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The Extent of Orphan Vulnerabilities from Code Reuse in Open
Source Software
Anonymous Author(s)

ABSTRACT
Motivation: A key premise of open source software is the ability to
copy code to other open source projects (white-box reuse). Such
copying accelerates development of new projects, but the code flaws
in the original projects, such as vulnerabilities, may also spread
even if fixed in the projects from where the code was appropriated.
The extent of the spread of vulnerabilities through code reuse, the
potential impact of such spread, or avenues for mitigating risk of
these secondary vulnerabilities has not been studied in the context
of a nearly complete collection of open source code.

Aim: We aim to find ways to detect the white-box reuse induced
vulnerabilities, determine how prevalent they are, and explore how
they may be addressed.

Method: We rely on World of Code infrastructure that provides
a curated and cross-referenced collection of nearly all open source
software to conduct a case study of a few known vulnerabilities. To
conduct our case study we develop a tool, VDiOS, to help identify
and fix white-box-reuse-induced vulnerabilities that have been
already patched in the original projects (orphan vulnerabilities).

Results: We find numerous instances of orphan vulnerabilities
even in currently active and in highly popular projects (over 1K
stars). Even apparently inactive projects are still publicly available
for others to use and spread the vulnerability further. The often
long delay in fixing orphan vulnerabilities even in highly popular
projects increases the chances of it spreading to new projects. We
provided patches to a number of project maintainers and found
that only a small percentage accepted and applied the patch. We
hope that VDiOS will lead to further study and mitigation of risks
from orphan vulnerabilities and other orphan code flaws.

CCS CONCEPTS
• Software and its engineering → Software configuration man-
agement and version control systems.
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code reuse, CVE, security vulnerabilities, git
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1 INTRODUCTION
The rapid growth of high quality open source software (OSS) has
significantly increased the different kinds of software that can
be built upon, thus potentially enhancing developer productiv-
ity [28], increasing code quality [12], and improving software se-
curity [15] [17]. A key feature of open source code is that it may
be copied into new projects1, but such copying may bring vulner-
abilities or other issues [15]. We define “orphan vulnerabilities”
as vulnerabilities in copied code that still exist in a project after
they are discovered and fixed in another project. In some cases, the
copying is a result of forking, and the link to the original code is
readily available. In other cases, especially when the copying is a
result of many iterations, the link to the original code may not exist.
Either way, the vulnerable code is publicly exposed until the orphan
vulnerability is fixed or the vulnerable code is removed. The aim of
this study is to determine if the ability to copy OSS code actually
results in widespread orphan vulnerabilities. Orphan vulnerabil-
ities present significant risk for several reasons. First, an exploit
for such vulnerabilities may be widely known, making it easier to
attack software with known vulnerabilities [6]. Second, the code
in such repositories may be copied to other projects that may not
be aware of the vulnerability. Third, code in such repositories may
be built into applications and run by unsuspecting users. Fourth, if
a substantial number of OSS projects contain known and unfixed
vulnerabilities, OSS may suffer reputational damage as a dump of
low quality code where it may be hard to find high-quality projects.

To better understand and address the problem of copied and
unpatched code, we first would like to create a tool that, given a
vulnerability fix in one project, identifies all other projects that
contain either still vulnerable or fixed code. Such a tool, if widely
deployed, would have at least two positive impacts: inform main-
tainers and users of still vulnerable projects about the risks of the
vulnerability in their code and warn users that contemplate reusing
such code about the unpatched vulnerabilities.

Second, we want to determine if and how the still vulnerable
projects may differ from the patched ones. For example, we expect
that themore active projects aremore likely to fix known vulnerabil-
ities than the less active projects. This would suggest that the risks
posed by unpatched projects may be attenuated by, presumably,
more narrow deployment. Linus’s Law states that “given enough
eyeballs, all bugs are shallow” [32]. This would suggest that projects
with more developers are less likely to contain vulnerabilities. But
little empirical evidence exists to support this [11]. We want to see
if our results support Linus’s Law.

Third, we would like to understand how quickly patches to
known vulnerabilities propagate to unpatched projects. We expect
that older vulnerabilities are more likely to be fixed in a project
than the more recent ones as it takes time and effort for project
maintainers to patch their project. Presence of such a trend would

1Subject to licensing terms of the original and target project.
1
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suggest that convenient tools supporting such patching may speed
up the deployment of patches.

Fourth, we want to determine if the tool we introduced detects
vulnerabilities of a different kind than one of themost widely known
tools, dependabot [9], to determine if the approach used in our tool
is practically relevant or if developers may safely rely on depend-
abot.

Fifth, we would like to identify how many of the projects that
contain orphan vulnerabilities are not just forked from the original
project where the vulnerability was fixed. Since many forks are
done simply to contribute a patch, not to start a new development,
it would not be surprising if such forks are not updated and do not
patch their code. For any developer, it would be easy to look up
the origin of the fork to get the most authoritative code. However,
it may be harder to do with cloned projects. If, on the other hand,
many of the projects are not forks, it would be much more difficult
for potential users to identify such authoritative versions.

Sixth, we would like to understand to what extent the still vul-
nerable projects are willing to accept patches of the vulnerability
offered to them. For example, while dependabot creates warnings
and provides patches, not all projects are willing to accept them as
the patches may break functionality.

To produce the tool, VDiOS, we build on top of World of Code
(WoC) [24] infrastructure that attempts to approximate the source
code in public git version control systems and provides cross-
references among versions of the code, projects, and changes to the
code.

To answer our research questions, we employ a mixed meth-
ods approach where we analyze large volumes of data to select
candidates for a case study. Such an approach is suitable for our
investigation because on one hand we have a very large and com-
plex datasource representing almost all open source code, and we
need computational approaches to select meaningful examples for
our case study. The case study approach is needed because we
have limited understanding of the problems, and a case study ap-
proach provides “an in-depth, multi-faceted exploration of complex
issues in their real-life settings” [35]. We carefully pick the subjects
(vulnerabilities) to shed light on all of the above research questions.

It is important to note that here we are exclusively focused on the
so-called white box reuse where the source code is copied instead
of employed as library/system call. Furthermore, we only consider
matching any exact version of the vulnerable code, though the
approach can be straightforwardly extended to cases where the
copied code has been modified and does not match exactly any of
the known fixed or vulnerable versions.

