
Empirical Software Engineering
https://doi.org/10.1007/s10664-020-09837-4

Do code reviewmeasures explain the incidence
of post-release defects?

Case study replications and bayesian networks

Andrey Krutauz1 ·Tapajit Dey2 ·Peter C. Rigby1 ·Audris Mockus2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Aim In contrast to studies of defects found during code review, we aim to clarify whether
code review measures can explain the prevalence of post-release defects.

Method We replicate McIntosh et al.’s (Empirical Softw. Engg. 21(5): 2146–2189, 2016)
study that uses additive regression to model the relationship between defects and code
reviews. To increase external validity, we apply the same methodology on a new software
project. We discuss our findings with the first author of the original study, McIntosh. We
then investigate how to reduce the impact of correlated predictors in the variable selection
process and how to increase understanding of the inter-relationships among the predictors
by employing Bayesian Network (BN) models.

Context As in the original study, we use the same measures authors obtained for Qt project
in the original study. We mine data from version control and issue tracker of Google Chrome
and operationalize measures that are close analogs to the large collection of code, process,
and code review measures used in the replicated the study.

Results Both the data from the original study and the Chrome data showed high instability
of the influence of code review measures on defects with the results being highly sensitive to
variable selection procedure. Models without code review predictors had as good or better
fit than those with review predictors. Replication, however, confirms with the bulk of prior
work showing that prior defects, module size, and authorship have the strongest relationship
to post-release defects. The application of BN models helped explain the observed insta-
bility by demonstrating that the review-related predictors do not affect post-release defects
directly and showed indirect effects. For example, changes that have no review discussion
tend to be associated with files that have had many prior defects which in turn increase the
number of post-release defects. We hope that similar analyses of other software engineering
techniques may also yield a more nuanced view of their impact. Our replication package
including our data and scripts is publicly available (Replication package 2018).

Communicated by: Tim Menzies

� Peter C. Rigby
peter.rigby@concordia.ca

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09837-4&domain=pdf
http://orcid.org/0000-0003-1137-4297
mailto: peter.rigby@concordia.ca

Empirical Software Engineering

Keywords Code review measures · Statistical models · Bayesian networks

1 Introduction

For decades code review has been seen as a cornerstone of quality assurance for soft-
ware projects. The process evolved from a formal process with checklists and face to face
meetings (Fagan 2002) to a lightweight and semi-formal review done via e-mails or spe-
cially designed collaboration tools (Rigby and Storey 2011). The lightweight code review
approach was originally used in open source software projects (OSS), because of their
highly distributed nature (Mockus et al. 2000; Rigby et al. 2008) and has also become a
common practice among commercial projects as well (Rigby and Bird 2013; Bacchelli and
Expectations 2013). Recent studies suggest that the focus of review has shifted from early
defect discovery to problem discussion and knowledge sharing (Bacchelli and Expecta-
tions 2013; Rigby and Bird 2013; Bosu et al. 2015; Rahman et al. 2017; Kononenko et al.
2016). It is perceived as a major quality control mechanism to prevent defects in production
code (Bacchelli and Expectations 2013; Camilo et al. 2015; Munaiah et al. 2017).

An obvious and important scientific question is whether or not code reviews actually
improve software quality, and whether our measurements of code review have explana-
tory power. To clarify such theoretical question, science resorts to replication to make it
self-correcting system (Shull et al. 2008; Carver 1978). Replication helps establish if the
phenomenon is dependable or idiosyncratic (Runeson and Höst 2009a; Shull et al. 2002;
Axelrod 1997; ZCarver 2010). Our first aim is, therefore to conduct a similar-internal repli-
cation (a replication where only the experimenters varied (Gómez et al. 2014; Almqvist
2006)) of a highly reputable recent result investigating the effects code reviews have on
software quality. We chose a commonly used quality measure: post-release defects. Such
defects affect end-users (and vendor reputation) and are very costly to repair (Report 2002),
and, therefore are a primary concern to software industry (Huang and Boehm 2006).

RQ 1. Replication: do previously reported associations between code review mea-
sures and post-release defects hold in a similar-internal replication study?

To investigate a hypothesis-driven scientific question researchers often use linear regres-
sion models1 to examine the relation between code review (and other metrics) and software
quality (Porter et al. 1998b; Kononenko et al. 2015; Morales et al. 2015). A recent award-
winning work by McIntosh et al. (McIntosh et al. 2014; Mcintosh et al. 2016) employed
additive models to fit non-linear curves that are more suited for non-monotone or non-linear
relationships than linear regression. We perform an exact replication of that experiment to
determine if we can obtain the same conclusions using the same methods and data. Specifi-
cally, we construct OLS models with restricted cubical splines to model these relationships
and discuss our findings with the first author, McIntosh, of this study to ensure that he
agreed with our conclusions.

RQ 2. Differentiated-external replication: do previously reported associations
between code reviewmeasures and post-release defects hold for another large software
project?

Our second goal is to increase external validity (Gómez et al. 2014) of the results to avoid
conclusions that are unique to the specific dataset reported in the paper. To accomplish this,

1Machine learning methods focused on maximising prediction performance are widely used for defect
prediction, but such methods are typically not transparent enough to test scientific hypothesis (Lin et al. 2013)

Empirical Software Engineering

we apply exactly the same set of methods on a different software project: Chrome. This
is sometimes referred as differentiated-external replication (Almqvist 2006). We chose the
project due to its size and richness and quality of the associated data that allowed us to
obtain measures highly similar to ones obtained in the Qt project of the replicated study.
More specifically, we model software defects that are reported in a bug tracker. As control
variables, we use many of the previously studied measures that have been shown to impact
defects, including size, complexity, churn, authors, and file ownership (Bird et al. 2011;
Hassan 2009). The focus of this study is on investigating code review measures many of
which have been examined in past studies, including the number of reviewers, discussion
length, and rushed review in a different setting (Mcintosh et al. 2016; McIntosh et al. 2014;
Kononenko et al. 2015; Rigby et al. 2008; Rigby et al. 2014).

RQ 3. Structure of the relationships: Are code review measures directly associated
with post-release defects or are they affected by other measures of the development
process that are, in turn, directly associated with post-release defects?

The findings from RQ1 and RQ2 point to the methodological limitations of linear regres-
sion and additive models when applied to datasets that have high correlations among the
predictors as is typical software engineering data in general and in code review data in
particular (Rigby et al. 2014; Mcintosh et al. 2016). The linear (or additive) models can
not reliably determine which of the highly correlated predictors are affecting the response.
Principal Component Analysis (PCA) is typically applied in such cases but the results are
hard to interpret because a linear combination of unrelated measures, e.g., combining lines
of code, number of reviewers, and other unrelated concepts into a single predictor. This
defeats the original purpose of testing the scientific hypothesis as discussed in Chapters
6.3, 6.7, and 10.2 of (James et al. 2013). Since automatic variable selection techniques are
highly unstable (see, e.g, (Austin and Tu 2004)), best practices in empirical studies that
employ regression models, recommend the manual removal of highly correlated variables,
or variables that do not contribute to the explanatory power of the model. Such selection of
variables relies on a subjective judgement of the researcher. Another shortcoming of such
models is their inability to model the relations among predictors, which may reveal salient
aspects of the development process by providing a rich picture of how the predictors may
influence each other and the response.

A Bayesian Network (BN) is a Probabilistic Graphical Model (PGM). PGM describes
probabilistic relationships among variables that describe a problem domain (Heckerman
1998). This model has several advantages over linear or additive regression models. In par-
ticular, it allows for a natural representation of conditional dependence and independence
using graph notation where variables are nodes and dependencies are edges. The removal of
the notion of predictor and response variables disposes of the oversimplifying assumption
that a single response variable is explained by a long list of predictors. Instead the edges in
the Bayesian Network provide a meaningful structure based on collected data. Each variable
in a graph can be interpreted as a predictor or a response variable based on the topology of
the graph. The researcher can then inject information to understand the impact of an edge
of interest (Friedman et al. 1999).

Our main findings from RQ 1, the reproduction of the study by McIntosh et al. (Mcin-
tosh et al. 2016), have demonstrated high sensitivity of the regression modeling results to the
subjective steps in the analyses when data contains highly correlated predictors. In particu-
lar, we found that even in exact reproduction we were unable to confirm the predictive power
of code review measures on post-release defects. We discussed the finding with McIntosh
and, according to his opinion, code review measures are not likely to explain more of the
variance than traditional measures. Moreover, the results are inconsistent across software

Empirical Software Engineering

releases and heavily depend on the variables selected. We did, however, find several metrics
not related to code reviews, such as churn or prior defects, that were reproduced reliably
despite the subjectivity of the variable selection process.

The investigation in RQ 2, increased the external validity of the findings by confirming
that a relatively small set of measures, churn and prior defects, are related to post-release
defects on a large and unrelated software project. As on the Qt dataset, the impact of review
measures was inconsistent across software releases and heavily depend on the variables
selected.

In RQ 3, to reduce the subjectivity of variable selection process and to untangle the
complex web of dependencies among the predictors, we applied Bayesian Networks (BN)
on both datasets. The approach revealed that there is no direct relation between review
measures and defects. The graph shows, for example, that modules with more self-approved
changes also have more changes with no discussion, more reviewers, and also more prior
defects. An increase in review issues increases the share of the work done by the minor
authors, which, in turn, is associated with increased number of defects.

This paper is organized as follows. In Section 2, we discuss the case study design, the
systems under study, and the data extraction process. We also give a brief overview of the
Chrome code review process. In Section 3, we replicate and reproduce McIntosh et al.’s
(Mcintosh et al. 2016) study, describe the model construction, results, and discussion. In
Section 4, we describe BNs and discuss the findings from these models. Threats to validity
are discussed in Section 5. The final section concludes the paper and suggests future work.
Our replication package including our data and scripts is publicly available (Replication
package 2018).

2 Case Study Design and Data

In this section we discuss the case study design including the projects under study and
reasons for their selection. We describe the data sources, steps in the data extraction, and
analysis approach. We discuss the Bayesian Network modeling methodology in Section 4.

2.1 Systems Under Study

McIntosh et al. (Mcintosh et al. 2016) mined code review data from Android, LibreOffice,
QT, ITK, and VTK. They did not conduct an analysis on Android and LibreOffice because
they found that many of the reviews were not linked to bug reports which did not allow
them to study the impact of review on bugs. In total, they studied two QT releases and one
release for VTK and ITK. For the reproduction, McIntosh provided the Qt and ITK data
that was used in their work (Mcintosh et al. 2016). The ITK data had only 24 defective
components and 344 commits with reviews. We feel that this dataset is too small to produce
meaningful statistical models. Although we include the ITK results in our replication pack-
age (Replication package 2018), we only present the Qt results in this work. To improve
external validity, we replicate the study on the Google Chrome project, because like QT, it
is large and primarily written in C++. A further reason for studying Chrome is that it is an
open source web browser, that is mostly developed by paid Google developers and its devel-
opment practices mirror those used internally at Google. Chrome developers are required to
perform code review on each change and use Reitvield, the precursor to Gerrit, to improve
traceability of bugs, changes, and reviews.

Empirical Software Engineering

For completeness, we briefly describe Chrome’s code review process which resembles
other modern review practices (Rigby et al. 2012). A review begins when the change author
submits a patch and invites reviewers. A reviewer examines a change and either approves it
by replying with special keyword lgtm (looks good to me) or proposes improvements. The
author addresses comments either by fixing issues in code or by replying to the reviewer
comments. Subsequent modifications to the original patch appear in the same review and are
called patchsets. The new patchset triggers a new cycle of review and revision. The process
continues until all issues are fixed and the reviewers are satisfied with the patch. The code
can then be merged to the trunk.

