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Abstract Open source software (OSS) is essential for modern society and, while
substantial research has been done on individual (typically central) projects, only
a limited understanding of the periphery of the entire OSS ecosystem exists. For
example, how are the tens of millions of projects in the periphery interconnected
through technical dependencies, code sharing, or knowledge flow? To answer such
questions we: a) create a very large and frequently updated collection of version
control data in the entire FLOSS ecosystems named World of Code (WoC), that
can completely cross-reference authors, projects, commits, blobs, dependencies,
and history of the FLOSS ecosystems and b) provide capabilities to efficiently
correct, augment, query, and analyze that data. Our current WoC implementation
is capable of being updated on a monthly basis and contains over 24B git objects.
To evaluate its research potential and to create vignettes for its usage, we employ
WoC in conducting several research tasks. In particular, we find that it is capable
of supporting trend evaluation, ecosystem measurement, and the determination
of package usage. We expect WoC to spur investigation into global properties
of OSS development leading to increased resiliency of the entire OSS ecosystem.
Our infrastructure facilitates the discovery of key technical dependencies, code
flow, and social networks that provide the basis to determine the structure and
evolution of the relationships that drive FLOSS activities and innovation.
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1 Introduction

Tens of millions of software projects hosted on GitHub and other forges attest to
the rapid growth and popularity of Free/Libre Open Source Software (FLOSS).
These online repositories include a variety of software projects ranging from class-
room assignments to components, libraries, and frameworks used by millions of
other projects. Such large collections of projects are currently archived in public
version control systems, and, if made available for analysis conveniently, would
represent a unique opportunity to study FLOSS at large and answer both theoret-
ical and practical questions that rely on the availability of the entirety of FLOSS
data. In particular, this infrastructure, referred to as World of Code (WoC) and
described below, allows researchers to conduct a census of open source software
that would provide types and prevalence across projects, technologies, and prac-
tices and serve as a guide to setting policies or creating innovative services. Our
infrastructure facilitates the discovery of key technical dependencies, code flow,
and social networks that provide the basis to understand the structure and evo-
lution of the relationships that drive FLOSS activities and innovation. Such a
large database of software development activities can serve as a basis for “natu-
ral experiments” that evaluate the effectiveness of different software development
approaches. If preserved, it will also facilitate future anthropological studies of
software development [15].

Our objective in the current study is to describe a prototype of an infrastruc-
ture that can store the huge and growing amount of data in the entire FLOSS
ecosystem and provide basic capabilities to efficiently extract and analyze that
data at that scale. Our primary focus is on the types of analyses that require
global reach across FLOSS projects. A good example is a software supply chain
where software developers correspond to the nodes or producers, relationships
among software projects or packages represent the “chain”, and changes to the
source code represent products or information (that flow along the chain) with
corporate backers representing “financing.”

Several formidable obstacles obstruct progress towards this vision. The tradi-
tional approaches for obtaining the repository of a project or a small ecosystem
does not scale well and may require too many resources and too much effort for
individual researchers or smaller research groups. Thus, the community needs a
way to scale and share the data and analytic capabilities. The underlying data are
also lacking in context necessary for meaningful analysis and are often incorrect
or missing critical attributes [42]. Keeping such large datasets up-to-date poses
another formidable challenge.

In a nutshell, our approach is a software analysis pipeline starting from dis-
covery and retrieval of data, storage and updates, and transformations and data
augmentation necessary for analytic tasks downstream. Our engineering principles
are focused on using the simplest possible techniques and components for each spe-
cific task ranging from project discovery to fitting large-scale models. The result is
a conceptual implementation loosely following the microservices architecture [45],
where the design and performance of the loosely coupled components can be in-
dependently evaluated, each service can utilize a database that is optimal for its
needs, and the most computationally-intensive components are extremely portable
to ensure they run on any high-performance platform. Specifically, our prototype
appears to capture almost the entirety of the publicly available source code in ver-
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sion control systems and the latency of updates on the existing hardware platform
does not exceed one calendar month, which is pretty fast given the size of the
dataset and the complexity of the task (See Sections 3.1 and 3.2 for more details).
Furthermore, we built a tool on top of the infrastructure and provided two types
of API to enable wide data access for users.

We begin with an overview of related work in Section 2. The architecture of
the prototype implementation of the infrastructure is discussed in Section 3. We
facilitate wide access to the large data collection by developing a tool on top of our
infrastructure, which is described in Section 4, along with an evaluation of query
performance. We present a couple of applications in Section 5, demonstrating
the tremendous value of this infrastructure to numerous software analytic tasks.
We also provide a tutorial about how to use the WoC infrastructure, using an
example on Java language trend analysis in Section 6. We discuss various ways of
improving the existing infrastructure in Section 7, discuss a few existing limitations
in Section 8, and conclude our paper in Section 9.

2 Related Work

While we are not aware of a complete census of FLOSS with an analysis engine,
several large-scale software mining efforts exist and may be roughly subdivided into
attempts at preservation, data sharing for research purposes, and construction of
decision support tools.