We succeeded in building VDiOS, a tool that identifies projects
with orphan vulnerabilities, and applied it in four cases investi-
gating four vulnerabilities in PNG library, OpenSSL, and xz com-
pression (written in Go language). None of the vulnerabilities were
reported by dependabot in thousands of vulnerable projects that
are not forks of the original projects. Only a fairly small fraction of
projects accepted the pull request fixing the known vulnerability.
On the positive side, we found older vulnerabilities to be more
likely to be fixed, and the still-vulnerable projects tended to be less
active than the patched ones.

In summary, our work makes the following contributions:

• We provide a working approach to find file-level exact code
reuse in any language across all open source repositories.

• We provide an approach to trace the version of a single
file across all repositories and version history where either
parents or descendants of that file reside.

• We provide a tool to implement our approach.
• We conduct a case study with four cases to answer our re-
search questions regarding vulnerabilities that are spread
via file-level code reuse.

Our primary objective is to reduce security vulnerabilities in
software by identifying cases where a known vulnerability has
been fixed, but copies of versions that are still vulnerable are still
in use in other projects. This is a well-known security risk in the
software supply chain. The Open Web Application Security Project
(OWASP) lists “Using Components with Known Vulnerabilities” in
its Top 10WebApplication Security Risks (OWASPTop 10) [31]. The
software supply chain is a significant source of data breaches [23],
with one estimate suggesting 80% of such breaches come from
supply chain vulnerabilities [27]. Finding file-level duplication and
locating where a file originated helps identify vulnerable or buggy
code.

In the rest of the paper we start from the general background
on the data used in the study in Section 2, discuss our research
methodology in Section 3, present our VDiOS tool in Section 4, and
the results from our case study in Section 5. We then discuss these
results in Section 6. Finally we present limitations in Section 7,
related work in Section 8, and conclude in Section 9.

2 BACKGROUND
2.1 Software Reuse
Software reuse is the practice of using existing software components
when building new software systems [22]. There are two types of
software reuse, often referred to as black-box and white-box reuse.
Black-box reuse refers to external code that is used by a project
but generally not committed into the project’s repository. This
may include, for example, linkable libraries. Black-box reuse is
code that is not modified by the developer. White-box reuse refers
to the case where source code is reused by copying the original
code and committing the duplicate code into a new repository.
White-box reuse code may be modified by the developer. White-box
reuse results in multiple copies of the source code across multiple
repositories. These copies may be changed, and therefore, there may
be multiple different versions of the code. This paper specifically
looks at white-box reuse. We look at code reuse on the individual
file level, not at the function or method level.

White-box reuse presents several challenges. Vulnerabilities and
other bugs may be found and fixed in a copy of the code that exists
in one project, but the fixes may not get propagated to all projects
that use the file. Similarly, useful enhancements may have been
added to different versions of the code. The result is that fixes to
known vulnerabilities as well as other bug fixes and enhancements
may exist in one project but not in other projects. Also, license terms
may not be properly propagated from the original code, causing
license violations for developers who do not know the origins of the
code. For quality and security reasons, it is important to understand
where the reused code came from, who has worked on it, and if
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better versions of it exist in other repositories. Knowing where else
the code exists can help identify if there are known vulnerabilities
in the code by seeing known vulnerabilities in other projects where
the same code exists.

2.2 World of Code
Due to the vast quantity of open source software available from
many different public source code repository hosting platforms, it
has traditionally been too computationally intensive to find origins
of a duplicated piece of code and all revisions of that code across all
open source projects. Therefore, previous research on code reuse
has typically looked at a relatively small subset of open source
software. However, a new innovation, World of Code (WoC) [24],
opens up new research possibilities in this area. WoC provides an
infrastructure that makes it possible to efficiently find all versions
of reused source code files across all of the major source code
repository hosting platforms. We build on the WoC infrastructure
to find file-level code duplication in any language from a WoC’s
expansive collection of open source software. Additional tools that
build on WoC, such as Developer Reputation Estimator (DRE) [2],
can be used to help identify the best of several versions of a file.

The tool described in this paper, VDiOS, uses the World of Code
infrastructure to find duplicate code across many public source
code hosting platforms. WoC is a nearly exhaustive and continually
updated collection of open source software along with tools to effi-
ciently extract and analyze the extremely large set of code. Without
the infrastructure provided byWoC, it would not be possible to find
such a complete collection of code copied (and possibly modified)
across such a large collection of code in many repositories across
many hosting platforms.

Since most open source software today is stored in git reposi-
tories, WoC uses similar constructs to store the data. For example,
blobs, trees, and commits in WoC are identical to the same objects
in git and are referenced with a sha1 hash just like git.

Black-box reuse can be detected with static analysis techniques
that look for dependencies. These dependencies can be checked
against public sources like libraries.io. But white-box reuse, which
is the subject of this paper, requires access to the source code for
all projects from which code may be reused. WoC provides not
only the near complete collection of open source software, but also
organizes its databases for efficient searching.

WoC provides a number of mappings that allow us to efficiently
extract the information that we need. WoC maintains a database of
several objects including blobs, files, commits, projects, and authors,
allowing for efficient mappings. For example, given the contents
of a file, we compute the SHA-1 hash (using the same mechanism
that git uses) that identifies the blob. We then use WoC’s blob to
commit mapping to get the SHA-1 hash of the commit. The commit
to project and commit to time author mappings give us the project
name (from which we can identify the git repo from which it came)
and the author and time of commit (which helps us identify where
the file originally came from). We also use the blob to old blob
mapping to find old versions of the source code of a particular file.

3 RESEARCH METHODOLOGY
We conducted an exploratory case study to better understand issues
surrounding the spread of software security vulnerabilities caused
by copying open source software. We chose to use an exploratory
case study because we are in the early stages of understanding
the problem and possible solutions. We hope to generate ideas to
mitigate these types of security vulnerabilities and spur additional
academic research. The case study approach allowed us to look
at a small number of widely-reused projects in-depth and within
their real-life context. This in depth examination allowed us to
increase our understanding and gain insights that would otherwise
be difficult to obtain.

Consistent with best practices conducting case studies, we in-
vestigated a small number of cases in depth and in their context
using multiple data sources and emphasizing qualitative data and
analysis while also collecting significant quantitative data. The
subject of each case is a known vulnerability (as described by the
Common Vulnerabilities and Exposures (CVE) database [40] hosted
at MITRE) and the open source project containing the vulnerable
code as described by the CVE entry.