2.2 Chrome Data Extraction

To understand the influence of code review measures on post release defects we need to cre-
ate a link between the code review, the source files, and reported bugs. We collect data from
three data sources: Reitvield, Git, and the Chrome bug tracker (Fig. 1). The data extraction
is divided into the three steps described below.

Fig. 1 Chrome data sources and extraction methodology. Reviews are extracted from the Rietrvield review
system. Bugs are extracted from the defect tracking system. The bug and review ids are contained in the Git
commit and linked to the modified files and directories

Empirical Software Engineering

Extracting review data: We use the Reitvield API to download code reviews in JSON
format and extract the data into a database. For each code review patch revision we extract
the unique identifier and the set of files modified by this revision. For every file and revision
we also capture the number of added and removed lines to calculate the size of a change.
We process the reviewers comments. We ignore comments that were added automatically
by a bot or by the patch author.

Extracting Git repository information: We extract commit information i.e. the commit
hash and list of files related to the change from the Git repository. We use the Understand
static analysis toolkit2 to extract source code measures from the files.

Extracting defect data: We mine the defects from the Chrome issue tracker by scraping
the pages. We extract the submission date, type of the issue, review ID, and commit ID for
the fix.

Post-release defects: We consider a defect to be the post-release defect of the current
release if it was submitted during the time period between the release dates of the current
and the following releases. We use Chrome release calendar website for release dates infor-
mation.3 Following McIntosh (Mcintosh et al. 2016), we associate the post-release defects
with the pre-release reviews and other source measures using first the file level and then
sum the measures to the component, i.e. directory level. The directory was chosen as the
unit of analysis to reduce the fraction of zero observations because the majority of the files
in the system do not have any defects.

2.3 CollectedMeasures

The measures we collect to evaluate the impact of code review on post-release defects are
well known and have been used in multiple past studies (Mcintosh et al. 2016; McIntosh
et al. 2014; Rigby and Bird 2013; Kononenko et al. 2015) and are described in Table 1.
We divide them into four categories: product, process, human factors, review participation,
and reviewer expertise. The code review measures are the number of reviewers, discussion
length, rushed reviews, typical reviewer expertise, etc. The control variables in our model
are also well known and widely used with defect prediction models (Mockus et al. 2000;
Hassan 2009; Bird et al. 2011; Graves et al. 2000). The control variables include the size of
the file, the number of prior defects, and the churn.

3 Code Review Replication and Reproduction Study

We replicate the study published by McIntosh et al. (Mcintosh et al. 2016). We strictly
follow the steps of the model construction described in the original paper (Mcintosh et al.
2016). We fit an Ordinary Least Squares (OLS) regression model. Since the dependent
variable is the number of post-release defects and it is highly skewed, we log transform it.
We also create regression models that take non-linear effects into account. We then compare
the goodness of fit among models and discuss the contribution of each independent variable.

Correlated variables can distort the contribution of a variable to a model and must be
removed. We use the hierarchical clustering analysis (Figs. 2 and 3) with the threshold of
|ρ| ≥ 0.7 suggested by McIntosh (Mcintosh et al. 2016) to identify the highly correlated

2https://scitools.com/
3https://www.chromium.org/developers/calendar

https://scitools.com/
https://www.chromium.org/developers/calendar

Empirical Software Engineering

Ta
bl
e
1

D
es

cr
ip

tio
n

of
M

ea
su

re
s:

pr
od

uc
t,

pr
oc

es
s,

hu
m

an
fa

ct
or

s,
re

vi
ew

pa
rt

ic
ip

at
io

n,
an

d
re

vi
ew

er
ex

pe
rt

is
e

M
ea

su
re

D
es

cr
ip

tio
n

Pr
od

uc
t

Si
ze

N
um

be
r

of
lin

es
of

ex
ec

ut
ab

le
co

de
in

co
m

po
ne

nt

C
om

pl
ex

ity
T

he
M

cC
ab

e
cy

cl
om

at
ic

co
m

pl
ex

ity
.

Pr
oc

es
s

Pr
io

r
de

fe
ct

s
N

um
be

r
of

de
fe

ct
s

fi
xe

d
in

co
m

po
ne

nt
pr

io
r

to
th

e
co

ns
id

er
ed

re
le

as
e

pe
ri

od

E
ff

ec
tiv

e
te

st
s

(C
hr

om
e

on
ly

)
To

ta
ln

um
be

r
of

tim
es

a
te

st
fo

un
d

an
is

su
e

du
ri

ng
th

e
re

vi
ew

pr
oc

es
s

C
hu

rn
Su

m
of

ad
de

d
or

re
m

ov
ed

lin
es

of
co

de
pe

r
co

m
po

ne
nt

du
ri

ng
co

ns
id

er
ed

pe
ri

od
of

tim
e

C
ha

ng
e

en
tr

op
y

D
is

tr
ib

ut
io

n
of

ch
an

ge
s

am
on

g
fi

le
s

w
ith

in
a

co
m

po
ne

nt

H
um

an
Fa

ct
or

s
M

in
or

au
th

or
s

N
um

be
r

of
un

iq
ue

co
nt

ri
bu

to
rs

th
at

co
nt

ri
bu

te
le

ss
th

an
5%

of
co

de
ch

an
ge

s
to

a
co

m
po

ne
nt

M
aj

or
au

th
or

s
N

um
be

r
of

un
iq

ue
co

nt
ri

bu
to

rs
th

at
co

nt
ri

bu
te

at
le

as
t5

%
of

co
de

ch
an

ge
s

to
co

m
po

ne
nt

A
ll

au
th

or
s

N
um

be
r

of
un

iq
ue

co
nt

ri
bu

to
rs

to
co

m
po

ne
nt

A
ut

ho
r

ow
ne

rs
hi

p
Pr

op
or

tio
n

of
ch

an
ge

s
to

co
m

po
ne

nt
do

ne
by

m
aj

or
au

th
or

s

R
ev

ie
w

Pa
rt

ic
ip

at
io

n
R

us
he

d
re

vi
ew

s
N

um
be

r
of

re
vi

ew
s

th
at

w
er

e
co

nc
lu

de
d

fa
st

er
th

an
ac

ce
pt

ab
le

re
vi

ew
ra

te
(2

00
lo

c
pe

r
ho

ur
)

C
ha

ng
es

w
ith

ou
td

is
cu

ss
io

n
C

ha
ng

es
th

at
w

er
e

in
te

gr
at

ed
w

ith
ou

td
is

cu
ss

io
n

co
m

m
en

ts

Se
lf

ap
pr

ov
ed

ch
an

ge
s

C
ha

ng
es

th
at

w
er

e
ap

pr
ov

ed
fo

r
in

te
gr

at
io

n
on

ly
by

th
e

au
th

or

Ty
pi

ca
ld

is
cu

ss
io

n
le

ng
th

D
is

cu
ss

io
n

le
ng

th
ty

pi
ca

l
fo

r
th

at
sp

ec
if

ic
co

m
po

ne
nt

m
ea

su
re

d
in

nu
m

be
r

of
di

sc
us

si
on

co
m

m
en

ts
.N

or
m

al
iz

ed
by

si
ze

of
ch

an
ge

(c
hu

rn
)

Ty
pi

ca
lr

ev
ie

w
w

in
do

w
T

he
am

ou
nt

of
tim

e
be

tw
ee

n
th

e
pa

tc
h

up
lo

ad
an

d
its

ap
pr

ov
al

fo
r

in
te

gr
at

io
n.

N
or

m
al

iz
ed

by
si

ze
of

ch
an

ge
(c

hu
rn

)

A
ll

re
vi

ew
s

To
ta

ln
um

be
r

of
tim

es
th

e
co

m
po

ne
nt

w
as

re
vi

ew
ed

A
ll

re
vi

ew
er

s
To

ta
ln

um
be

r
of

of
re

vi
ew

er
s

th
at

re
vi

ew
ed

a
co

m
po

ne
nt

R
ev

ie
w

is
su

es
To

ta
ln

um
be

r
of

pa
tc

h
re

vi
si

on
s

cr
ea

te
d

du
ri

ng
re

vi
ew

pr
oc

es
s

E
ff

ec
tiv

e
re

vi
ew

s
(C

hr
om

e
on

ly
)

N
um

be
r

of
re

vi
si

on
s

th
at

le
d

to
a

co
de

ch
an

ge
du

ri
ng

a
si

ng
le

re
vi

ew
pe

r
co

m
po

ne
nt

R
ev

ie
w

E
xp

er
tis

e
L

ac
ki

ng
su

bj
ec

tm
at

te
r

ex
pe

rt
is

e
N

um
be

r
of

ch
an

ge
s

th
at

w
er

e
no

ta
ut

ho
re

d
or

ap
pr

ov
ed

by
m

aj
or

au
th

or

Ty
pi

ca
lr

ev
ie

w
er

ex
pe

rt
is

e
To

ta
ln

um
be

r
of

ch
an

ge
s

to
th

e
co

m
po

ne
nt

au
th

or
ed

or
re

vi
ew

ed
by

th
is

re
vi

ew
er

pr
io

r
to

th
is

ch
an

ge

Empirical Software Engineering

Fig. 2 Hierarchical Correlation Analysis for Qt 5.0. For variables correlated at |ρ| ≥ 0.7 the simpler measure
is kept. We also conduct a redundancy analysis

variables. Then we select which variables will be discarded using drop-one analysis and the
principle of parsimony. The results of this step are summarized in the Tables 2 and 3.

Redundant variables can be explained by the remaining variables, that is they do not
contribute to the explanatory power of the model and should be removed. Such variables
may be overlooked by the pairwise correlation analysis, therefore we use redun function
from Hmisc R package.4 For each independent variable a regression model is fitted using as
predictors the remaining variables. If the model has a R2 greater than 0.9, then the current

4https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

Empirical Software Engineering

Fig. 3 Hierarchical Correlation Analysis for Chrome 40. For variables correlated at |ρ| ≥ 0.7 the simpler
measure is kept. We also conduct a redundancy analysis

variable is considered to be redundant because the linear combination of the remaining
variables can closely approximate this variable.

Non-linear effects and degrees of freedom. Traditional defect prediction models
assume linear dependencies between the dependant and independent variables. McIntosh
et al.(Mcintosh et al. 2016) showed that for some code review measures this relation has a
non-linear shape. To identify variables that may be nonlinear, we calculate the Spearman
multiple ρ2 scores for each independent variable. Variables with higher scores are more
likely to be non-linear. To fit a non-linear curve we use restricted cubic splines in the rms
R package (Harrell Jr. 2013). Using this approach we assign knots, which are points where

Empirical Software Engineering

Ta
bl
e
2

Po
st

-r
el

ea
se

de
fe

ct
s

pr
ed

ic
tio

n
m

od
el

fo
r

Q
t.

O
ri

gi
na

la
nd

re
pl

ic
at

io
n

st
ud

y
re

su
lts

.N
on

-l
in

ea
r

m
od

el
s

do
no

to
ut

pe
rf

or
m

lin
ea

r
m

od
el

s.
W

hi
le

st
at

is
tic

al
ly

si
gn

if
ic

an
t,

re
vi

ew
m

ea
su

re
s

ar
e

un
st

ab
le

an
d

ha
ve

lit
tle

pr
ed

ic
tiv

e
po

w
er

co
m

pa
re

d
to

tr
ad

iti
on

al
m

ea
su

re
s

R
el

ea
se

5.
0

M
cI

nt
os

h
5.

0
5.

