

◮
See Commandments below

Does every user and every year of usage introdue the same

number of bugs?

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 15 / 29



Commandment 1: Don't Install Right After the Release Date

Formulation

Users who install lose to the release date will

introdue more bugs

Mehanism

◮
Later users get builds with pathes

◮
Servies team understands better how to install/on�gure properly

◮
Workarounds for many issues are disovered

Evidene

0.0 0.2 0.4 0.6 0.8 1.0

0.0

Fraction of customers observing SW issue

Time (years) between launch and deployment

Fr
ac

tio
n

◮
Quality ↑ with time after the launh,

and is an order of magnitude better

one year later [2℄

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 16 / 29



Commandment 2: Don't Pani After Install/Upgrade

Formulation

A user will introdue more bugs lose to their

install/upgrade date

Mehanism

◮
Software is not hardware: parts do not wear o�

◮
Mison�guration or inompatibility with the environment

Evidene

1st month from install Three months from install

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

tio
n 

of
 C

us
to

m
er

 Is
su

es
 E

nc
ou

nt
er

ed

◮
Two thirds of ustomer issues (leading

to a software �x) are reported within

three months of install

◮
Sample: 87 release/produt

ombinations

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 17 / 29



Corollary 1: Customer Quality

Formulation

Software release quality from users perspetive is the fration of:

◮
The number of users reporting a bug shortly after the installation over

◮
The number of users who install soon after the release date

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 18 / 29



Corollary 1: Customer Quality

Formulation

Software release quality from users perspetive is the fration of:

◮
The number of users reporting a bug shortly after the installation over

◮
The number of users who install soon after the release date

�We live or die by this measure�

VP for quality

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 18 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

M Customer Defects Per Pre−Release change

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

worse

better

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

worse

better

better

worse

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defet Density Re�ets Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

worse

better

better

worse

better

worse

Perfet anti-orrelation?!

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 19 / 29



Trying Another Produt

M
M

M M

M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Q
ua

nt
ity

C

C

C

C
C

r5 r5.1 r6.0 r7.0 r7.1

M
C

Customer Defects Per Pre−Release Change
Customer Defects/Installed System

Perfet anti-orrelation again?!

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 20 / 29



Why ustomers like high defet density?

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 21 / 29



Why ustomers like high defet density?

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 22 / 29



Why ustomers like high defet density?

Customers don't are about defet density

◮
Most ustomers try to avoid bugs

◮
By not jumping to a major dot zero release

◮
By not installing immediately when new release is available

Software salesmen don't are about defet density

◮
They want their ustomers to avoid bugs

◮
By warning about produts that are likely to ause problems

Software support people don't are about defet density

◮
They want their ustomers to report as few problems as possible

◮
By delaying wide installation of new releases

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 22 / 29



Lemma 1: Major Releases Have Few Customers

Minor releases have two to �ve times more ustomers

1
2

3
4

5
X

 t
im

e
s
 m

o
re

 c
u

s
to

m
e

rs

Note: based on 38 major and 49 minor releases in 22 produts

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 23 / 29



Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Mehanism

◮
The only thing ustomers like less than a Bug is

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 24 / 29



Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Mehanism

◮
The only thing ustomers like less than a Bug is

◮
The bug that does not get �xed for a long time

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 24 / 29



Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Mehanism

◮
The only thing ustomers like less than a Bug is

◮
The bug that does not get �xed for a long time

◮
Team handling ustomer issues an not expand and ollapse

instantaneously and has limited throughput

Evidene

2011−07 2011−12 2012−05 2012−10 2013−03

Nu
mb

er 
of n

ew
 iss

ues
 for

 on
e p

rod
uct

0
50

100
150

Monthly numbers of

new ustomer issues is

relatively onstant

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 24 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defet density but low hanes

that any given ustomer will observe a defet

De�nition

Major Releases Have More Code Change

Mehanism

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 25 / 29



Disussion

◮
There exist Laws of Software Evolution, but

◮
Fous on short-term, repeating relationships with a lear mehanism

◮
Look outside SW ave to observe them

◮
Chose pratial questions

◮
Pratie hints

◮
Development proess view does not represent ustomer views

◮
Maintenane � the most important quality improvement ativity

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 26 / 29



Referenes I

Audris Mokus, David M. Weiss, and Ping Zhang.

Understanding and prediting e�ort in software projets.

In 2003 International Conferene on Software Engineering, pages 274�284, Portland, Oregon, May 3-10 2003.

ACM Press.

Audris Mokus, Ping Zhang, and Paul Li.

Drivers for ustomer pereived software quality.

In ICSE 2005, pages 225�233, St Louis, Missouri, May 2005. ACM Press.

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 27 / 29



Abstrat I

The traditional view of software quality fouses on ounting bugs � issues that are observed and reported by users

and implemented as hanges to the soure ode. Fewer bugs intuitively (and obviously) imply higher software

quality. This hasty onlusion, however, ignores omplex equilibrium resulting from ations of di�erent groups of

partiipants in software prodution: developers, users, support, and sales. For example, users improve software

quality by disovering and reporting defets that are too ostly to be disovered otherwise. As new funtionality is

delivered in major releases, quality onsious users often stay on the sidelines until a seond minor release delivers

properly working features, bug �xes, and stability improvements. The major releases, being of lower quality, have

fewer users and, onsequently, fewer bugs. I will disuss several fundamental laws of software prodution system that

explain this paradox in a quantitative manner. Eah law has a lear mehanism of ation, is grounded in resoure

and physial onstraints, and is empirially validated. The laws provide guidelines on how to measure, understand,

and improve quality of software.

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 28 / 29



Audris Mokus

Avaya Labs Researh

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mokus.org, mailto:audris�mokus.org

Audris Mokus is interested in quantifying, modeling, and improving software development. He

designs data mining methods to summarize and augment software hange data, interative

visualization tehniques to inspet, present, and ontrol the development proess, and statistial

models and optimization tehniques to understand the relationships among people,

organizations, and harateristis of a software produt. Audris Mokus reeived B.S. and M.S.

in Applied Mathematis from Mosow Institute of Physis and Tehnology in 1988. In 1991 he

reeived M.S. and in 1994 he reeived Ph.D. in Statistis from Carnegie Mellon University. He

works at Avaya Labs Researh. Previously he worked in the Software Prodution Researh

Department of Bell Labs.

A. Mokus (Avaya Labs Researh) Quality Paradox Nov 2013 29 / 29