We examined in detail four specific cases of known software
security vulnerabilities that have been fixed in their original project
repository. We used multiple cases to increase the confidence of the
results and increase generalization of the results. We avoid making
broad generalization claims based on just four cases, although we
believe that our results provide insights that are applicable to a
broader range than just our four specific cases.We carefully selected
these four cases by searching for vulnerabilities in popular open
source projects that have been widely copied. We used VDiOS to
screen out cases of known vulnerabilities in code that is not widely
copied. We specifically selected common cases, not unique or edge
cases. We selected a vulnerability in libpng2 that was in the code for
a long time, allowing for many copies over that time. We selected a
new and an old vulnerability in OpenSSL3 to highlight differences
in the age of the vulnerability. OpenSSL was chosen in part be-
cause it is critical to Internet security. We selected the xz package4
written in the Go language to contrast with the other projects that
were all C language projects. We selected cases that we believe are
representative of the broader group of known vulnerabilities in
open source software. Our cases represent both literal replication
(because they are representative of the broader group of known
vulnerabilities) and theoretical replication (because we compare
an old vs new vulnerability in the same project and projects in
different programming languages).

We examined these four cases in context by looking at specific
open source projects that reuse vulnerable code and that are hosted
on public hosting platforms including GitHub, Bitbucket, Source-
Forge, and others. By looking at the cases in context, we see a
realistic picture of vulnerable code reuse in the real world rather
than contrived results we might get in a traditional lab-based study.

Multiple data collection techniques provided corroborating ev-
idence. We used artifacts, observations, and direct contact with
project maintainers (through pull requests and issues), allowing

2http://www.libpng.org/
3https://www.openssl.org/
4https://github.com/ulikunitz/xz
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us to gather more insights than using just one method. Looking at
artifacts (the code actually committed in real world repositories)
provides a concrete view of actual practice without any biases. Our
observations allow for some qualitative analysis. Contacting project
maintainers provides more insight into their willingness to address
issues once they are aware of the vulnerabilities.

Case studies tend to focus more on qualitative data than quanti-
tative data. Our study contains both. VDiOS produces significant
quantitative data, which we report in detail. We also attempt to
describe behavior based on our observations and interactions with
project maintainers. Our results are also being used to craft survey
questions for future research to collect more qualitative data to
explain the behavior of project maintainers.

Our primary data source is World of Code. We also collect some
data directly from the source code hosting platforms like GitHub,
Bitbucket, SourceForge, and others. Data collection is accomplished
using the VDiOS tool that we developed specifically for this research
project. VDiOS is described in detail in section 4.

We started by selecting a sample of known vulnerabilities, iden-
tifying all affected (and fixed) versions of the source code files in
the primary repositories and using WoC to identify all other OSS
projects that have versions of the code that either precede (in ver-
sion history) the affected version or is modified past it without
applying the patch. We codified this algorithm as a tool that can
be used for any vulnerability or any other type of defect. We then
obtained and analyzed the numbers, activity states, and properties
of the affected, patched, and potentially patched projects. Further-
more, we manually investigated many instances of cases where
the code is still vulnerable to identify if the project is still active, if
the defect has been fixed, and if not, whether the maintainers are
willing to accept the patch.

4 THE VDiOS TOOL
In this section we describe VDiOS (Vulnerability Detection in Open
Source), our tool for finding file level code reuse across all open
source repositories and tracing the version of a single file across
all repositories and version history. We build on the WoC infras-
tructure to find duplicate files at a scale that has traditionally been
computational infeasible.

VDiOS takes the contents of a file and finds all duplicate versions
of that file or any revision of that file across all of the open source
software available in WoC. These vulnerable files are then traced
back to the open source project in which they are contained. These
projects may be hosted on many different source code hosting plat-
forms such as GitHub, Bitbucket, SourceForge, etc. VDiOS displays
a URL link to the project and the affected file or files within the
given project.

Our approach looks for file-level reuse, that is, exact copies of
entire files. We include all files in the version control history when
looking for duplicate files. This allows us to find files that were
duplicated and then modified.

When looking for Security Vulnerabilities, VDiOS has the ability
to separate revisions of files into two lists: revisions that contain
the vulnerability and revisions that do not contain the vulnerability.
This allows VDiOS to identify projects that are still vulnerable,
projects that used to be vulnerable but have now been fixed, and

projects that used to be vulnerable and have changed but we do
not know if the change fixed the vulnerability.

Figure 1: VDiOS Architecture Diagram

4.1 Architecture
VDiOS is implemented as a layer on top of theWorld of Code (WoC)
shell APIs [25] as shown in figure 1. The WoC shell APIs provide a
convenient way to access the WoC data. Specifically, VDiOS needs
access to WoC’s data maps as well as information about the objects.
WoC stores data maps in a way that allows VDiOS to efficiently
look up information. The specific information we need pertains to
blobs, commits, projects, files, authors, and times.

There are two primaryWoC shell APIs used by VDiOS: getValues
and showCnt. showCnt is used to show the content of the basic git
objects blob, tree and commit. getValues is used to access the WoC
data maps to get the following information:

• blob to commit (b2c) finds all commits of the specified blob.
• commit to project (c2p) finds all projects containing the
specified commit.

• commit to Project (c2P) is like c2p except it finds deforked [26]
projects.

• commit to parent commit (c2pc) and commit to child commit
(c2cc) finds the parent and child commit respectively from a
given commit.

• commit to time author (c2ta) finds the time of the commit
and the author of the commit.

• blob to old blob (b2ob) finds the predecessor of the given
blob. old blob to blob (ob2b) is the inverse of b2ob.

VDiOS also retrieves a small amount of data directly from the
source code hosting platform (GitHub, Bitbucket, GitLab, etc). A
system independent interface allows VDiOS to use a single call to
get data, hiding the platform specific details. A system dependent
layer, which calls the appropriate API (for example, the GitHub API),
provides a "glue layer" to connect to the popular hosting platforms
to retrieve the data. The system dependent layer can be extended
to support additional hosting platforms as needed.

The VDiOS output is a set of reports generated in HTML format
for viewing in a web browser.

4
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4.2 Algorithm
VDiOS is divided into four phases, each of which is described in
this section.

