Software Support Tools and Experimental Work

Audris Mockus
April 5, 2007

1 Introduction

Presently it is difficult to imagine a software project without version control and prob-
lem tracking systems. This may be partly attributed to the emergence of open source
projects where participants never meet each other and increasingly popular commer-
cial globally distributed projects where groups of developers are often separated by
many time zones. Version control and problem tracking tools are a basic necessity
in such communication-poor environments. However, their value is getting more and
more recognized in small co-located projects because information stored in these tools
represent most of the project’s decision making history.

Therefore, the idea to use repositories of software support tools to explain and
predict phenomena in software projects and to create tools that improve software pro-
ductivity, quality, and lead times appears to be promising. This is particularly salient to
many open source software projects where all project related discussion and decisions
are externalized in the mailing lists and other tools. In many such projects it is consid-
ered inappropriate to discuss project matters in private discussions not recorded on the
relevant mailing lists.

The study of open source projects has other significant motivations as well. Such
projects present a conundrum from software engineering perspective as they apparently
lack key aspects such as requirements and design that are thought to be essential for
project’s success. The motivation of volunteer participants can not be convincingly
explained using current economic theories. Open source is considered to be the new
technological commons that, instead of being destroyed by over-use, is, on the contrary,
benefiting from it. Tragedy of the commons is a concept of individually optimal deci-
sions (for example, having a lager herd) leading to suboptimal outcomes for everyone
(common grazing lands destroyed).

A typical analysis of software repositories includes retrieval, summarization, and
validation of data from software project’s version control and problem tracking sys-
tems. Unfortunately, extracting, cleaning and validating, and drawing conclusions from
such data poses formidable challenges because data sources are not designed as mea-
surement tools, and the tools involved as well as practices of using the tools vary from
project to project.

The topic has recently attracted substantial attention including a special issue of
the Transactions on Software Engineering (Vol. 31, No. 6) and an annual workshop on
“Mining Software Repositories”.

Here we attempt to outline the overall methodology and list some of the oppor-
tunities and challenges of using project support systems in empirical work. We start
from the overview of the tools used, continue with methodology and its benefits, and
conclude with the list of remaining challenges.

2 Tools supporting software development

Although software tools are used to support virtually any software development project
there are important differences in the tools and the ways they are used. The first broad
distinction can be made between open source projects and commercial projects. Open
source projects tend to use three core tools. Version control systems such as CVS [3]
(and now, increasingly, Subversion [4]) are used to keep track of the changes to the
code and to grant permission to make changes to project members. Every change is
usually accompanied by an automatic email sent to the special change mailing list
to notify other project participants. Problem tracking systems, such as Bugzilla or
Scarab, provide a way to report and track the resolution of issues. Finally, mailing lists
provide a forum to discuss issues other than changes or problems. Most projects have
a developer mailing list to discuss features, design, and implementation, and a user
mailing list to discuss installation and usage of the product.

Commercial projects tend to contain more numerous and varied tools to track var-
ious aspects of the development and deployment processes. Although some of these
systems contain little information helpful in analyzing software production this may
change as the objectives and scope of the analyses evolve in the future. Sales and
marketing support systems may contain customer information and ratings, purchase
patters, and customer needs in terms of features and quality. The accounting systems
that track purchases of equipment and services contain information about installation
dates for releases. Maintenance support systems should have an inventory of installed
systems and their support levels. Field support systems include information about cus-
tomer reported problems and their resolution. Development field support systems con-
tain software related customer problem tracking and patch installation tracking. Devel-
opment support systems are similar to open source projects and contain feature, devel-
opment, and test tracking. Common version control tools in commercial environments
include ClearCase [25] and Source Code Control System (SCCS) [26] and its descen-
dants. Most projects employ a change request management system that keeps track of
individual requests for changes, which we call Modification Requests (MRs). Prob-
lem tracking systems, unlike change management systems, tend not to have built-in
relationship between MRs (representing problems) and changes to the code. Extended
Change Management System (ECMS) [14] is an example of change management sys-
tem that uses SCCS for version control.

Large software products employ a number of service support tools to help predict-
ing and resolving customer problems. Such systems may be used to model software
availability [17], though their description is beyond the scope of this presentation.