1
M

cI
nt

os
h

5.
1

N
on

lin
ea

r
m

od
el

ad
ju

st
ed

R
2

0.
69

0.
62

0.
46

0.
66

L
in

ea
r

m
od

el
ad

ju
st

ed
R

2
0.

61
0.

63

N
on

lin
ea
r
m
od

el
w
/o

co
de
re
vi
ew

va
ri
ab

le
s
ad

ju
st
ed

R
2

0.
61

0.
64

O
ve

ra
ll

D
.F

.
80

81
78

81

A
llo

ca
te

d
D

.F
.

22
22

24
22

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

Si
ze

D
.F

.
4

3
4

3
2

1
4

3

χ
2

11
0∗

∗∗
76

∗∗
∗

60
∗∗

∗
14

∗∗
10

∗∗
5∗

47
∗∗

∗
35

∗∗
∗

C
om

pl
ex

ity
D

.F
.

1
na

†
†

1
na

†
†

χ
2

1◦
na

†
†

<
1◦

na
†

†

Pr
io

r
de

fe
ct

s
D

.F
.

‡
‡

2
1

2
1

3
2

χ
2

‡
‡

48
∗∗

∗
45

∗∗
∗

9∗
<

1◦
90

∗∗
∗

77
∗∗

∗

C
hu

rn
D

.F
.

1
na

2
1

1
na

2
1

χ
2

1◦
na

15
∗∗

∗
7∗

∗∗
<

1◦
na

5◦
3◦

C
ha

ng
e

en
tr

op
y

D
.F

.
2

1
1

na
2

1
2

1

χ
2

8∗
7∗

∗
<

1◦
na

6∗
6∗

3◦
2◦

A
ll

au
th

or
s

D
.F

.
‡

‡
3

2
2

1
2

1

χ
2

‡
‡

27
4∗

∗∗
63

∗∗
∗

30
∗∗

∗
15

∗∗
∗

19
3∗

∗∗
13

∗∗
∗

M
in

or
au

th
or

s
D

.F
.

†
†

‡
‡

1
na

‡
‡

χ
2

†
†

‡
‡

2◦
na

‡
‡

Empirical Software Engineering

Ta
bl
e
2

(c
on

tin
ue

d)

R
el

ea
se

5.
0

M
cI

nt
os

h
5.

0
5.

1
M

cI
nt

os
h

5.
1

N
on

lin
ea

r
m

od
el

ad
ju

st
ed

R
2

0.
69

0.
62

0.
46

0.
66

L
in

ea
r

m
od

el
ad

ju
st

ed
R

2
0.

61
0.

63

N
on

lin
ea
r
m
od

el
w
/o

co
de
re
vi
ew

va
ri
ab

le
s
ad

ju
st
ed

R
2

0.
61

0.
64

O
ve

ra
ll

D
.F

.
80

81
78

81

A
llo

ca
te

d
D

.F
.

22
22

24
22

M
aj

or
au

th
or

s
D

.F
.

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

A
ut

ho
r

ow
ne

rs
hi

p
D

.F
.

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

Se
lf

-a
pp

ro
ve

d
D

.F
.

2
1

1
na

1
na

1
na

χ
2

22
∗∗

∗
1◦

7∗
2◦

<
1◦

na
<

1◦
na

R
us

he
d

re
vi

ew
s

D
.F

.
†

†
2

1
2

1
2

1

χ
2

†
†

4◦
<

1◦
48

∗∗
∗

23
∗∗

∗
3◦

<
1◦

C
ha

ng
es

w
/o

di
sc

.
D

.F
.

2
1

2
1

2
1

2
1

χ
2

6◦
4∗

18
∗∗

3◦
3◦

1◦
36

∗∗
∗

29
∗∗

∗

Ty
pi

ca
lr

ev
ie

w
w

in
do

w
D

.F
.

†
†

1
na

†
†

1
na

χ
2

†
†

<
1◦

na
†

†
<

1◦
na

Ty
pi

ca
ld

is
c.

le
ng

th
D

.F
.

4
3

1
na

2
1

1
na

χ
2

26
∗∗

∗
24

∗∗
∗

<
1◦

na
32

∗∗
∗

21
∗∗

3◦
na

Empirical Software Engineering

Ta
bl
e
2

(c
on

tin
ue

d)

R
el

ea
se

5.
0

M
cI

nt
os

h
5.

0
5.

1
M

cI
nt

os
h

5.
1

N
on

lin
ea

r
m

od
el

ad
ju

st
ed

R
2

0.
69

0.
62

0.
46

0.
66

L
in

ea
r

m
od

el
ad

ju
st

ed
R

2
0.

61
0.

63

N
on

lin
ea
r
m
od

el
w
/o

co
de
re
vi
ew

va
ri
ab

le
s
ad

ju
st
ed

R
2

0.
61

0.
64

O
ve

ra
ll

D
.F

.
80

81
78

81

A
llo

ca
te

d
D

.F
.

22
22

24
22

L
ac

ki
ng

su
bj

ec
tm

at
te

r
ex

pe
rt

is
e

D
.F

.
2

1
2

1
4

3
1

na

χ
2

80
∗∗

∗
70

∗∗
∗

33
∗∗

∗
3◦

34
∗∗

∗
22

∗∗
<

1◦
na

Ty
pi

ca
lr

ev
ie

w
er

ex
pe

rt
is

e
D

.F
.

4
3

1
na

2
1

1
na

χ
2

26
∗∗

∗
24

∗∗
∗

<
1◦

na
32

∗∗
∗

21
∗∗

7∗
∗

na

C
ha

ng
es

w
/o

di
sc

.
D

.F
.

2
1

2
1

2
1

2
1

χ
2

6◦
4∗

18
∗∗

3◦
3◦

1◦
36

∗∗
∗

29
∗∗

∗

Ty
pi

ca
lr

ev
ie

w
w

in
do

w
D

.F
.

†
†

1
na

†
†

1
na

χ
2

†
†

<
1◦

na
†

†
<

1◦
na

Ty
pi

ca
ld

is
c.

le
ng

th
D

.F
.

4
3

1
na

2
1

1
na

χ
2

26
∗∗

∗
24

∗∗
∗

<
1◦

na
32

∗∗
∗

21
∗∗

3◦
na

L
ac

ki
ng

su
bj

ec
tm

at
te

r
ex

pe
rt

is
e

D
.F

.
2

1
2

1
4

3
1

na

χ
2

80
∗∗

∗
70

∗∗
∗

33
∗∗

∗
3◦

34
∗∗

∗
22

∗∗
<

1◦
na

Ty
pi

ca
lr

ev
ie

w
er

ex
pe

rt
is

e
D

.F
.

4
3

1
na

2
1

1
na

χ
2

26
∗∗

∗
24

∗∗
∗

<
1◦

na
32

∗∗
∗

21
∗∗

7∗
∗

na

D
is

ca
rd

ed
du

ri
ng

:†
-

R
em

ov
ed

du
ri

ng
co

rr
el

at
io

n
an

al
ys

is
;‡

-
R

em
ov

ed
du

ri
ng

re
du

nd
an

cy
an

al
ys

is

St
at

is
tic

al
si

gn
if

ic
an

ce
:∗

∗∗
ρ

<
0.

00
1;

∗∗
ρ

<
0.

01
;∗

ρ
<

0.
05

;◦
ρ

>
=

0.
05

O
th

er
:n

a
-

no
tu

se
d

Empirical Software Engineering

Ta
bl
e
3

Po
st

-r
el

ea
se

de
fe

ct
s

pr
ed

ic
tio

n
m

od
el

fo
r

C
hr

om
e.

N
on

-l
in

ea
r

m
od

el
s

do
no

t
ou

tp
er

fo
rm

lin
ea

r
m

od
el

s.
W

hi
le

st
at

is
tic

al
ly

si
gn

if
ic

an
t,

re
vi

ew
m

ea
su

re
s

ar
e

un
st

ab
le

an
d

ha
ve

lit
tle

pr
ed

ic
tiv

e
po

w
er

co
m

pa
re

d
to

tr
ad

iti
on

al
m

ea
su

re
s

R
el

ea
se

39
40

41
42

43
44

N
on

lin
ea

r
m

od
el

ad
ju

st
ed

R
2

0.
61

0.
58

0.
59

0.
59

0.
51

0.
53

L
in

ea
r

m
od

el
ad

ju
st

ed
R

2
0.

59
0.

54
0.

56
0.

57
0.

50
0.

49

w
/o

co
de
re
vi
ew

va
ri
ab

le
s
ad

ju
st
ed

R
2

0.
60

0.
58

0.
59

0.
59

0.
49

0.
53

O
ve

ra
ll

D
.F

.
62

87
90

84
83

80

A
llo

ca
te

d
D

.F
.

26
21

23
20

19
20

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

Si
ze

D
.F

.
4

3
2

1
4

3
2

1
2

1
2

1

χ
2

28
∗∗

∗
3◦

1◦
1◦

10
∗

<
1◦

1◦
<

1◦
3◦

2◦
8∗

6∗

C
om

pl
ex

ity
D

.F
.

1
na

1
na

1
na

1
na

1
na

1
na

χ
2

<
1◦

na
3◦

na
<

1◦
na

<
1◦

na
1◦

na
<

1◦
na

Pr
io

r
de

fe
ct

s
D

.F
.

4
3

2
1

4
3

4
3

4
3

2
1

χ
2

43
∗∗

∗
42

∗∗
∗

37
∗∗

∗
34

∗∗
∗

74
∗∗

∗
71

∗∗
∗

61
∗∗

∗
55

∗∗
∗

21
∗∗

∗
20

∗∗
∗

3◦
3◦

C
hu

rn
D

.F
.

2
1

2
1

2
1

2
1

2
1

2
1

χ
2

14
∗∗

8∗
23

∗∗
∗

22
∗∗

∗
31

∗∗
∗

30
∗∗

∗
26

∗∗
∗

24
∗∗

∗
<

1◦
<

1◦
11

∗∗
2◦

C
ha

ng
e

en
tr

op
y

D
.F

.
2

1
1

na
1

na
1

na
1

na
1

na

χ
2

<
1◦

<
1◦

<
1◦

na
<

1◦
na

<
1◦

na
3∗

na
<

1◦
na

A
ll

au
th

or
s

D
.F

.
3

2
4

3
4

3
3

2
3

2
3

2

χ
2

49
∗∗

∗
2◦

43
∗∗

∗
8∗

42
∗∗

∗
2◦

33
∗∗

∗
<

1◦
51

∗∗
∗

4◦
24

∗∗
∗

1◦

M
in

or
au

th
or

s
D

.F
.

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

χ
2

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

M
aj

or
au

th
or

s
D

.F
.

†
†

†
†

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

†
†

†
†

A
ut

ho
r

ow
ne

rs
hi

p
D

.F
.

†
†

†
†

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

†
†

†
†

Empirical Software Engineering

Ta
bl
e
3

(c
on

tin
ue

d)

R
el

ea
se

39
40

41
42

43
44

N
on

lin
ea

r
m

od
el

ad
ju

st
ed

R
2

0.
61

0.
58

0.
59

0.
59

0.
51

0.
53

L
in

ea
r

m
od

el
ad

ju
st

ed
R

2
0.

59
0.

54
0.

56
0.

57
0.

50
0.

49

w
/o

co
de
re
vi
ew

va
ri
ab

le
s
ad

ju
st
ed

R
2

0.
60

0.
58

0.
59

0.
59

0.
49

0.
53

O
ve

ra
ll

D
.F

.
62

87
90

84
83

80

A
llo

ca
te

d
D

.F
.