The first phase identifies all of the blobs that contain the vul-
nerability and all the blobs that contain the fix. Starting with a
commit that fixes a vulnerability, VDiOS finds the relevant blob or
blobs in that commit. When looking for a security vulnerability, it
is likely that not only is the revision before the fix vulnerable, but
the predecessors of that revision are also likely to be vulnerable.
VDiOS uses WoC’s blob to old blob mapping or commit to parent
commit mapping recursively to find all predecessor blobs. If we
know the commit that introduced the vulnerability, VDiOS looks at
only blobs between the breaking commit and the fixing commit. It
is highly likely that all of those blobs will contain the vulnerability.
VDiOS next finds the descendent blobs using WoC’s old blob to
blob mapping or commit to child commit mapping. These blobs are
highly likely to contain the fix. Manual inspection of these lists can
be done at this point to confirm that the blobs in the first list are
vulnerable and the blobs in the second list are fixed. At the end of
phase one, we have two lists of blobs. The first list contains one or
more blobs that contain the vulnerability. The second list contains
zero or more blobs that are fixed.

The second phase searches for all projects in WoC that contain
a duplicate of any of the vulnerable blobs identified in phase one
by using WoC’s blob to commit mapping and commit to project
mapping. Note that VDiOS looks for duplicates in any revision
within a project. That is, it will find all projects that have ever
contained the vulnerable blob even if it has been fixed or removed
in the most current version. At the end of phase two, we have a
list of all projects that have ever contained one of the potentially
vulnerable versions of the file.

The third phase checks if the blob(s) in question are in the most
current revision of the project. In this phase, VDiOS looks through
the projects found in the second phase. Those are projects that
have at some point in time contained a known vulnerable blob.
We now want to find out if the project still contains a vulnerable
blob. Using the hosting platform’s API, we find the most current
revision of the file. Now we look to see if that revision matches any
of the vulnerable blobs. If so, we know the project still contains the
vulnerable code. Next, we look to see if that revision matches any
of the known good blobs. If so, we know that the vulnerable file
has been fixed. If we do not find a potentially vulnerable or known
good file, then we know that the project has contained a vulnerable
file, that file has been changed, but we do not know if the change
fixed the vulnerability.

The final phase generates the reports in HTML format for view-
ing in a browser. The first page of the report shows the commit
that fixed the vulnerability (if applicable). Next, it has a link to a
list of blobs and filenames where the vulnerability was fixed, a link
to a list of ancestors of those blobs (which presumably contain the
vulnerability), and a link to the descendants of those blobs (which
presumably all contain the fix). Finally, it has links to lists of vul-
nerable projects, not vulnerable projects, and projects where the
vulnerable file has been changed but we do not know if it is fixed or
if it is still vulnerable. For each of the three categories (vulnerable,

not vulnerable, and unknown), a report provides more detailed
information.

5 RESULTS
In this section, we present the results of our case study involving
four cases that demonstrate some of the security problems caused
by orphan vulnerabilities. The four cases are four known security
vulnerabilities that have now been fixed in popular open source
projects. Our case study looks at projects that copied vulnerable
files before the files were fixed in the original project from where
they were copied. We look at two vulnerabilities within the widely
used cryptography library OpenSSL. The first vulnerability is very
recent and the second, heartbleed, is relatively old. We look at
one recent vulnerability in a Go language package supporting xz
compression. We look at one vulnerability that was fixed more than
three years ago in the mature and proven open source PNG [5]
graphics library libpng, which is very widely copied. Our case
study looks at code written in different languages to show that our
approach is language agnostic. It works the same regardless of the
language.

We find tens of thousands of open source projects that contain
files with known vulnerabilities even though the vulnerabilities
have been fixed in the original project fromwhere the vulnerable file
was copied. Many of the vulnerable projects appear to be inactive,
but some are clearly still active. In some cases the fix is recent
and project maintainers have not had much time to apply patches.
In other cases the fix is several years old, and yet many projects
still contain the vulnerable code. Patches we provided were only
accepted by a small percentage of project maintainers.

5.1 Case 1: CVE-2021-3449 in OpenSSL
OpenSSL is a very widely used open source cryptography library
implementing Secure Socket Layer (SSL) and Transport Layer Se-
curity (TLS) [33]. Projects that incorporate OpenSSL play a vital
role in Internet security. This was made clearly evident with the
discovery in 2014 of the security vulnerability in OpenSSL known
as heartbleed [7]. OpenSSL is the leading cryptography library
used for email and website encryption and for software security
in many other open source software packages. In this case study,
we look at two vulnerabilities in OpenSSL. First, we look at the
most recent (as of this writing) known vulnerability in OpenSSL.
This vulnerability, described in CVE-2021-3449 [42], allows a mali-
ciously crafted renegotiation ClientHello message to crash a TLS
server. OpenSSL considers this a high severity vulnerability [30].
It was fixed in March 2021. Since it was only recently discovered
and fixed, we might expect to find a number of projects that still
contain the vulnerable code. The second OpenSSL vulnerability we
look at, heartbleed, is discussed in the next section, 5.2.

The first OpenSSL vulnerability we look at, CVE-2021-3449, was
introduced in the file ssl/statem/extensions.c in commit c589c34e61
in January 2018 and fixed in commit 02b1636fe3 in March 2021.
According to the OpenSSL vulnerabilities list5 "All OpenSSL 1.1.1
versions are affected by this issue. Users of these versions should
upgrade to OpenSSL 1.1.1k." Since the vulnerability only existed

5https://www.openssl.org/news/vulnerabilities.html
5
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in a few versions of OpenSSL, we expect to find a relatively small
number of projects that use one of the vulnerable versions.

Following the algorithm described in section 4.2, VDiOS finds
56 revisions of extensions.c that contain the vulnerability. That
is, there are 56 revisions between the commit that introduced the
vulnerability and the commit that fixed the vulnerability. VDiOS
finds three revisions of the file that contain the fix and are thus
known to be not vulnerable to this specific issue. Additionally,
VDiOS finds the following:

• 1,614 projects contain one of the known vulnerable revisions
of ssl/statem/extensions.c in the most current revision of the
project.

• 11 projects contain one of the known fixed revisions of
ssl/statem/extensions.c in the most current revision, mean-
ing it used to be vulnerable but now it is fixed.