3 Basic methodology

The amount and complexity of available data necessitates the use of analysis tools
except, possibly, in the smallest projects. Such analysis systems contain the following
capabilities [8]:

e Retrieve the raw data from the underlying systems via access to the database
used in the project support tools or by “scraping” relevant information from the
web interfaces of these systems. For example, CVS changes can be obtained via
cvs log command, and Bugzilla data is stored in MySQL relational database.

e (Clean and process raw data to remove artifacts introduced by underlying sys-
tems. Verify completeness and validity of extracted attributes by cross-matching
information obtained from separate systems. For example, match changes from
CVS mail archives, from cvs log command or matching CVS changes to bug
reports and identities of contributors.

e Construct meaningful measures that can be used to assess and model various
aspects of software projects.

e Analyze data and present results.

These capabilities represent processing levels that help users cope with complexity
and evolution of the underlying support systems or the evolution of the analysis goals
by separating these concerns into separate levels that can (and should) be validated
independently. Each level refines data from the previous stage producing successively
better quality data, however it is essential that links to raw data are retained to allow
automatic and manual validation.

In summary, the key desirable features of the analysis include:

1. Iterative refinement of data with each iteration obtaining quantities that may be
more interpretable and more comparable across projects.

2. Each item produced at every stage retains reference to raw data to facilitate vali-
dation.

3. Each processing level has tools to accomplish the step and validation techniques
to ensure relevant results. Because the projects and the processes may differ, it
is essential to perform some validation on each new project.

The main stages and the tools needed to perform them are described in the subsec-
tions below. More detail on tools used for open source projects may be found in [15].

3.1 Development process

The changes to the source code tend to follow a well-defined process. Unfortunately,
that process may greatly vary with project, therefore it has to be obtained from project
development FAQ or from another document on development practices. The practices

need to be validated by interviewing several developers and testers (or other partici-
pants administering or using project support tools) on a small subset of their recent
MRs or changes.

In rough terms, the new software releases or software updates are product deliveries
that contain new functionality (features) and fixes or improvements to the code. Fea-
tures are the fundamental design unit by which the system is extended. Large changes
that implement a feature or solve a problem may be decomposed into smaller self-
contained pieces of work often called modification requests (MRs).

To perform the changes a developer or a tester (or, in open source projects even the
end user) can “open” MRs. The MR is then assigned (or self-assigned) to a developer
who makes the modifications to the code (if needed), checks whether the changes are
satisfactory, and then submits the MR. In some instances of development processes
the tester or code owner may then inspect and approve the MR. The MR ID is usually
included in a the comments or as a separate field in the attributes of the change recorded
by the version control system.

Version control systems (VCS) operate over a set of source code files. An editing
change to an individual file is embodied in a delta: conceptually the file is “checked
out,” edited and then “checked in.” An afomic change, or delta, to the program text
consists of the lines that were deleted and those that were added in order to make the
change. Deltas are usually computed by a file differencing algorithm (such as Unix
diff), invoked by the VCS, which compares an older version of a file with the current
version. Included with every delta is information such as the time the change was made,
the person making the change, and a short comment describing the change. Whereas
a delta is intended to keep track of lines of code that are changed, an MR is intended
to be a change made for a single purpose. Each MR may have many deltas associated
with it.

3.2 Retrieval of raw data

Software changes are obtained from version control systems and contain developer
login, timestamp of the commit, change comment, file, and version id.

Once the set of revisions (and their attributes) are extracted, the underlying code
changes can be extracted by obtaining all versions of all files and the differences be-
tween their subsequent versions. This is the most involved operation but it allows fully
to reconstruct the code evolution in each file and is necessary to obtain the exact content
of each change. The content of a change can then be used to determine if the change
involved comments or code and to identify what functions or statements were changed.

Problem (or bug) reports typically contain MR ID, severity, development stage at
which the problem was detected, software release, description, status history (identity
of individuals, dates, and status changes), and various attachments needed to explain
the nature of the problem or the way it was resolved. Unlike CVS, most problem
tracking systems store information in a relational database. If access to such database
is difficult to obtain, it may be possible to retrieve web pages for each problem report
and extract the relevant attributes from these web pages.

Mailing lists tend to be archived and are, therefore, easy to download and process.
Tools that identify and count threads, extract relevant dates, and patches may be helpful.