26
21

23
20

19
20

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

O
ve

ra
ll

N
on

lin
ea

r
O

ve
ra

ll
N

on
lin

ea
r

Se
lf

-a
pp

ro
ve

d
D

.F
.

4
3

4
3

4
3

4
3

4
3

4
3

χ
2

8∗
7◦

12
∗

5◦
2◦

2◦
3◦

2◦
13

∗∗
9∗

∗
9∗

3◦

R
us

he
d

re
vi

ew
s

D
.F

.
1

na
1

na
1

na
1

na
1

na
1

na

χ
2

1◦
na

19
∗∗

∗
na

2◦
na

14
∗∗

na
6∗

na
<

1◦
na

C
ha

ng
es

w
/o

di
sc

.
D

.F
.

†
†

†
†

†
†

†
†

†
†

†
†

χ
2

†
†

†
†

†
†

†
†

†
†

†
†

Ty
pi

ca
lr

ev
ie

w
w

in
do

w
D

.F
.

1
na

1
na

1
na

1
na

1
na

1
na

χ
2

1◦
na

1◦
na

<
1◦

na
<

1◦
na

<
1◦

na
<

1◦
na

Ty
pi

ca
ld

is
c.

le
ng

th
D

.F
.

1
na

1
na

1
na

1
na

1
na

1
na

χ
2

<
1◦

na
<

1◦
na

<
1◦

na
<

1◦
na

<
1◦

na
<

1◦
na

L
ac

ki
ng

su
bj

ec
tm

at
te

r
ex

pe
rt

is
e

D
.F

.
2

1
2

1
2

1
2

1
1

na
2

1

χ
2

7∗
3◦

3◦
<

1◦
32

∗∗
∗

7∗
∗∗

20
∗∗

∗
5∗

7∗
∗

na
19

∗∗
∗

10
∗∗

Ty
pi

ca
lr

ev
ie

w
er

ex
pe

rt
is

e
D

.F
.

1
na

1
na

1
na

1
na

1
na

1
na

χ
2

<
1◦

na
<

1◦
na

<
1◦

na
<

1◦
na

7∗
na

10
∗

na

D
is

ca
rd

ed
du

ri
ng

:†
-

R
em

ov
ed

du
ri

ng
co

rr
el

at
io

n
an

al
ys

is
;‡

-
R

em
ov

ed
du

ri
ng

re
du

nd
an

cy
an

al
ys

is

St
at

is
tic

al
si

gn
if

ic
an

ce
:∗

∗∗
ρ

<
0.

00
1;

∗∗
ρ

<
0.

01
;∗

ρ
<

0.
05

;◦
ρ

>
=

0.
05

O
th

er
:n

a
-

no
tu

se
d

Empirical Software Engineering

the slope changes, to potentially non-linear variables. The more knots that are added the
greater the curve complexity. Every additional knot requires a degree of freedom. If we use
all of the degrees of freedom, then there will be a knot for each data point and the fit will be
perfect, but the model will be overfitted to the data. As a result, the degrees of freedom are
budgeted to avoid over fitting while still allowing variables that have a high ρ2 score to be
modelled non-linearly.

To assess model fitness, we report the adjusted R2 to compensate for the large number of
variables (Mcintosh et al. 2016). To assess the individual contributions of each variable, we
report its statistical significance and the Wald χ2 maximum likelihood test value. The larger
the value the greater the impact the variable has on the model. The results are summarized
in Tables 2 and 3. The tables also contain the results from McIntosh et al. (Mcintosh et al.
2016) and conform to the same structure.

3.1 Variable Selection andModel Construction

In our summary table we have approximately 1.3k reviews for Qt 5.0 and 1.4K for Chrome
40. We start with 16 measures. This gives us 81 and 87 degrees of freedom for Qt and
Chrome respectively. Following previous works, we discard measures with correlation at
or above 0.7. We use clustering analysis to identify these measures, see Figures 2 and 3.
We also perform drop one analysis to determine which measures should be discarded
from each cluster. Major authors, author ownership and complexity were removed from Qt
dataset. Major authors, author ownership and changes without discussion were removed
from Chrome. Using a redundancy test minor authors was removed from both datasets.
We perform a non-linearity analysis. Variables that exhibit a higher degree of non-linearity
require additional degrees of freedom to model their curved line. The results of the variable
selection process and the number of allocated degrees for each variable can be found in in
Tables 2 and 3.

To represent our models, we use the R language notation (Pinheiro et al. 2011). For
example, the formula y ∼ a + b means that the response y is modelled by explanatory
variables a and b. McIntosh (Mcintosh et al. 2016) used the following model for Qt:

log(def ects + 1) ∼ rcs(size, 5) + rcs(all authors, 5)

+complexity + churn + rcs(change entropy, 3)

+rcs(changes w/o discussion, 3)

+rcs(self − approved changes, 5)

+rcs(typcal discussion length, 5)

+rcs(typical reviewer expertise, 5) + rcs(lacking subject matter expertise, 5)

Our Qt model is the following:

log(def ects + 1) ∼ rcs(size, 5) + rcs(prior def ects, 5)

+rcs(churn, 3) + rcs(changeentropy, 3)

+rcs(all authors, 5) + rcs(changes w/o discussion, 5)

+self − approved changes + typcal discussion length

+typcal review window + rcs(rushed reviews, 3)

+rcs(lacking subject matter expertise, 3) + typical reviewer expertise

Empirical Software Engineering

Our Chrome model is the following:

log(def ects + 1) ∼ rcs(size, 5) + rcs(prior def ects, 5)

+complexity + rcs(churn, 3) + rcs(change entropy, 3)

+rcs(all authors, 5) + rcs(self − approved changes, 5)

+typical discussion length + rushed reviews

+typcal review window + rcs(lacking subject matter expertise, 3)

+typical reviewer expertise

Restricted Cubic Splines are represented by the rcs function in the formula where the
first argument is the predictor and the second argument is the number of knots (the amount
of nonlinearity) permitted. We fit OLS model using formulas from above and calculate
adjusted R2 to assess goodness of fit. Tables 2 and 3 summarize the results and contain
the original results from McIntosh et al. (Mcintosh et al. 2016). In summary, the response
variable is modeled via linear and non-liner dependencies approximated via cubic splines.

3.2 Model Results andModel Comparisons

In this section we compare our replication results with those from McIntosh et al. (Mcintosh
et al. 2016) original study and new results from Chrome. We highlight differences and
discuss their possible causes.

3.3 Comparing Linear and Non-Linear Models

To illustrate the nonlinear effect we select an independent variable with the highest poten-
tial of nonlinearity from the model and calculate predicted number of post-release defects
as the function of this variable, using Predict function from R rms package. The rest of the
variables are fixed at their median values. As an illustration, we choose prior defects for
Qt because it had the highest Spearman squared value among independent variables partic-
ipating in the model. We then plot the results in Figure 4. Although the shape of the plot
may suggest some nonlinearity, the grey funnel, which is the error margin, is too wide to
claim with confidence that these variables have a nonlinear relation with the response vari-
able. The goodness of fit R2 also shows that nonlinear models do not yield better results
than regular linear models. Discussion with McIntosh revealed that the text of the original
paper was ambiguous and they only log transformed the dependent variable. We find that
a log transformation of skewed independent variables provides a reasonable model without
adding the complexity of a non-linear model.

3.4 Models with and without ReviewMeasures

The results show that although many of the code review measures are statistically signifi-
cant, they usually tend to have lower values of Wald χ2 test than other measures, suggesting
their lower contribution to explanatory power of the model. Even the most prominent mea-
sures, like typical discussion length and rushed reviews are repeatedly outperformed by
measures like size, prior defects, and all authors. As a further investigation, we fit a model
without review measures and record the values of adjusted R2 (shown in bold in the section
of R2 values in the Tables 2, 3). The decrease in the values of adjusted R2 in both datasets
is minimal, meaning that overall contribution of the review measures to the explanatory
power of the model is limited. In addition to low contribution to the model the performance

Empirical Software Engineering

Fig. 4 A wide margin of error for nonlinear predictions, for example, prior defects in Qt 5.0. Nonlinear
models are unnecessary, see Tables 2 and 3

of review variables is inconsistent between datasets and releases. For instance, in McIntosh
et al.rushed reviews was discarded from the model in Qt 5.0 during the correlation analysis,
however, in Qt 5.1 this measure is one of the strongest predictors of post-release defects. The
typical discussion length is one of the most influential variables for both Qt releases in both
studies, but in Chrome dataset the contribution of this variable is insignificant. Discussing
our results with McIntosh, he stated that he did not believe that review measures could
dominate traditional measures. Our answer to RQ1, Replication, is summarized below.

3.5 Impact of Individual Variables

Size of component is a well-known predictor in empirical software studies. McIntosh
et al.show that in the Qt project size provides significant contribution to the explanatory
power of the model. Our result is similar for Qt dataset. However, in Chrome dataset the
contribution of the size measure is quite small (Table 3).

Prior defects and all authors have been shown to be good predictors of future defects
(Graves et al. 2000; Bird et al. 2011). McIntosh et al.discard prior defects in Qt 5.0 due to
redundancy. In our study, the redundancy analysis on the Qt 5.0 dataset does not indicate
that prior defects are redundant and, on the contrary, is statistically significant. For the Qt
5.1 release, both McIntosh et al.and our model keep prior defects but find it to be a poor
predictor. The all authors measure is redundant in Qt 5.0 release in our study contrary

Empirical Software Engineering

to the McIntosh et al.. For Qt 5.1 the all authors is the most influential predictor in the
model. This result is replicated in both studies. In Chrome dataset these two variables are
repeatedly found to be the most influential variables of the model. A possible explanation
for this inconsistency could be that these two variables share a common cause. Defects are
not always fixed by the owner of the module, especially in big teams. That means that more
developers are touching the file, and the more developers modifying a file the higher the risk
of the future defects. Intuitively, the growth in these two measures should be related, but our
correlation and redundancy analysis fails to find this. These inconsistent results suggest that
traditional variable selection techniques are not capable of coping with the high correlations
in our datsets and indicate the need for a different approach that can deal with complex
interactions between variables.

Reviewmeasures . The important measures in the Qt dataset are similar to what McIntosh
et al.found. The self-approved changes has low impact on post-release defects. The rushed
reviews variable was discarded in 5.0 release, but in 5.1 it appears as one of the most influ-
ential variables. The typical discussion length variable has moderate to strong influence in
both releases. For the Chrome dataset the review measures are not statistically significant in
most cases. When they are, such as in lacking subject matter expertise the result is incon-
sistent across releases. The overall performance of review variables is inconsistent in both
studies suggesting the following conclusion to RQ 2, Differentiated-external replication.

4 Bayesian Networks Models

To address the concern of the unexpected absence of the relationship between code review
measures and post-release defects demonstrated in the previous models, and the lack of
reproducibility due to the subjectivity in variable selection approaches that are necessary in
a traditional model, such as the one used in Section 3, we use Bayesian Networks (BN) as
an alternative modeling approach. Our goal in using the BN model is not to create the best
predictive model for post-release defects. Instead, we focus on understanding the complex
interaction between the variables described by the data, and determining which variables
directly impact the number of post-release defects in such a generative model.5

4.1 Background: Bayesian Network

Bayesian Network models have several advantages over regression models. To be precise,
regression analysis is a very simple BN where there is one directed link from each inde-
pendent variable to the dependent variable. BNs, therefore, can help with multicollinearity

5A generative model specifies a joint probability distribution over all observed variables, whereas a discrim-
inative model provides a model only for the target variable(s) conditional on the predictor variables. Thus,
while a discriminative model allows only sampling of the target variables conditional on the predictors, a
generative model can be used, for example, to simulate (i.e. generate) values of any variable in the model,
and consequently, to gain an understanding of the underlying mechanics of a system, generative models are
essential.