• 1,079 projects contain a revision of ssl/statem/extensions.c
that is not in either the list of vulnerable blobs or the list of
fixed blobs, meaning that the project contained a potentially
vulnerable blob in the past, the blob has been modified in the
most current version, but we do not know if the modification
fixed the vulnerability.

• 253 projects used to contain a vulnerable version of the file
but the file has since been removed.

For further investigation of these projects, we used mappings
in WoC (p2P) [? ] to see how many of these projects are forked.
Deforking 1614 vulnerable projects resulted into 132 projects. To
see if they are active projects or not, we looked to see if they have
any commit in the past 6 and 18 months. We found that 23 of them
have at least one commit in the past 6 months, and 64 have at least
one commit in the past 18 months. To have an idea about their
impact in the OSS community, we looked at the number of stars [4]
each of these projects have. We observed that four of these projects
have more than 10,000 stars and 10 have more than a thousand
stars, implying their wide impact in the OSS community.

5.2 Case 2: CVE-2014-0160 in OpenSSL
We next look at the OpenSSL heartbleed vulnerability. Heartbleed,
described in CVE-2014-0160 [38], is a very serious vulnerability [44]
that was fixed in 2014. Due to a bounds check error in the TLS heart-
beat extension, the bug allows disclosure of information that should
be protected. Since this was a high profile serious vulnerability that
was fixed seven years ago, we expect not to find many, if any, active
projects still using code vulnerable to heartbleed. We use VDiOS to
test this hypothesis and then investigate the projects we find that
still contain the heartbleed vulnerability.

Heartbleed was introduced by commit 4817504d06 on December
31, 2011, in the files ssl/t1_lib.c and ssl/dl_both.c. The first release of
OpenSSL with this vulnerability was release 1.0.1 on March 14, 2012.
The vulnerability was fixed two years later by commit 731f431497f
made on April 7, 2014, and released in release 1.0.1g on April 7,
2014. VDiOS first finds all revisions of the file ssl/t1_lib.c between
the December 2011 commit that introduced the vulnerability and
the commit in April 2014 that fixed the vulnerability. It finds 90 vul-
nerable revisions of ssl/t1_lib.c. Following the procedure described
in section 4.2 above to find projects containing the vulnerability,
we discover the following results:

• 121 projects contain one of the known vulnerable revisions
of ssl/t1_lib.c in the most current revision of the project.

• 3,156 projects contain one of the known fixed revisions of
ssl/t1_lib.c in the most current revision, meaning it used to
be vulnerable but now it is fixed.

• 211 projects contain revisions of ssl/t1_lib.c that is not in
either the list of vulnerable blobs or the list of fixed blobs,
meaning that the project contained a potentially vulnerable
blob in the past, the blob has been modified in the most
current version, but we do not know if the modification
fixed the vulnerability.

Because of the very serious nature of heartbleed [10], we believe
it is important to investigate all 121 projects that contain a known
vulnerable version of ssl/t1_lib.c. We find the following information
about these 121 projects:

• 110 of the projects are forks that were all forked between
when the vulnerability was released in 2012 and when it was
fixed in 2014 and that have had no activity on the project
since before the vulnerability was fixed in 2014.

• Three of the projects are clones that were all cloned between
when the vulnerability was released in 2012 and when it was
fixed in 2014 and that have had no activity on the project
since before the vulnerability was fixed in 2014.

• The remaining eight projects have had some activity (com-
mits or issues) dated 2017 or later, well after the vulnerability
was fixed. These projects are a potential concern, and there-
fore, we investigated these eight in more depth.

The 113 projects with no activity later than 2014 appear to be in-
active projects. Of course any publicly available project containing
heartbleed has the potential to be copied and reused, even if the
project is not active. We find the remaining eight projects, the ones
with activity dated 2017 or later, to be more concerning since they
have been active since the vulnerability was fixed, yet they do not
contain the fix. We looked into those eight projects in more detail
and found the following information:

• One project has several commits this year (2021). This clearly
indicates that it is an active project and potentially concern-
ing since it contains the heartbleed code. Upon further in-
vestigation, we find that this project contains tools for the
purpose of an empirical study of bugs in real world C soft-
ware. OpenSSL is included as one of the subjects of the study
rather than being linked into this project’s software. Thus,
this project is not vulnerable to heartbleed.

• Two related projects on GitHub have commits in 2018 and
2019, which would seem to indicate that they are still active.
One of them added a WhiteSource Bolt6 configuration file
in 2019. The other is a fork of that project and updated
its Configure script7 and Travis CI8 files in 2018. No other
changes have been made to either project since 2013, well
before heartbleed was discovered and fixed.

• Two related projects on GitHub have activity more recent
than the 2014 fix. One of the projects has two open issues

6https://www.whitesourcesoftware.com/free-developer-tools/bolt/
7https://www.gnu.org/software/autoconf/autoconf.html
8https://travis-ci.com/

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

The Extent of Orphan Vulnerabilities from Code Reuse in Open Source Software ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

from November 2018 where someone asks questions that in-
dicate they are actively using the project. The questions were
never answered, and there are no recent commits, which in-
dicates that the project is not active. But this does show that
people could be using projects that have been inactive for
many years. Another project is a fork of a fork of this project
and has one commit in 2018. The commit is only a change
in whitespace in a README. There are no other commits
since 2013.

• Two related projects on GitLab have changes in 2018 that
only affect whitespace in a README. One is a fork of the
other. No substantive changes have been made to either
project since the 2014 fix of heartbleed.

• One project, which is not a fork, has a number of commits in
2017, indicating that it has been active much more recently
than the heartbleed fix. This GitHub project has zero stars,
zero forks, and only 27 commits.

Based on the above information, we conclude that heartbleed
is virtually eliminated, although not completely eliminated, from
active open source software projects. However, a number of inac-
tive projects that are still vulnerable to heartbleed are still readily
available online and thus could still be reused.

5.3 Case 3: CVE-2021-29482 in Package xz
Our next case looks at a vulnerability in a popular Go language
package. Most of our work to date has studied C language projects.
VDiOS is completely independent of the language. We wanted to
look at a Go project to demonstrate the language independence of
VDiOS and WoC. The project at github.com/ulikunitz/xz is a Go
language package supporting xz compression. The project, which
is still under development, is subject to the vulnerability described
by CVE-2021-29482 [41], which is identified as high severity by the
National Vulnerability Database. The vulnerability was fixed in the
file bits.go by commit 69c6093c7b on August 19, 2020, and released
in release v0.5.8.