Extracting raw data, although time consuming, contains few pitfalls. However,
different projects may use slightly different format or slightly different attributes even
if they use the same systems. The most common issue is likely to be that network
congestion or version control locking issues may prevent obtaining the full set of items.
A more robust option is to retrieve data in smaller chunks.

3.3 Augmenting raw data

System generated artifacts involve data points that do not represent activity of interest.
An example of such artifact is an empty delta where the code is not modified. Such
changes are common when creating branches in the version tree. Another common
problem is copying of CVS repository files. In such case, duplicate delta from two or
more files that had the same origin or are included in several modules are eliminated.

MRs are groups of delta done to perform a particular task. In cases where MR is
indicated in the comment of a delta such grouping can be established. Many projects
using CVS do not follow that practice. A common approach is to group delta that
share login and comment and are submitted within a brief time period. The drawback
of this approach is difficulty of determining the right interval to create breaks and the
possibility that delta with different comments may belong to the same MR. A sample
of groupings needs to be inspected to determine the most suitable time window.

In cases where MR IDs (or other information needed for the analysis) are embedded
within delta comment their ID has to be extracted from the comment and associated
with appropriate delta. This tends to be fairly straightforward using pattern matching
techniques because MR IDs have a well defined format.

The step of augmenting raw data may involve cleaning attribute values that are en-
tered manually, because manual input is always associated with errors. If, for example,
a release number is typed (instead of selected from a list of choices), it may be nec-
essary to inspect all unique values (in their frequency order) and process the output to
change at least the most frequent misspellings to their intended values.

3.4 Producing change measures

Before various measures are produced, the semantics of the attributes may need clar-
ification. For example, each MR may be associated with a release where the problem
was found and with all releases where it was fixed. Many large projects track the prob-
lem not just for a release where it was found but also for the future (and in rare cases
for the past) releases where the problem may manifest itself. Typically, the problem is
first resolved for the release where it has been reported because subsequent releases are
often still in development stages. This has important implications for measurement. If
we are analyzing the number of problems found in a release, we have to count such
MR only once for the release it was detected in. However, if we are looking at effort
and schedule, we have to investigate all MRs resolved in a particular release because it
requires effort to resolve the same MR for each release. Therefore, MRs resolved for
several releases would affect effort and schedule for each release.

Several change measures are described in [21]. Change diffusion measures the files,
modules, and subsystems affected by the change or the developers and organizations

involved in making the change. Change size may be operationalized as the number of
lines of code (LOC) added or deleted and LOC in the files touched by the change. A
convenient proxy for both size and diffusion is the number of delta in a change. The
duration of a change may be measured conservatively as the time elapsed between the
first and the last delta or by comparing MR creation and submission or resolution dates.
Often it is helpful to separate bug fix MRs from MRs used to track new features [20]
and identify MRs associated with customer reported problems. Measures of experience
(number of delta) or productivity (number of MRs resolved per year) can be associated
with a developer or organization and measures of faultiness (fraction of MRs reported
by customers or post unit-test) can be associated with files or modules.

The choice of measures may be dictated by the needs of a particular study, but basic
summaries tend to be useful in most studies.

3.5 Models and Tools

There has been a substantial amount of work involved in modeling software changes.
It was found that past changes are the best predictor of module faults [9] and that the
diffusion and expertise of developers affects the likelihood that a patch will break [21].

The idea that files frequently touched together but not with other files define chunks
that can be maintained independently was investigated in the context of globally dis-
tributed software development in [22] and it was found that MRs spanning such chunks
take longer to complete [11]. It turns out that MRs involving geographically separated
developers take more than twice as long to complete [12].

Models of expertise and relevance can provide most relevant experts [19], most
relevant files [27, 13], or most relevant defects [5].

A general topic of evaluating the effect of software engineering tools and practices
relies on the ability to estimate developer effort [10]. Work in [1, 2, 7] investigates
the effort savings of version sensitive editor, visual programming environment, and
refactoring of a legacy domain.

A number of hypotheses on how open source and commercial software engineering
practices differ and their effect on productivity quality and lead time are investigated
in [18, 6].

At a much higher level entire releases are modeled via changes to predict release
schedule [23]. The work assumes that a random number of fix MRs are generated with
a random delay from each new feature MR. An assumption that the work flow of MRs
in the past releases is similar to the work flow of the current release is used to predict
release readiness [16].