Empirical Software Engineering

by establishing the relationships among independent variables. In the process of BN con-
struction we can control the number of edges (relations) by specifying a connection strength
threshold. Once the Bayesian Network is constructed we can use the graphical representa-
tion to learn about less obvious interactions among variables and infer how the injection of
specific facts affects variables of interest. We use BN to investigate the lack of consistency
in the replication in the previous sections.

One important concept related to the BNs is the concept of Markov Blanket (Pear 2014).
The Markov Blanket for a node in a Bayesian Network is the set of nodes composed of its
parents, its children, and its children’s other parents (co-parents). The Markov blanket of a
node contains all the variables that shield the node from the rest of the network i.e. for a
node A, its Markov Blanket MBA, and a node B : B �= A,B /∈ MBA, we have the property
that:

Pr(A|MBA,B) = Pr(A|MBA)

This means that the Markov blanket of a node is the only knowledge needed to predict the
behavior of that node.

We will construct a BN model without assuming any domain expertise, edges, or assump-
tions about prior data distributions. Instead we will use minimal a-priori model that focuses
on the search for the best Bayesian graphical representation for the dataset (i.e. structure
learning using hill climbing).

Despite the promises of BNs, they tend to be quite sensitive to data, and operational data
is often problematic (Mockus 2014; Zheng et al. 2015). Careful preprocessing is needed
to ensure a reliable and reproducible result. We next discuss discretization of variables and
structure learning with hill climbing approaches used to address these concerns.

4.1.1 Discretization

For our regression model, we found that all our variables have a long-tailed distribution
that could not be corrected even by a log-transformation. Since BN structure learning meth-
ods for continuous data require a normal distribution, we discretize the data, as is often
done with prediction that involves classifiers (Scutari 2013). Discretizing variables while
preserving relationships among them is an NP-hard problem (Chlebus and Nguyen 1998),
but several heuristics exist. The commonly used supervised methods optimize discretiza-
tion to improve explanatory power for a single response variable, such as, Chi-square, or
MDLP. However, these are not suitable for a BN structure search, because we do not know
a-priori which variables will be responses (have arrows pointing to them) and which will
be independent (have no incoming arrows). While some research on multidimensional dis-
cretization methods exist (Perez et al. 2006), we are not aware of any such method that has
a robust implementation in a statistical package. We, therefore, use unsupervised discretiza-
tion methods. The added benefit is that the discretization was totally response-variable
agnostic unlike the commonly used supervised discretization methods, which prevents any
bias towards specific fit that may accompany supervised methods.

Following the recommendations from Garcia et al.’s (Garcia et al. 2013) survey, we use
the Equal Frequency discretization method and the implementation in the arules package.
The defects node was discretized to a binary no-defect/defect variable, because around 73%
of the directories have no defects, therefore it makes sense to just predict whether or not
there will be a defect for our dataset. Two levels were also assigned to minor authors, rushed
reviews, typical review window, and lacking subject matter expertise because more than
50% of entries were zero. Based on the data distributions for the remaining variables three

Empirical Software Engineering

levels were deemed appropriate. We present the distribution of the variables in our repli-
cation package (Replication package 2018) as additional evidence for the choice of our
discretization levels.

4.1.2 BN Structure Search: Hill Climbing

To learn the BN structure from our data, we chose a well-performing and widely used (Dey
and Mockus 2020) Hill-Climbing (HC) algorithm from the bnlearn R package. This HC
algorithm attempts to maximize the network score with several scoring functions available
in the bnlearn package: e.g., BIC, AIC, BDE. A detailed study examining how well different
scores performed concluded that in general all scores perform similarly and for large data
sets Bayesian scores are more suitable (Carvalho 2009). Since our dataset is not particularly
large, at least for the individual releases, we decided not to use Bayesian scores e.g., BDE,
instead we chose to focus on the information theoretic scores e.g., AIC, BIC. We finally
selected the BIC score because it is more appropriate for constructing explanatory models,
while AIC is better suited for building predictive models (Sober 2002; Shmueli 2010).

Hill-Climbing has the known limitation of finding a local maxima, and there are several
enhanced versions of the algorithm that deal with this shortcoming. The R implementation
provides parameters for the number of random restarts and perturbations as tuning parame-
ters to deal with this problem. However, these parameters can make the results noisy, with
different settings inducing slightly different networks. To mitigate this effect, we use the
non-parametric bootstrap model averaging method, which provides confidence levels for
both the existence of an edge and its direction (Friedman et al. 1999). This enables us
to select a model based on a confidence threshold. Friedman et al.(Friedman et al. 1999)
argued that the threshold is domain specific and needs to be determined for each domain.
To identify a suitable threshold, we performed a simulation study, by generating a simulated
dataset for the same number of nodes. The result of the simulation showed that a thresh-
old of 0.65 was suitable to accurately recover the original structure. We also investigated
alternative thresholds to assess the stability of the results as described in Section 5.

Finally, due to the HC algorithm not being a deterministic one, we repeated the pro-
cess of generating a model 100 times, according to the recommendation by Arcuri and
Briand (Arcuri and Briand 2011) and generated our final model based on the averaged result
of these 100 runs.

4.1.3 Combining Data for Qt and Chrome Releases

We created new datasets by combining the data for all the Qt releases, the Chrome releases,
and also combined the data for all releases for the two projects, which gave us three new
datasets. Combining the datasets makes our final model more robust and the result is
arguably more generalizable, because of having more training examples and not being prone
to overfit to the specific characteristics of one particular release.

4.1.4 BNModel Performance Measures

Model performance can be evaluated using explanatory and predictive performance mea-
sures (Shmueli 2010). We first create an explanatory model that allows us to understand
which software engineering measures have the greatest influence on post-release defects.
We use the variance explained, which is the proportion of the log-likelihood score of the
model relative to the baseline model which assumes that all the variables are independent.

Empirical Software Engineering

We test the predictive power of our BN models for the purpose of comparison between
similar models and to demonstrate the practical applicability of the models. Training and
testing the models with Cross-fold validation is not appropriate because we have time
ordered data. To ensure that we are not using future data to predict past observations, we
trained our model on the earlier 70% of the data and test it on the subsequent 30% of the
data. We use the Accuracy and Cohen’s Kappa measures as the performance measures for
our models.

4.1.5 CPT: the probability of having a Defect Given each Variable

To determine the individual impact that each variable has on post-release defects, we cre-
ate Conditional Probability Tables (CPT) for each variable in the Markov Blanket that
directly influences defects. The CPTs are trained with the gRain package in R, using Junc-
tion Tree belief propagation method (Lauritzen-Spiegelhalter algorithm (Højsgaard et al.
2012; Lauritzen and Spiegelhalter 1988; Koller and Friedman 2009)) from the BN models.
See (Højsgaard et al. 2012) for details about how the CPT tables are calculated. The code
for CPT construction is available in our replication package (Replication package 2018).

4.2 Results for BNModels

We created BN models for each release, each project, and for the entire combined dataset.
The results are summarized in Table 4. Importantly, the post-release defects variable, i.e. the
defects node in the Markov Blanket, was influenced by but did not influence any of the other
variables. This is reassuring, because it is not possible for post-release defects to influence
pre-release measures (going backward in time). Our models were able to properly account
for the fact by correctly identifying the prior defects in the priordefects variable as having
the influence on post-release defects.

Table 4 shows the model performance measures: variance explained, Accuracy, and
Kappa. We observe that Kappa values varied between 0.41 and 0.51, which signifies a fair
or moderate agreement according to both Landis and Koch (Landis and Koch 1977) and
Fleiss (Fleiss et al. 1981). Similarly, the accuracy of the models was also observed to be

Table 4 Variables in Markov Blanket of defects for each BN model and the model performance as measured
by Variance Explained, Accuracy, and Kappa

Release Variables in Markov Blanket of defects Variance Explained Accuracy Kappa

Qt 50 priordefects, changesnodisc 51.4% 0.85 0.43

Qt 51 allauthors, size 32.9% 0.86 0.44

Qt combined priordefects, changesnodisc 27.2% 0.87 0.42

Chrome 39 allreviews, priordefects 19.8% 0.75 0.5

Chrome 40 priordefects 25.4% 0.76 0.48

Chrome 41 allchangescount, priordefects 30.7% 0.78 0.51

Chrome 42 priordefects 32.9% 0.77 0.46

Chrome 43 minorauthors 25.6% 0.76 0.42

Chrome 44 allchangescount, minorauthors 36.1% 0.8 0.48

Chrome combined minorauthors, priordefects 19.5% 0.76 0.41

All minorauthors, priordefects, size 32.7% 0.83 0.45

Empirical Software Engineering

high, between 0.75 and 0.87, and the models had reasonable variance explained, between
19.5% and 51.4%.

4.3 Variables Directly Affecting Post Release Defects

Table 4 shows the variables that directly influence the defects node in the Markov Blanket.
Of the 11 review measures one is present in Qt 50, changesnodisc, and another, allreviews,
is present in Chrome release 39. In Table 5, we see the probability of a defect given each the
review measure. A directory with two or more changes that are reviewed without discussion
increases the probability of post-release defects by 42.3% in Qt 50. For Chrome 39, the
more often a directory is reviewed the more often there are defects and in the case of 36 or
more reviews for a directory the probability of observing a defect increases to 69.8%.

Of the 10 non-review “traditional” measures six are present in one or more releases, see
Table 4. allauthors,size are present in one release each. allchangescount, and minorauthors,
are each in 2/8 releases. priordefects the most common predictor is present in 5/8 releases.
In Table 5, we see the probability of a defect given each measure. We observe that all the
predictors have a positive impact on defects, i.e. larger numbers increase the probability of
defects. Below we discuss “traditional” measures that are present in more than one release.
Having one or more minorauthors that modify the files in a directory can also drastically
increase the number of post-release defects by over 70%. Moderate changes to a component,
e.g., allchangescount < 50, can increase the number of defects by up to 33.8%. Components
with many changes, > 50 can see post-release probabilities increase by over 60%. The
relationship between priordefects is clearly shown in the CPT tables with a large number
of prior defects, increasing the probability of post-release defects by between 30.6% and
73.7%.

4.4 Indirect Relationships and Visual Representation

In Figure 5, we present a snapshot of the BN model with only the defects node, the nodes in
its Markov Blanket, and the nodes that directly affect the nodes in the Markov Blanket for
ease of interpretation, since the complete BN models with all nodes are rather complicated.
However, the complete BN models for individual Chrome and Qt releases, the aggregate
Chrome and Qt datasets, and for the combined dataset are available in our replication
package (Replication package 2018).

The dotted edges indicate that the coefficient is negative for that edge, i.e. increasing the
value of the parent node decreases the value of the child node and vice versa. The immediate
parents of the defects node (consequently, the Markov blanket for the defects node in this
case) are colored in light blue and the defects node is denoted in a rectangular shape. The
effect of each individual variable on the defects node is shown in Table 5. We do see a
review measure: allreviews affecting the variable minorauthors in the BN, but it has no
direct impact on the number of defects in our combined model.

The variables indicated as the most important in the traditional modeling approach are
also the ones indicated as most important in BN modeling approach, except in the traditional
model the minor authors variable was discarded as being redundant, and all authors was
used instead, while in BN approach minor authors have a direct influence on defects. This
illustrates the ability of BNs to address some of the issues posed by correlated predictors, a
situation common in software engineering.