VDiOS found 11 versions of the file that are potentially vulnera-
ble and two versions that are fixed. Using these two lists, VDiOS
found 7,105 projects that are known to contain a vulnerable ver-
sion of bits.go in the most current revision and 185 projects that
are known to contain a fixed version in the most current revision.
Since this is a very new (at the time of our study) vulnerability, it is
not surprising that there are only 185 projects containing a fixed
version. Only one project was found that contained the vulnerable
file in the past but does not currently contain any of the known vul-
nerable or known fixed versions. We looked into this one case and
found that the only difference was that it used the DOS/Windows
format with carriage return and line feed ("\r\n") at the end of each
line instead of the Unix format with only line feed ("\n"). There
were 2,037 projects found that used to contain the vulnerable file
but that no longer contain the file at all.

To examine projects further, we used project to deforked project
(p2P) mappings [? ] available through WoC to find out how many
of the projects are not forked. Out of 7,105 vulnerable projects, this
resulted in 758 unique projects that are not forked and contain
this vulnerability. The numbers for not vulnerable projects are 185
and 82 respectively. To see how many of these deforked projects

are actively maintained, we looked for those that have at least one
commit in the past 6 and past 18 months (at the time of our study).
We found that in vulnerable projects, 271 have at least one commit
in the past 6 months, and 472 have a commit in the past 18 months.
In the case of not vulnerable projects, these numbers are 68 for 6
months and 82 for 18months. Aswe can see, the percentage of active
projects in vulnerable projects (36% & 62%) are significantly lower
than in not vulnerable projects (83% & 100%), which was intuitively
expected. Nevertheless, not having a commit in a certain period
of time does not mean that the other projects are not being used,
and so it is still important to address the vulnerability issue. This
already shows the significance of the vulnerability being widely
spread.

To investigate the impact of this vulnerability from a different
standpoint, we looked at the number of stars each of these projects
has been given as a measure of their popularity in OSS [4]. The
results show that in vulnerable projects, at least 443 projects have
more than one star, 273 more than 10, 101 more than one hundred,
31 more than one thousand, and 10 projects have more than 10
thousand stars. In not vulnerable projects, the numbers are 71, 44,
23, 10 and 4 respectively.

Table 1: Case 3 - number of projects and their percentage
from deforked projects

As we can see in Table 1, the number of stars in projects that
fixed the vulnerability is relatively higher than vulnerable projects,
which again is what we would intuitively expect. We have also
looked at the number of contributing authors in each project using
WoC project to author mappings (P2A) which maps the deforked
projects to aliased author IDs [13]. Looking at the percentages, it
seems that vulnerable projects have relatively fewer developers
involved.

5.4 Case 4: CVE-2017-12652 in libpng
Libpng [34] is a very popular open source graphics library for ma-
nipulating PNG (Portable Network Graphics) image files. It is an old
library, dating back to 1995, and is still actively maintained. Because
of its popularity and its very long history, we expect to find many
copies in other open source projects, making it a strong case for our
study. The libpng source code [43] is hosted on SourceForge [36]
and mirrored on GitHub [16].
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Libpng was the first case that we studied. Lessons learned from
this case were applied to our study of the other cases. Improvements
to VDiOS, as described later in this section, were applied based on
those lessons learned.

This case specifically looks at the libpng file pngpread.c. That file
is the subject of the vulnerability described by CVE-2017-12652 [39],
which is labeled as a critical vulnerability in the National Vulnera-
bility Database (NVD) [29]. The vulnerability was fixed in August
of 2017 in release 1.6.32. This fix is in commit 347538e and the blob
for pngpread.c at that revision is 45b23a7.

UsingWoC’s blob to old blob (b2ob) mapping recursively, VDiOS
finds 951 old versions of the file pngpread.c. The old versions are
the potentially vulnerable versions. Using WoC’s old blob to blob
(ob2b) mapping, VDiOS finds 964 new versions of that file. The
new versions presumably all contain the fix. Next, VDiOS looks at
each potentially vulnerable blob and uses WoC’s blob to commit
mapping to find the commits. Once it has the commits, it usesWoC’s
commit to project mapping to find all of the projects containing
the discovered commits. This gives us a list of all projects that have
ever contained one of the potentially vulnerable versions of the
file pngpread.c. Finally, VDiOS looks at the head commit of each
project to see if it contains a version of the file from the potentially
vulnerable list, the presumably fixed list, or neither.

The results are as follows:

• 63,441 projects contain one of the potentially vulnerable
blobs in the most current revision, even though it was fixed
in the original file more than three years ago.

• 458 projects contain one of the presumably fixed blobs in
the most current revision, meaning it used to be vulnerable
but now it is no longer vulnerable.

• 20,274 projects do not contain blobs from either of the two
previous lists, meaning that the project contained a poten-
tially vulnerable blob in the past, the blob has been modified
in the most current version, but we do not know if the modi-
fication fixed the vulnerability. We manually inspected the
first 10 of those projects and found that two out of the 10
projects still contain the vulnerability. In those two cases,
the file was modified, but the specific vulnerability was not
fixed. In the remaining eight cases, the vulnerability was
fixed.

• 28,376 projects used to contain a vulnerable version of the
file, but the file has since been removed.

We see that over sixty thousand projects contain a vulnerable
version of the file. We selected a subset of those projects to analyze
in more detail. To select the subset, we first selected projects that
have a commit within the last 18 months to eliminate long dor-
mant projects. Next, we selected non-forked projects to get a list of
independent projects. Finally, when one commit went to multiple
projects, we selected the first one that VDiOS found and eliminated
the remaining duplicates. This process of elimination leaves us with
1,457 projects. From those 1,457 projects, we randomly selected 88
projects to analyze in more detail. In looking at these projects, we
find that they copy the entire contents of libpng, not just selected
files.