A probability that a customer will observe a failure related to a software problem
is modeled in [24].

4 Advantages and pitfalls of using project support sys-
tems

Probably the most obvious advantage of using project support systems such as cus-
tomer problem tracking system is that the data collection is non-intrusive because such

systems are already deployed and used. However, that does not reduce the need for
in-depth understanding of a project’s development process and, in particular, of how
the support systems are used.

A long history of past projects whose data has been captured in project support sys-
tems enables historic comparisons, calibration, and immediate diagnosis in emergency
situations.

The information obtained from the support systems is often fine grained, at the
trouble ticket/software alarm/customer installation level. However, links to aggregate
attributes, such as features and releases, is often tenuous.

The information tends to be complete, as every action involving development or
support is recorded. However the information about what the action pertains to may
be nontrivial to infer and some of the data entries, especially those not essential for the
domain of activity, tend to be inconsistently or rarely supplied.

The data are uniform over time as the project support systems are rarely changed
because they tend to be business-critical and, therefore, difficult to change without
major disruptions. That does not, however, imply that the process was constant over
the entire period one may need to analyze.

Even fairly small projects contain large volumes of information in the project sup-
port systems making it possible to detect even small effects statistically. This, however,
depends on the extractability of the relevant quantities.

The systems are used as a standard part of the project, so the software project is
unaffected by experimenter intrusion. We should note that this is no longer true when
such data are used widely in organizational measurement. Organizational measurement
initiatives may impose data collection requirements that the development organizations
might not otherwise use and modify their behavior in order to manage the measures
tracked by these initiatives.

The largest single obstacle for using the project systems for analysis is the necessity
to understand the underlying practices and the way the support systems are used. This
requires validation of the values in fields used by the developers and support technicians
to assess the quality and usability of the attribute. Common and serious issues involve
missing and, especially, default values that may render an attribute unusable. Any fields
that do not have a direct role in the activities performed using the project system are
highly suspect and, often provide little value in the analysis. As the systems tend to be
highly focused to track issues or versions, extracting reliable data needed for analysis
may pose a challenge.

It is worth noting that analyzing data from software support systems is labor inten-
sive. At least 95% of effort should be expected to involve understanding the practices
of tool use, cleaning and validating data, and designing relevant measures. There is
no guarantee at the outset of the study that the phenomena of interest would be ex-
tractable with sufficient accuracy. All too often, such obstacles lead to temptation to
model easily-to-obtain yet irrelevant measures, to study phenomena of no practical
significance, and to get fascinated by oddities of the tool generated artifacts.

5 Challenges

The motivation to deploy support system based measurement can come from imme-
diate and relatively straightforward applications in project management, such as dash-
boards showing MR inflow and outflow that help visualize when the project is getting
late or to anticipate the completion date.

Although the information in software support systems represents a vast amount of
untapped resources for empirical work, it remains a challenge to create models of key
problems in software engineering based on that data and to simplify and streamline the
data extraction and validation process. This raises a question of how best to improve
version control and problem tracking tools to facilitate measurement and analysis. Un-
fortunately, it is not simply a question of what attributes to add — many fields in the
existing systems are empty or contain noise in cases where they provide no clear value
to the system users. Therefore, it is of interest to study what information developers
would willingly, easily, and accurately enter in problem tracking and version control
systems.

It remains to be seen how best to characterize a single software project based on its
software repositories and what validation is necessary for that characterization. What
models would be plausible for a single software project?

To confirm findings based on studies of an individual project it may be necessary
to investigate a larger collection of similar projects. How to minimize the effort needed
to validate the compatibility of practices in such a large sample of software projects?

This leads to questions about the role of software repositories in design, planning,
execution, and analysis of experiments. Because the models of projects, people, and
code tend to be based on the properties of changes it is of interest to know which
properties are the most important. In other words, what is the “sufficient statistic”
for a software change? A sufficient statistics is a statistical term meaning a summary
information that is needed to know all the relevant properties of a sample. For example,
a sample from Gaussian distribution can be summarized with just two numeric values
— sample mean and sample variance.

Even though it appears that the use of software repositories should enable answer-
ing novel software engineering questions, most of these questions have yet to be iden-
tified.