The results from the two approaches are largely consistent in terms of indicating which
variables are most significant in explaining the post release defects, and both approaches

Empirical Software Engineering

Table 5 CPT: The conditional probability of post-release defects for each measure. As an example, having
one or more minor authors making changes in a component increases the probability of post-release defects
by over 70%

For release Qt 50: 12.5% of observations had defect

priordefects probability of defects changesnodisc probability of defects

0 4.8% 0 5.6%

1 7.6% 1 9.7%

[2, 528] 30.6% [2, 95] 42.3%

For release Qt 51: 17.1 % of observations had defect

allauthors probability of defects size probability of defects

1 6.1% [0, 78) 4.1%

2 10.5% [78, 395) 11.7%

[3, 57] 44.1% [395, 81654] 34.9%

For Qt - Combined: 14.4 % of observations had defect

priordefects probability of defects changesnodisc probability of defects

0 7.0% 0 7.3%

1 10.4% 1 14.4%

[2, 624] 30.8% [2, 191] 40.9%

For release Chrome 39: 42.1% of observations had defect

priordefects probability of defects allreviews probability of defects

[0, 5) 20.7% [0, 10) 18.3%

[5, 18) 45.1% [10, 36) 39.4%

[18, 1588] 64.9% [36, 1573] 69.8%

For release Chrome 40: 32.2% of observations had defect

priordefects probability of defects

[0, 5) 11.9%

[5, 18) 28.4%

[18, 1588] 59.6%

For release Chrome 41: 39.8% of observations had defect

priordefects probability of defects allchangescount probability of defects

[0, 4) 16.0% [1, 10) 13.5%

[4, 18) 33.5% [10, 48) 33.8%

[18, 1660] 73.7% [48, 2415] 73.4%

For release Chrome 42: 38.8% of observations had defect

priordefects probability of defects

[0, 4) 15.3%

[4, 17) 34.9%

[17, 1649] 69.2%

For release Chrome 43: 28.8% of observations had defect

minorauthors probability of defects

0 19.1%

[1, 108] 71.4%

Empirical Software Engineering

Table 5 (continued)

For release Qt 50: 12.5% of observations had defect

priordefects probability of defects changesnodisc probability of defects

For release Chrome 44: 30% of observations had defect

allchangescount probability of defects minorauthors probability of defects

[1, 13) 8.1% 0 19.6%

[13, 52) 23.7% [1, 96] 75.9%

[52, 1925] 59.4%

For Chrome - Combined: 35.6% of observations had defect

priordefects probability of defects minorauthors probability of defects

[0, 4) 13.8% 0 25.2%

[4, 18) 32.0% [1, 108] 76.1%

[18, 1702] 63.1%

For All releases combined: 26.9% of observations had defect

priordefects probability of defects minorauthors probability of defects

[0, 2) 7.4% 0 18.9%

[2, 8) 23.1% [1, 108] 69.5%

[8, 1702] 54.6%

size probability of defects

[0, 113) 7.3%

[113, 571) 21.9%

[571, 106595] 50.3%

For release Chrome 44: 30% of observations had defect

allchangescount probability of defects minorauthors probability of defects

[1, 13) 8.1% 0 19.6%

[13, 52) 23.7% [1, 96] 75.9%

[52, 1925] 59.4%

For Chrome - Combined: 35.6% of observations had defect

priordefects probability of defects minorauthors probability of defects

[0, 4) 13.8% 0 25.2%

[4, 18) 32.0% [1, 108] 76.1%

[18, 1702] 63.1%

For All releases combined: 26.9% of observations had defect

priordefects probability of defects minorauthors probability of defects

[0, 2) 7.4% 0 18.9%

[2, 8) 23.1% [1, 108] 69.5%

[8, 1702] 54.6%

size probability of defects

[0, 113) 7.3%

[113, 571) 21.9%

[571, 106595] 50.3%

Empirical Software Engineering

Fig. 5 The Bayesian network graph for the combined Chrome and Qt data. The model confirms that review
measures only indirectly impact post-release defects. Traditional measures, such as prior defects, have direct
impact

show that review-related measures have no direct influence over the post release defects
variable in the combined model and no review measures are statistically significant in more
than one individual release. By obtaining the same result using two completely independent
modeling approaches increases our confidence in the findings. Our conclusion to RQ 3,
Structure of the relationships, is summarized in the following box.

4.5 Addressing the Issue of Highly Correlated Variables— Problem of Subjectivity
in Variable Selection

We have claimed before that BN modeling approach is not affected by the presence of highly
correlated variables, and that can be seen in our BN model as well. The three author related
variables: all authors, minor authors, and major authors were highly correlated in our data.
Therefore, in the traditional modeling approach only one of them, all authors was used in
the final model.

In the combined BN model, the three variables appear connected to each other, as can be
seen in Fig. 5 (the three nodes are inside the blue dotted polygon). The relationship among
the nodes from the BN model is easily interpretable: more allauthors implies more minor
authors and major authors, while increase in minor authors inevitably decreases major
authors as all authors is the sum of minor and major authors. The BN model also suggests
that the minor authors variable has substantially more influence over defects than major
authors or all authors, thus it resolves the subjectivity in the variable selection problem.

To illustrate the usefulness of BNs it is worth making a few additional observations.
The size of the module tends to be associated with code smells, effort, and defects (see,
e.g., (Sjoberg et al. 2013; Nagappan et al. 2008; Arisholm and Briand 2006; Mockus 2010)).
Not surprisingly, size affects both prior defects and defects, since relative module size tends
to be stable release to release.

Empirical Software Engineering

More interestingly, the BN model in Figure 5 suggests that, for example, the presence of
minor authors both, increases the size of the module (perhaps via unnecessary code bloat),
and also has a direct effect on the number of post-release defects (perhaps due to lack of
understanding of the module). Thus it has a double effect on defects: direct, and mediated
via module size.

The variable minor authors is, in turn, affected by the total number of authors, the number
of changes made to the module, and the number of review issues. Arguably, the arrow should
be pointing towards the review issues from minor authors as it is the minor authors that are
likely to submit problematic code or be screened more vigorously during the review (see
more discussion on incorporation prior knowledge in Section 5). However all these three
relationships (except the direction of the third, which can be addressed by introducing a
suitable prior) are rather intuitive.

Finally, it is worth considering the most important predictor of defects: prior defects.
Apart from size, it is also related to the proportion of changes with no discussion, suggest-
ing less aggressive reviews, the typical number of reviewers, and, surprisingly, is better for
more complex modules. As noted earlier, the arrows should arguably be reversed: modules
with prior defects probably invite more scrutiny with a larger review team. Why the mod-
ules with larger review teams tend to have higher proportion of changes with no discussion
may be worth a further investigation.

5 Limitations

In this section, we discuss factors that in our opinion may pose a threat to validity of the
results we present. We inherit validity threats from the study we replicate and discuss new
threats related to BNs.

5.1 External Validity

McIntosh et al. (Mcintosh et al. 2016) mined Android, LibreOffice, QT, ITK, and VTK,
but in the end the only project with enough bugs and links to reviews for a reasonable
analysis was QT. Given the instability of the predictors and the difficulty in linking reviews
on projects, we decided to use a new modelling framework on a single large successful
project, Google Chrome, instead of a broad study of the predictors across multiple projects.
While single case studies have value (Runeson and Höst 2009b; Menzies et al. 2013), clearly
our results do not generalize beyond these two projects.

5.2 RegressionModel

We remove highly correlated variables and use the same model as McIntosh et al. (McIn-
tosh et al. 2014). We do not consider interactions among variables because the model was
already unstable and the additional complexity would further reduce stability in variable
selection.

Empirical Software Engineering

5.3 Latent Variables

Dealing with hidden variables in Bayesian Networks remains an open research question
and an inherent limitation to all modeling techniques dealing with real observational data.
However, this problem is not a serious threat to our results, since we do not attempt to
establish any causal relationship among the variables. Our assumption to exclude potentially
relevant unobserved variables is ameliorated by the use of prominent predictors of software
defects used in extensive prior research on the subject.

5.4 Discretization

We transform our count variables to discrete variables using the Equal Frequency method
as discussed in Section 4.1.1, and use two or three levels, based on the distribution of
the original variables, for our discretized variables for the sake of simplicity in our final
model. No discretization method is optimal, and the choice of the number of levels has sub-
jectivity. However, as can be seen in the with the conditional probabilities in Table 5 the
interpretations and bins seem reasonable given the software engineering context.

5.5 Threshold

In order to obtain the final structure from averaged model we use an arbitrary threshold of
confidence. We verify the robustness of the network by gradually reducing the threshold
and plotting the new structure. The conclusion of the sensitivity analysis is that the over-
all structure remains stable. In particular, the Markov Blanket of defects variable remains
unchanged even for a threshold value of 0.45.

5.6 False Positive/Negative Edges in the Bayesian Network

We used the best performing BN structure method as reported in (Dey and Mockus 2020),
and the final models were constructed based on repeating the search process 100 times.
However, there is still the possibility of false positive or negative edges in the model, but
the impact of it on the final result is unlikely to be significant.

5.7 Prior Knowledge in BN Structure Search

We do not use any prior knowledge of the problem domain while learning the BN structure.
For instance, we have some prior knowledge about the directions: e.g., the defects node
should not have any outgoing edges since it is measured after the release, and the prior
defects node should not have any incoming edges since this information is known a-priori.
This knowledge can be incorporated into the search process by providing the initial partial
structure as a parameter for the search function. Our unrestricted structure search yielded
a model where the first assumption does hold, but second one does not. There is room for
an argument that incorporating this prior knowledge will result in a more realistic model,
but a counter-argument may be made as well. For example, in our model prior defects
might represent a proxy measure for the inherent defectiveness of the module, and using
the assumed prior knowledge would have excluded this possibility. Since this analysis was
primarily concerned with direct effects on defects and all the discovered links were pointing
inward (rendering the question moot), the ways to specify and incorporate expert knowledge
while being important by itself is beyond the scope of this analysis.

Empirical Software Engineering

6 Discussion of RelatedWork

In 1976 Fagan published the first empirical evaluation of software review, i.e. inspec-
tion (Fagan 1976). The work quantified the defect finding effectiveness of inspection based
on the number of defects found per thousand lines of source code (KLOC) and percentage
of total defects found by inspection. On the IBM system under study 38 defects per KLOC
were found by inspection vs 8 per KLOC found by unit tests. Inspection found 82% of the
total defects found for the released product. In the intervening 40 years, code review has
changed dramatically from the rigid inspection process that Fagan introduced.

Most of the early work on inspection focused on minor variations in the inspection pro-
cess but kept the formality, measurability, and rigidity intact(Martin and Tsai 1990; Knight
and Myers 1993; Kollanus and Koskinen 2009; Laitenberger and DeBaud 2000; Wiegers
2001). The most important finding was that the inspection meeting need not be held in per-
son to find a substantial number of defects (Votta 1993; Eick et al. 1992; Perry et al. 2002).
This lead the way to online review tools that ultimately lead to the currently popular and
widely studied Gerrit (Mukadam et al. 2013; Mcintosh et al. 2016) and the pull request
mechanism of GitHub (Yu et al. 2015; Rahman and Roy 2014; Gousios et al. 2015).

There is also a long history of examining the factors that make peer review effective.
Porter et al.(Porter et al. 1998a) examined both the process and the inputs to the process
(e.g., reviewer expertise, and artifact complexity). In terms of the number of defects found
during review, Porter et al.concluded that the best predictor was the level of expertise of the
reviewers. Varying the processes had a negligible impact on the number of defects found.
This finding is echoed by others (e.g., (Sauer et al. 2000b; Kollanus and Koskinen 2009)).