Our first step is to verify that the 88 projects do indeed contain
the vulnerable code. We manually inspected all of the projects and

found six false positives. There were four projects that had deleted
the vulnerable file and two projects that had fixed the vulnerable
file. We removed those six projects from further analysis, leaving
82 projects. We investigated these six cases to understand why
VDiOS produced false positives. In all six cases the reason was
timing. We ran VDiOS to produce the results in early February
2021 and analyzed the results over the next two months. WoC is
continuously updated, but will always be a little bit behind what is
live on the source code repository hosting platforms. We ran VDiOS
on version S of WoC which was updated in August 2020. We found
in those six cases that the vulnerable files had been fixed or removed
after the WoC version that VDiOS used to produce the reports and
before we verified the results in April 2021.We conclude that VDiOS
produced the correct output, but the continuously changing open
source projects will be different from our reports to the extent that
changes are made after the most recent WoC update. As a result of
this discovery, we modified VDiOS to use the APIs of the hosting
platforms to get the most current revision of the file. The results
presented in this case are based on the original version of VDiOS;
this new enhancement to VDiOS is used for the rest of the cases.

For projects hosted on GitHub, we also verified that GitHub’s
dependabot [9] did not find the vulnerability. While dependabot
has similar goals to VDiOS in finding vulnerable dependencies
in the software supply chain, it uses a very different mechanism.
Dependabot requires that a repository define dependencies in a
supported package ecosystem while VDiOS looks for file level code
duplication. As expected, none of the projects we found with a
vulnerable version of libpng were identified by dependabot. Several
of the projects had other issues identified by dependabot, but not
the libpng issue we are investigating. This shows that dependabot
is enabled for these projects. Clearly VDiOS finds different supply
chain dependency vulnerabilities than GitHub’s dependabot.

Finally, we wanted to find out if the maintainers of the projects
that contain known vulnerable files are willing to accept a patch to
fix the vulnerability. For the 82 vulnerable projects, we produced a
patch and sent a message to the maintainers through a pull request,
an issue, or an email. We waited up to two weeks for responses.
Seven project maintainers accepted our pull request with the patch.
One project maintainer updated to a newer version of libpng be-
cause of our contact. Two project maintainers responded and said
they would continue using the existing (vulnerable) code. We re-
ceived no responses about the remaining projects.

Aside from what we found through these 82 projects, we wanted
to have some overall statistics on activity and popularity measures
of vulnerable and not vulnerable projects as we had in previous
cases. Following the same procedures, we found that the 63,441
vulnerable projects reduce to 9,680 deforked projects from which
660 have at least one commit in the past 6 months and 2095 in
the past 18 months. Other than that, there are at least 25 projects
with more than 10 thousand stars and 131 projects with more than
1,000 stars which attest the importance of such vulnerabilities. The
detailed numbers are presented in Table 2.

6 DISCUSSION
Our research is motivated by the orphan security vulnerabilities
caused by code reuse in open source software. Our primary goal
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Table 2: Case 4 - number of projects and their percentage
from deforked projects

is to better understand orphan security vulnerabilities, and how
they may be mitigated. In this work, we explore the scope of the
problem on a small sample of vulnerabilities and the willingness of
project maintainers to fix issues.

The vast quantity of open source projects distributed over dif-
ferent hosting platforms complicates our task. By exploiting the
World of Code infrastructure, we build a tool, VDiOS, that collects
code reuse data with the coverage and scale that had previously
been impractical. VDiOS is targeting orphan vulnerabilities unlike
the National Vulnerability Database that identifies a vulnerability
in a single project.

First, using VDiOS, we find a very large number of projects with
orphan vulnerabilities based on the four vulnerabilities in our case
study. As hypothesized, the probability of an orphan vulnerability
is lower for more active projects. Also, supporting Linus’s Law [32],
the probability of an orphan vulnerability is lower for projects with
more developers. Orphan vulnerabilities appear to concentrate in
inactive or no longer maintained projects, but they are also present
in very popular (over 10K stars) and very active projects as well.
Orphan vulnerabilities, even if they are in unmaintained or inactive
projects, still pose risks. First, a developer might copy code from
such projects as, for example, they may have a unique feature that
fixed projects lack. Second, code from inactive projects may still
be running in existing systems, for example in embedded devices.
We, in fact, found a case where someone asked a question about
a project that appeared to be inactive, indicating that they were
using it. By looking both at relatively old orphan vulnerabilities
and very new orphan vulnerabilities, we observe relatively fewer
old orphan vulnerabilities, suggesting that often orphan vulnera-
bilities are eventually fixed or removed. The time to fix appears
to be substantial, providing opportunity for the orphan vulnera-
bility to propagate further. Even very well known and very old
vulnerabilities still persist in the orphan form.

Our attempts to gauge willingness of the project maintainers to
fix orphan vulnerabilities yielded mixed results, with only a small
fraction applying the patch.

Our case study suggests that orphan vulnerabilities are wide-
spread, they take a very long time to be fixed, or they persist. They
exist not only in forks or abandoned projects but also in highly

active and popular projects as well. Even once an orphan vulner-
ability is identified and the fix provided to a maintainer, only a
small fraction act upon the suggested fix. We conclude that orphan
vulnerabilities pose an ongoing problem that needs to be addressed
not just by identifying and providing fixes to the projects, but also
by providing screening tools to projects reusing source code and
by educating the open source development community.

7 LIMITATIONS
Our internal validation relates to the way the tool operates and the
coverage of WoC data. Specifically, VDiOS looks for exact matches
at the file level for the set of code versions between the versions that
introduced and fixed the reference code. Code fragments copied
from within a file may not be detected. First, this provides only a
conservative estimate of vulnerable files, as minor modifications to
vulnerable (or fixed) files may not be detected. Second, it is fairly
straightforward to enhance VDiOS to look for snippets, patches,
or more abstract representations of the vulnerability. It was not a
priority for our case study but is important to cast a wider net for
capturing more orphan vulnerabilities.

VDiOS takes the revision of a file that fixes a vulnerability and
then uses WoC’s blob to old blob (b2ob) and old blob to blob (ob2b)
mappings recursively to find older and newer revisions of the file.
Alternatively, it can use WoC’s commit to parent commit (c2pc)
and commit to child commit (c2cc) to find older revisions (up to
the revision that introduced the vulnerability, if we know that)
and newer revisions. The older revisions are likely to contain the
vulnerability, and the newer revisions are likely to contain the fix.
However, that is not guaranteed to be the case. In extremely rare
cases projects revert back to vulnerable code even after fixing it.
VDiOS allows a manual inspection and modification of the lists
of old and new blobs to see if they are actually vulnerable and
fixed respectively before moving on to the next phase. This manual
intervention solves the problem, but to scale the solution VDiOS
will need to be enhanced.