References

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to
evaluate the impact of software tools: A case study of the version editor. /IEEE
Transactions on Software Engineering, 28(7):625-637, July 2002.

[2] D. L. Atkins, A. Mockus, and H. P. Siy. Value Based Software Engineering,
chapter Quantifying the Value of New Technologies for Software Development,
pages 327-344. Springer Verlag Berlin Heidelberg, 2006.

[3] Per Cedeqvist and et al CVS Manual. May be found on:
http://www.cvshome.org/CVS/.

[4] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Subversion
Manual. May be found on: http://svnbook.red-bean.com/.

[5] D. Cubranic and G.C Murphy. Hipikat: A project memory for software develop-
ment. TSE, 31(6), 2005.

[6] T Dinh-Trong and Bieman J.M. Open source software development: A case study
of freebsd. IEEE Transactions of Software Engineering, 31(6), 2005.

[7] Birgit Geppert, Audris Mockus, and Frank RoBler. Refactoring for changeability:
A way to go? In Metrics 2005: 11th International Symposium on Software
Metrics, Como, September 2005. IEEE CS Press.

[8] Daniel German and Audris Mockus. Automating the measurement of open source
projects. In ICSE ’03 Workshop on Open Source Software Engineering, page
Automating the Measurement of Open Source Projects, Portland, Oregon, May
3-102003.

[9] T.L. Graves, A. FE. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, 26(2),
2000.

[10] Todd L. Graves and Audris Mockus. Inferring programmer effort from software
databases. In 22nd European Meeting of Statisticians and 7th Vilnius Conference
on Probability Theory and Mathematical Statistics, page 334, Vilnius, Lithuania,
August 1998.

[11] James Herbsleb and Audris Mockus. Formulation and preliminary test of an
empirical theory of coordination in software engineering. In 2003 International
Conference on Foundations of Software Engineering, Helsinki, Finland, October
2003. ACM Press.

[12] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grin-
ter. An empirical study of global software development: Distance and speed. In
23nd International Conference on Software Engineering, pages 8§1-90, Toronto,
Canada, May 12-19 2001.

[13] Miryung Kim and David Notkin. Using a clone genealogy extractor for under-
standing and supporting evolution of code clones. In International Workshop on
Mining Software Repositories, 2005.

[14] Anil K. Midha. Software configuration management for the 21st century. Bell
Labs Technical Journal, 2(1), Winter 1997.

[15] Audris Mockus. Description and roadmap for a system
to measure open source projects. Link to roadmap off
http://sourcechange.sourceforge.net/.

[16] Audris Mockus. Analogy based prediction of work item flow in software projects:
a case study. In 2003 International Symposium on Empirical Software Engineer-
ing, pages 110-119, Rome, Italy, October 2003. ACM Press.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

Audris Mockus. Empirical estimates of software availability of deployed systems.
In 2006 International Symposium on Empirical Software Engineering, page to
appear, Rio de Janeiro, Brazil, September 21-22 2006. ACM Press.

Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open
source software development: Apache and mozilla. ACM Transactions on Soft-
ware Engineering and Methodology, 11(3):1-38, July 2002.

Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach
to identifying expertise. In 2002 International Conference on Software Engineer-
ing, pages 503-512, Orlando, Florida, May 19-25 2002. ACM Press.

Audris Mockus and Lawrence G. Votta. Identifying reasons for software change
using historic databases. In International Conference on Software Maintenance,
pages 120-130, San Jose, California, October 11-14 2000.

Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169-180, April-June 2000.

Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative
approach. IEEE Software, 18(2):30-37, March 2001.

Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predict-
ing effort in software projects. In 2003 International Conference on Software
Engineering, pages 274-284, Portland, Oregon, May 3-10 2003. ACM Press.

Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived soft-
ware quality. In ICSE 2005, St Louis, Missouri, May 2005. ACM Press.

Rational Software Corporation. ClearCase Manual. May be found on:
http://www.rational.com/.

M.J. Rochkind. The source code control system. IEEE Trans. on Software Engi-
neering, 1(4):364-370, 1975.

Annie Ying, Gail Murphy, Raymond Ng, and Mark Chu-Carroll. Predicting
source code changes by mining change history. IEEE Transactions of Software
Engineering, 30(9), 2004.

10