Rigby et al. (Rigby et al. 2008; Rigby et al. 2012; Rigby and Storey 2011; Rigby et al.
2014) examined open source software based review on multiple projects including the Linux
kernel, the Apache server, and KDE. They created regression models with the number of
defects found during review and the amount of time take for review. They found remarkably
similar practices across project that had very little process, but relied on expert reviewers fre-
quently reviewing each commit. In a study at Microsoft and AMD, Rigby and Bird (Rigby
and Bird 2013) found that these lightweight review practices were also used in industry.
They also found that the focus had shifted from a defect finding activity to a problem solving
one.

Recent works have focused on the non-defect finding benefits of code review. For
example, interviews of Microsoft and OSS developers have been conducted to understand
developer motivations for code review (Bacchelli and Expectations 2013; Bosu et al. 2017).
They found that while developers want to find defects, they were also interested in spreading
knowledge and discussing alternative solutions. Indeed, code review has also been shown
to be effective at spreading knowledge and reducing the impact of code ownership (Rigby
and Bird 2013; Kononenko et al. 2015; Thongtanunam et al. 2016). Other works focused
on the types and utility of feedback provided by developers (Bosu et al. 2015; Beller
et al. 2014; Kononenko et al. 2016) and on the ability of code reviews to identify security
vulnerabilities (Bosu et al. 2014; Munaiah et al. 2017)

Despite these additional benefits of code review, the primary goal is still defect find-
ing (Bacchelli and Expectations 2013; Bosu et al. 2017). The literature abounds with papers
that use product and process metrics to predict where defects will occur, for example, (Fen-
ton and Neil 1999a; Neuhaus et al. 2007; Shivaji et al. 2013). These models have also been
used to understand changes in development practices, such as co-location vs remote devel-
opers (Bird et al. 2011), the impact of developer turnover (Mockus 2010) and much more.
As far as we know, McIntosh et al.’s (Mcintosh et al. 2016; McIntosh et al. 2014) is the first

Empirical Software Engineering

to examine to include peer review measures into a defect model. Earlier works (Porter et al.
1998a; Rigby et al. 2014) measured how many defects where found during the review, but
did not look at the long-term impact of review on defects. As a result, our work first repli-
cates McIntosh et al.’s work that covered only releases (two Qt releases, one release from
ITK, and one from VTK), we expand the study to include six releases of the Chrome project.

A case for use of BNs in the context of Software Engineering was made by Fenton
et.al. (Fenton and Neil 1999b; Fenton et al. 2002), while the earliest publications utilizing
BNs we could find (Herbsleb and Mockus 2003) constructed search of the structure based
on the statistical significance of partial correlations in the context of modeling delays in
globally distributed development. (Stamelos et al. 2003; Pendharkar et al. 2005) considered
the application of Bayesian networks to prediction of effort, (Fenton et al. 2007; Neil and
Fenton 1996; Okutan and Yıldız 2014) used Bayesian networks to predict defects, and (Pai
and Dugan 2007) used BN approach for an empirical analysis of faultiness of a software. In
a similar work, (Bai 2005) used modified BNs (Markov Bayesian network) for software
reliability prediction. (Van Koten and Gray 2006) used BNs for predicting maintainability
of Object Oriented software, and (Bibi et al. 2003) used BNs as a software productivity
estimation tool. We are not aware of prior applications of Bayesian Networks for modeling
software reviews. On the other hand, Bayesian structure learning is a big domain in itself
with a wide range of algorithms, but its use in software engineering context is not very
common.

6.1 Conclusion

Prior works have shown that the defects are both effectively and efficiently found during
code review (Fagan 2002; Porter et al. 1998b; Rigby et al. 2014). Recent works provided
qualitative evidence that reviews provide benefits beyond defect detection, such as knowl-
edge sharing (Sauer et al. 2000a; Bacchelli and Expectations 2013; Rigby and Storey 2011;
Bosu et al. 2015; Kononenko et al. 2016; Rahman et al. 2017). In contrast, the goal of this
work is to understand if code review measures can quantify the longterm impact of peer
review on post-release defects.

6.1.1 Conclusion 1: Reproduction and Replication

McIntosh et al.(McIntosh et al. 2014; Mcintosh et al. 2016) were the first to study the impact
of code review measures on post-release defects. We replicated their study using data they
provided and as well as on the Chrome data we extracted. We discussed our findings with
the first author of the original study. McIntosh et al.found that review participation had
an influence on post-release defects, but we were unable to replicate these results. Instead
we found that review measures contributed little to the performance of the model. The R2

values with and without review measures were almost identical. In agreement with existing
defect prediction work (Mockus et al. 2000; Hassan 2009; Bird et al. 2011; Graves et al.
2000), our results show that prior defects, the module size, and the number of authors are
the strongest predictors of post-release defects. Review measures are neither necessary nor
sufficient to create a good defect prediction model.

6.1.2 Conclusion 2: Inconsistent Models

It is extremely difficult to replicate an empirical software study that involves both min-
ing operational data and statistical modelling. Despite using exactly the same data and

Empirical Software Engineering

modelling approach we obtain substantially different results. In both our study and that of
McIntosh et al. (Mcintosh et al. 2016) a key problem is the need to select an uncorrelated
set of variables. The variable selection process is inherently subjective because differences
in expert opinions may lead to different sets of variables.

Furthermore, in both studies, the models were performed per project and per release.
Even strong predictors, such as prior-defects varied substantially in their predictive power
between project releases. This result suggests an issue with the traditional variable selection
used in regression models.

6.1.3 Conclusion 3: Direct Effects

Regression models require the researcher to define a response and a set of predictors. This
approach lacks tools to distinguish between an actual relationship and the effect of a shared
confound. In contrast, Bayesian Networks remove the need for variable selection and shows
the Bayesian relationships among variables. The term “direct effect” is meant to quantify
an influence that is not mediated by other variables in the model or, more accurately, the
sensitivity of Y to changes in X while all other factors in the analysis are held fixed. Indi-
rect effects can manifest themselves on the response only through affecting the value of
predictors that gave direct effects on the response.

According to our BN, only three measures directly impact post-release defects: the num-
ber of prior defects, the number of minor authors, and the size of the module. The code
review measures, such as rushed reviews, number of review participants, and discussion
length, did not directly impact the number of post-release defects.

6.1.4 Conclusion 4: Generative Models and Indirect Effects

The use of BN provides a way to evaluate the indirect effects that code reviews have
on defects through the influence on other variables. Such indirect effects bedevil tradi-
tional analysis methods that use observational data. If the set of observed variables is
complete, it is possible to calculate an impact of intervention akin to the results that
could be obtained only in randomized experiments. For example, changes that have no
review discussion tend to be associated with files that have had many prior defects
which in turn increase the number of post-release defects. A further example from our
BN model shows that having 5 or more reviewers is seen to increase chance of hav-
ing post-release defects from 20% to 33% through mediating variables allauthors and
minorauthors.

We have demonstrated the difficulties in using traditional models on observational data.
Although individual code reviews find defects, we were unable to find any direct effect
of review measures on post-release defects. By using BN we found that code review mea-
sures indirectly effect post-release defects. We hope that other researchers will use the
approaches presented here to untangle the relationships among software measures. These
indirect effects should provide a more nuanced understanding of software engineering. We
make our scripts and data available in our replication package (Replication package 2018).

References

Almqvist JPF (2006) Replication of controlled experiments in empirical software engineering-a survey

Empirical Software Engineering

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: 2011 33rd International Conference on Software Engineering (ICSE), pages
1–10. IEEE

Arisholm E, Briand LC (2006) Predicting fault-prone components in a java legacy system. In: International
Symposium on Empirical Software Engineering, pp 8–17

Austin P, Tu J (2004) Automated variable selection methods for logistic regression result in unstable models
for predicting ami mortality. Journal of clinical epidemiology 57:1138–46, 12

Axelrod R (1997) Advancing the art of simulation in the social sciences. In: Simulating social phenomena,
pages 21–40. Springer

Bacchelli A, Expectations CB (2013) Outcomes, and challenges of modern code review. In: Proceedings of
the International Conference on Software Engineering, pages 712–721, IEEE Press, 2013

Bai CG (2005) Bayesian network based software reliability prediction with an operational profile. J Syst
Softw 77(2):103–112

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: Which
problems do they fix? In: Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR, pages 202–211, New York, NY, USA, 2014. ACM.

Bibi S, Stamelos I, Angelis L (2003) Bayesian belief networks as a software productivity estimation tool. In:
1st Balkan Conference in Informatics, Thessaloniki, Greece

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t touch my code!: examining the effects
of ownership on software quality. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 4–14. ACM

Bosu A, Carver JC, Bird C, Orbeck J, Chockley C (2017) Process aspects and social dynamics of contem-
porary code review: Insights from open source development and industrial practice at microsoft. IEEE
Trans Softw Eng 43(1):56–75

Bosu A, Carver JC, Hafiz M, Hilley P, Janni D (2014) Identifying the characteristics of vulnerable code
changes: An empirical study. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 257–268, New York, NY, USA, ACM

Bosu A, Greiler M, Bird C (2015) Characteristics of useful code reviews: an empirical study at microsoft. In:
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pp 146–156

Camilo F, Meneely A, Nagappan M (2015) Do bugs foreshadow vulnerabilities? a study of the chromium
project. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pp 269–279

Carvalho AM (2009) Scoring functions for learning bayesian networks. Inesc-id Tec, Rep, pp 12
Carver R (1978) The case against statistical significance testing. Harv Educ Rev 48(3):378–399
Chlebus BS, Nguyen SH (1998) On finding optimal discretizations for two attributes. In: International

Conference on Rough Sets and Current Trends in Computing, pages 537–544. Springer
Dey T, Mockus A (2020) Deriving a usage-independent software quality metric. Empir Softw Eng

25(2):1596–1641
Eick SG, Loader CR, Long MD, Votta LG, Wiel SV (1992) Estimating software fault content before coding.

In: Proceedings of the 14th International Conference on Software Engineering, pp 59–65
Fagan M (2002) A history of software inspections. In: Software pioneers, pages 562–573. Springer
Fagan ME (1976) Design and code inspections to reduce errors in program development. IBM Syst J

15(3):182–211
Fenton N, Krause P, Neil M (2002) Software measurement: Uncertainty and causal modeling. IEEE software

19(4):116–122
Fenton N, Neil M, Marsh W, Hearty P, Marquez D, Krause P, Mishra R (2007) Predicting software defects in

varying development lifecycles using bayesian nets. Information and Software Technology 49(1):32–43
Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng 25(5):675–

689
Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Transactions on software

engineering 25(5):675–689
Fleiss JL, Levin B, Paik MC et al (1981) The measurement of interrater agreement. Statistical methods for

rates and proportions 2(212-236):22–23
Friedman N, Goldszmidt M, Wyner A (1999) Data analysis with bayesian networks: A bootstrap approach.

In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 196–205.
Morgan Kaufmann Publishers Inc.