If a developer copies a file and makes a small change before
committing for the first time, VDiOSwill not find the match. Adding
a new copyright notice, making formatting changes to match a style
guide, or changing the CR/LF format at the end of lines are examples
of inconsequential changes that would affect the ability to find a
match. It will only find the match if the initial commit is identical
to the copied file or a previous revision of the copied file. VDiOS
can be enhanced to catch such and other modifications, and it is
the subject of future work.

WoC contains a relatively complete collection of open source
software, but the collection is not complete, with some projects
missing and a several month delay between the versions of WoC
when new projects with vulnerabilities may be created. VDiOS will
miss any code that is not included in WoC. Only increasing open
source coverage for WoC would address this limitation.

It is important to note that some vulnerabilities are never dis-
covered or fixed, or not reported in public vulnerability databases.
In all of these cases VDiOS would not help.

Our findings about the scope and age of orphan vulnerabilities
is limited by the relatively small sample of vulnerabilities explored.
We hope that by highlighting the scope and seriousness of the
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problem with our case study and by building VDiOS, we will spur
improvements to VDiOS and wider studies of vulnerabilities in the
future.

8 RELATEDWORK
Significant amount of research in the area of code reuse is domi-
nated by studies of black-box reuse. Research on white-box code
reuse, where code is reused by copying the original code and com-
mitting the duplicate code into a new repository, is limited due
to the difficulty of searching the entirety of open source software
looking for duplicates. Using World of Code (WoC) [24] infrastruc-
ture opens new research possibilities in the area of white-box code
reuse as described in section 2.2. We use WoC to find cases of code
reuse across open source projects.

Gharehyazie et al. [14] looked at the prevalence of cross-project
code reuse and report large amounts of code cloned across multiple
projects. They find that most cloned code comes from projects in a
similar domain. GitHub was the only repository hosting platform
that they looked at and Java was the only language. In our work,
we look at code in many different languages and from many dif-
ferent repository hosting platforms including GitHub, Bitbucket,
SourceForge, GitLab, and more.

Xia et al. [46] performed an empirical study to find the proportion
of out-of-date third-party code reused by C language OSS projects.
Using OpenCCFinder [45], which used external code search engines
Google code search and SPARS [19], they found 123 projects that
reused outdated code copied from three original projects. Similar
to our findings, they determined that a significant number of OSS
projects reused out-of-date code that contain security vulnerabil-
ities. They report that OpenCCFinder only returns "a very small
subset" of open source projects. By using our VDiOS tool layered
on top of WoC’s nearly complete collection of OSS in any language,
we are able to find a significantly larger number of projects that
reuse vulnerable code.

Decan et al. [8], through empirical study using Java projects that
use Maven [37], show that it is common practice to use third-party
software components that have known security vulnerabilities,
suggesting that what we found for C and Go languages in white-
box also applies to black-box reuse in Java. Alqahtani et al. [1]
link the NVD9 with Maven to identify known vulnerabilities in
Maven projects. We expand on that by including white-box reuse
and by looking at projects in any language that may not use or
have management tools like Maven.

Kawamitsu et al. [21] studied code reuse across repositories,
but only looked at reuse between pairs of repositories rather than
across the full spectrum of open source repositories. They introduce
a method to detect code reuse across 2 repositories.

Ishio et al. [20] proposed a method to find the original version
of cloned source code files. Their method finds files that are similar,
not just files that are exact copies. We only look for exact copies of
any revision of the file. Their method may find additional matches
that our method would miss due to minor changes in a cloned file
before it is committed the first time. Our method may find matches
that theirs miss because we run it over a much larger dataset of
code repositories.

9National Vulnerability Database: https://nvd.nist.gov

Inoue et al. [18] use code search engines such as Google Code
Search and Koders to find reused code fragments. They present
a tool which takes code fragments and finds cloned fragments
using the public code search engines. It is unclear what coverage is
provided by these third-party tools.

GitHub’s dependabot [9] creates pull requests for projects that
rely on vulnerable libraries but only works for GitHub projects and
only when dependencies are defined in a supported package ecosys-
tem. VDiOS, on the other hand, looks for file level code duplication
and does not rely on supported package ecosystems. VDiOS also
works with projects across all repository hosting platforms, not
just GitHub.

SZZ unleashed [3] finds information about when bugs were in-
troduced. Currently, VDiOS relies on the user to specify the commit
that introduced a vulnerability, but if it is not available, all previ-
ous revisions of a file are considered vulnerable. Using SZZ might
reduce that set.

9 CONCLUSION
Code reuse through code duplication (white-box reuse) is a com-
mon practice in software development. While it has benefits, such
as faster development time, lower cost, and improved quality, it
also has inherent risks as the reused code may contain security vul-
nerabilities or other problems. In some cases, those vulnerabilities
or bugs may be orphan (known and fixed in other repositories).

In this paper, we describe a case study with four different cases
that show the extent of security vulnerabilities in open source
software caused by code reuse. We also present a tool, VDiOS, to
find file-level code reuse in any language across the entirety of open
source software by leveraging the World of Code infrastructure.
Using VDiOS, we find very extensive white-box reuse of vulnerable
code with a large number of projects that do not appear to fix the
upstream vulnerability. These are cases where reused code contains
known vulnerabilities or other bugs that persist in open source
projects even though they have been fixed in other projects.

Overall, we may conclude that extensive code copying in OSS
results in an extensive spread of vulnerable code that may take
years to fix and that affects not only inactive, but also highly active
and popular projects. We also found that many of the projects may
not be willing to patch the vulnerabilities even after being provided
a fix.

These findings suggest that addressing unfixed vulnerabilities
in OSS requires at least three types of support. On one hand, if a
patch is provided, some of the projects are willing to apply it. On
the other hand, for projects that do not fix vulnerable code, we
need to provide information to potential users of the code that their
application still contains unfixed vulnerability. Finally, developers
who are contemplating reusing the code in a project that contains
unfixed vulnerabilities need to be informed about the risks and
provided with suggestions on how to patch or with patches fixing
the existing vulnerabilities.

10 DATA AVAILABILITY
Our primary data source is World of Code [24]. The complete set
of data produced for all four cases in our case study is available at
https://figshare.com/s/0a4aed1675938a0d33b5.
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