Garcia S, Luengo J, Sáez JA, Lopez V, Herrera F (2013) A survey of discretization techniques:, Taxonomy
and empirical analysis in supervised learning. IEEE Transactions on Knowledge and Data Engineering
25(4):734–750

Gómez OS, Juristo N, Vegas S (2014) Understanding replication of experiments in software engineering: a
classification. Inf Softw Technol 56(8):1033–1048

Empirical Software Engineering

Gousios G, Zaidman A, Storey M-A, van Deursen A (2015) Work practices and challenges in pull-based
development: The integrator’s perspective. In: Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages 358–368, Piscataway, NJ, USA, IEEE Press

Graves TL, Karr AF, Marron JS, H. Siy (2000) Predicting fault incidence using software change history.
Software Engineering IEEE Transactions on 26(7):653–661

Harrell Jr. FE (2013) rms: Regression modeling strategies. r package version 4.0-0 City
Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st

International Conference on Software Engineering, pages 78–88 IEEE Computer Society
Heckerman D (1998) A tutorial on learning with bayesian networks. In: Learning in graphical models, pages

301–354. Springer
Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally-distributed

software development. IEEE Trans Softw Eng 29(6):481–494
Højsgaard S et al (2012) Graphical independence networks with the grain package for r. J Stat Softw

46(10):1–26
Huang L, Boehm B (2006) How much software quality investment is enough: a value-based approach. IEEE

software 23(5):88–95
James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, volume 112 Springer
Knight JC, Myers EA (1993) An improved inspection technique. ACM Communications 36(11):51–61
Kollanus S, Koskinen J (2009) Survey of software inspection research. Open Software Engineering Journal

3:15–34
Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques
Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: How developers see it. In: 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp 1028–1038
Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating code review quality:

Do people and participation matter? In: Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 111–120. IEEE

Laitenberger O, DeBaud J (2000) An encompassing life cycle centric survey of software inspection. J Syst
Softw 50(1):5–31

Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority
agreement among multiple observers. Biometrics 33:363–374

Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and
their application to expert systems. Journal of the Royal Statistical Society:, Series B (Methodological)
50(2):157–194

Lin M, Lucas JrH. C., Shmueli G (2013) Research commentary—too big to fail: large samples and the
p-value problem. Inf Syst Res 24(4):906–917

Martin J, Tsai WT (1990) N-fold inspection: a requirements analysis technique. ACM Communications
33(2):225–232

McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review
participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 192–201 ACM

Mcintosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empirical Softw. Engg. 21(5):2146–2189

Menzies T, Brady A, Keung J, Hihn J, Williams S, El-Rawas O, Green P, Boehm B (2013) Learning project
management decisions: a case study with case-based reasoning versus data farming. IEEE Trans Softw
Eng 39(12):1698–1713

Mockus A (2010) Organizational volatility and its effects on software defects. In: ACM SIGSOFT / FSE,
pages 117–126, Santa Fe New Mexico, November, pp 7–11

Mockus A (2014) Engineering big data solutions. In: ICSE’14 FOSE, pp 85–99
Mockus A, Fielding RT, Herbsleb J (2000) A case study of open source software development: the apache

server. In: Proceedings of the 22nd international conference on Software engineering, pages 263–272.
Acm

Morales R, McIntosh S, Khomh F (2015) Do code review practices impact design quality? a case study of
the qt, vtk, and itk projects. In: Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, pages 171–180. IEEE

Mukadam M, Bird C, Rigby PC (2013) Gerrit software code review data from android. In: 2013 10th Working
Conference on Mining Software Repositories (MSR), pp 45–48

Munaiah N, Camilo F, Wigham W, Meneely A, Nagappan M (2017) Do bugs foreshadow vulnerabilities? an
in-depth study of the chromium project. Empir Softw Eng 22(3):1305–1347

Nagappan N, Murphy B, Basili VR (2008) The influence of organizational structure on software quality: an
empirical case study. In: ICSE, 2008, pp 521–530

Empirical Software Engineering

Neil M, Fenton N (1996) Predicting software quality using bayesian belief networks. In: Proceedings of the
21st Annual Software Engineering Workshop, pages 217–230 NASA Goddard Space Flight Centre

Neuhaus S, Zimmermann T, Holler C, Zeller A (2007) Predicting vulnerable software components. In:
Inproceedings of the 14th ACM conference on Computer and communications security, pages 529–540
ACM

Okutan A, Yıldız OT (2014) Software defect prediction using bayesian networks. Empir Softw Eng
19(1):154–181

Pai GJ, Dugan JB (2007) Empirical analysis of software fault content and fault proneness using bayesian
methods. IEEE Transactions on software Engineering 33(10):675–686

Pear J (2014) Probabilistic reasoning in intelligent systems: networks of plausible inference
Pendharkar PC, Subramanian GH, Rodger JA (2005) A probabilistic model for predicting software

development effort. IEEE Transactions on software engineering 31(7):615–624
Perez A, Larranaga P, Inza I (2006) Supervised classification with conditional gaussian networks:, Increasing

the structure complexity from naive bayes. International Journal of Approximate Reasoning 43(1):1–25
Perry D, Porter A, Wade M, Votta L, Perpich J (2002) Reducing inspection interval in large-scale software

development. Software Engineering, IEEE Transactions on 28(7):695–705
Pinheiro J, Bates D, DebRoy S, Sarkar D (2011) R development core team. 2010. nlme: linear and nonlinear

mixed effects models. r package version 3.1-97. R Foundation for Statistical Computing Vienna
Porter A, Siy H, Mockus A, Votta L (1998) Understanding the sources of variation in software inspections.

ACM Transactions Software Engineering Methodology 7(1):41–79
Porter A, Siy H, Mockus A, Votta LG (1998) Understanding the sources of variation in software inspections

ACM Transactions on Software Engineering and Methodology
Rahman MM, Roy CK (2014) An insight into the pull requests of github. In: proceedings of the 11th Working

Conference on Mining Software Repositories, MSR 2014, pages 364–367, New York NY. USA, ACM
Rahman MM, Roy CK, Kula RG (2017) Predicting usefulness of code review comments using textual fea-

tures and developer experience. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp 215–226

Replication package (2018) Our scripts and data are available: https://github.com/CESEL/
ReviewPostReleaseDefectsReplication

Report N (2002) The economic impacts of inadequate infrastruc-ture for software testing
Rigby P, Cleary B, Painchaud F, Storey M-A, German D (2012) Contemporary peer review in action: Lessons

from open source development. IEEE software 29(6):56–61
Rigby PC, Bird C (2013) Convergent contemporary software peer review practices. In: Proceedings of the

2013 9th Joint Meeting on Foundations of Software Engineering, pages 202–212 ACM
Rigby PC, German DM, Cowen L, Storey MA (2014) Peer review on Open-Source software projects: param-

eters, statistical models, and theory. ACM Transactions on Software Engineering and Methodology
23(4):35:1–35:33

Rigby PC, German DM, Storey M-A (2008) Open Source Software Peer Review Practices: A Case Study
of the Apache Server. In: ICSE ’08: Proceedings of the 30th International Conference on Software
engineering, pages 541–550, New York, NY, USA, ACM

Rigby PC, Storey MA (2011) Understanding broadcast based peer review on open source software projects.
In: Inproceedings of the 33rd International Conference on Software Engineering, pages 541–550 ACM

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empirical software engineering 14(2):131

Runeson P, Höst M. (2009) Guidelines for conducting and reporting case study research in software
engineering. Empirical Softw. Engg. 14(2):131–164

Sauer C, Jeffery DR, Land L, Yetton P (2000) The effectiveness of software development technical reviews:,
a behaviorally motivated program of research. IEEE Transactions on Software Engineering 26(1):1–14

Sauer C, Jeffery DR, Land L, Yetton P (2000) The Effectiveness of Software Development Technical
Reviews:, A Behaviorally Motivated Program of Research. IEEE Transactions Software Engineering
26(1):1–14

Scutari M (2013) Learning bayesian networks in r, an example in systems biology. http://www.bnlearn.com/
about/slides/slides-useRconf13.pdf

Shivaji S, Whitehead EJ, Akella R, Kim S (2013) Reducing features to improve code change-based bug
prediction. IEEE Trans Softw Eng 39(4):552–569

Shmueli G (2010) To explain or to predict?. Statistical science, pp 289–310
Shull F, Basili V, Carver J, Maldonado JC, Travassos GH, Mendonça M, Fabbri S (2002) Replicating

software engineering experiments: addressing the tacit knowledge problem. In: Empirical Software
Engineering, 2002. Proceedings. 2002 International Symposium n, pages 7–16. IEEE

https://github.com/CESEL/ReviewPostReleaseDefectsReplication
https://github.com/CESEL/ReviewPostReleaseDefectsReplication
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf

Empirical Software Engineering

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in empirical software engineering.
Empirical software engineering 13(2):211–218

Sjoberg DI, Yamashita A, Anda B, Mockus A, Dyba T (2013) Quantifying the effect of code smells on
maintenance effort. IEEE Trans Softw Eng 39(8):1144–1156

Sober E (2002) Instrumentalism, parsimony, and the akaike framework. Philos Sci 69(S3):S112–S123
Stamelos I, Angelis L, Dimou P, Sakellaris E (2003) On the use of bayesian belief networks for the prediction

of software productivity. Inf Softw Technol 45(1):51–60
Thongtanunam P, McIntosh S, Hassan AE, Iida H (2016) Revisiting code ownership and its relationship

with software quality in the scope of modern code review. In: Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 1039–1050, New York, NY, USA, ACM

Van Koten C, Gray A (2006) An application of bayesian network for predicting object-oriented software
maintainability. Inf Softw Technol 48(1):59–67

Votta LG (1993) Does every inspection need a meeting? SIGSOFT Softw Eng. Notes 18(5):107–114
Wiegers KE (2001) peer reviews in software: a practical guide. Addison-wesley information technology

series Addison-Wesley
Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: Determinants of pull request evaluation

latency on github. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pp 367–371

ZCarver JC (2010) Towards reporting guidelines for experimental replications: A proposal. In: 1st interna-
tional workshop on replication in empirical software engineering, pages 2–5. Citeseer

Zheng Q, Mockus A, Zhou M (2015) A method to identify and correct problematic software activity data:
Exploiting capacity constraints and data redundancies. In: ESEC/FSE’15, pages 637–648, Bergamo,
Italy, ACM

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Andrey Krutauz1 ·Tapajit Dey2 ·Peter C. Rigby1 ·Audris Mockus2

Andrey Krutauz
andrey.krutauz@encs.concordia.ca

Tapajit Dey
tdey2@vols.utk.edu

Audris Mockus
audris@utk.edu

1 Concordia University Montreal, Montreal QC, Canada
2 University of Tennessee Knoxville, Knoxville, Tennessee, USA

http://orcid.org/0000-0003-1137-4297
mailto: andrey.krutauz@encs.concordia.ca
mailto: tdey2@vols.utk.edu
mailto: audris@utk.edu

	Do code review measures explain the incidence of post-release defects?
	Abstract
	Introduction
	Case Study Design and Data
	Systems Under Study
	Chrome Data Extraction
	Collected Measures

	Code Review Replication and Reproduction Study
	Variable Selection and Model Construction
	Model Results and Model Comparisons
	Comparing Linear and Non-Linear Models
	Models with and without Review Measures
	Impact of Individual Variables
	Size of component
	Prior defects and all authors
	Review measures

	Bayesian Networks Models
	Background: Bayesian Network
	Discretization
	BN Structure Search: Hill Climbing
	Combining Data for Qt and Chrome Releases
	BN Model Performance Measures
	CPT: the probability of having a Defect Given each Variable

	Results for BN Models
	Variables Directly Affecting Post Release Defects
	Indirect Relationships and Visual Representation
	Addressing the Issue of Highly Correlated Variables — Problem of Subjectivity in Variable Selection

	Limitations
	External Validity
	Regression Model
	Latent Variables
	Discretization
	Threshold
	False Positive/Negative Edges in the Bayesian Network
	Prior Knowledge in BN Structure Search

	Discussion of Related Work
	Conclusion
	Conclusion 1: Reproduction and Replication
	Conclusion 2: Inconsistent Models
	Conclusion 3: Direct Effects
	Conclusion 4: Generative Models and Indirect Effects

	References
	Affiliations