Software development is a novel cultural activity that warrants preservation
as a cultural heritage. The software source code, the only representation of soft-
ware that contains human readable knowledge, needs to be preserved to avoid
permanent loss of knowledge [15]. Software Heritage [15] is a distributed system
involved in collecting and storing large amount of open source development data
from various open source platforms and package hosts. It currently has software
from GitHub, GitLab, Debian, PyPI, etc., and contains 73M projects, 1.7B com-
mits, and 15.6B source files. The main drawback of this particular effort is the lack
of focus on enabling applications to software analytics. The API provided allows
for quick query of every historical particle in a software project and meets the
preservation need, however, it does not grant the access to the full relationships
(e.g., the set of projects containing a given commit) among these particles across
entire collection of software. Quick access to these relationships is crucial in con-
ducting software analytics such as identification of dependencies among artifacts
and authors as well as code spread in the open source community.

One potential value of archiving software lies in the reuse of software artifacts.
For example, Nexus [1] repository manager, allows developers to share software
artifacts in a standard way and provides support for building and provisioning
tools (e.g. Maven) to access necessary components such as libraries, frameworks
and containers.

Commercial efforts, such as BlackDuck or FOSSID1 have proprietary collec-
tions they use to determine if their clients have included open source software
within their proprietary software code. It is generally not clear how complete

1 blackducksoftware.com,fossid.com
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these collections are nor if the companies involved might consider opening them
for research purposes.

In addition to source code and binaries, large scale collection of other software
development resources could be integrated with the source code data. For exam-
ple, GHTorrent [25, 26, 28–30] attempts to record every event for each repository
hosted on GitHub and provides multiple approaches (SQL request and MongoDB
data dump) for data access. The primary limitation is that the collected metadata
is specific to GitHub and it does not include the underlying source code as well.
Therefore, obtaining dependencies encoded within the source code cannot be ac-
complished. FLOSSmole [32] collects open source metadata from various forges as
a base for academic research but only focuses on software project metadata.

Another platform is Candoia [53–56] which provides software development data
collections abstraction for building and sharing Mining Software Repository (MSR)
applications. In particular, Candoia contains many tools for artifact extraction
from different VCSs and bug databases and it also support projects written in
different languages. On top of these artifacts, Candoia created its general data
abstraction for researchers to implement ideas and build tools upon. This design
increased portability and applicability for MSR tools by enabling application on
software repositories across hosting platforms, VCSs and bug recording tools. The
approach is focused on the design and benefits of creating a specialized software
repository mining language. While it abstracts a number of repository acquisition
tasks, it also makes it more difficult to handle operational data problems that tend
to occur at much lower levels of abstraction and tend to be too idiosyncratic for
generalized abstraction. The main drawbacks of Candoia are that it only supports
limited programming language (JS and Java) based projects, and ecosystem-wide
research might be difficult to implement since Candoia relies on users to provide
software related data (e.g., targeted software repository URL) and eco-system wide
compliance is generally low.

Other platforms are aimed at improving reproducibility by providing a repos-
itory of datasets for researchers to share their data. These include PROMISE
Repository [51], Black Duck OpenHub [52], and SourcererDB [46]. PROMISE
Repository is a collection of donated software engineering data. It was created to
facilitate generations of repeatable and verifiable results as well as to provide an
opportunity for researchers to extend their ideas to a variety of software systems.
Black Duck OpenHub is a platform that discovers open source projects, tracks the
development and provides the functionality of comparison between softwares. Cur-
rently, it is tracking 1.1M repositories, connecting 4.2M developers and indexing
0.4M projects. SourcererDB is an aggregated repository of 3K open source Java
projects that are statically analyzed and cross-linked through code sharing and
dependency. On top of providing datasets, it also provides a framework for users
to create custom datasets using their projects.

Apart from providing datasets (repository) for potential users, platforms such
as Moose [16], RepoGrams [49], Kenyon [6], Sourcerer [5], and Alitheia Core [27]
are more focused on facilitating building and sharing MSR tools. Moose is a plat-
form that eases reusing and combining data mining tools. RepoGrams is a tool
for comparing and contrasting of source code repositories over a set of software
metrics and assists researchers in filtering candidate software projects. Kenyon is
a data platform for software evolution tools. It is restricted to supporting only
software evolution analysis. Sourcerer is an infrastructure for large scale collec-
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tion of open source code where both meta data and source code are stored in a
relational database. It provides data through SQL query to researchers and tool
builders but is only focused on Java projects. Alitheia Core is a platform with a
highly extensible framework and various plug-ins for analyzing software on a large
database of open source projects’ source code, bug records, and mailing lists.

Furthermore, there were efforts to standardize software mining data descrip-
tion for enhanced reproducibility [33]. None of the listed platforms focus on both
collection and analysis of the dependencies of the entirety of FLOSS source code
version control data. Further, they contain either limited collections (e.g. only
GitHub, no source code, have only donated data, or do not contain an analysis
engine). For example, it is not possible to answer simple questions such as “In
which projects has a file been used?”, “What projects/codes depend on a specific
module?”, “What changes has a specific author made?” etc.

Some large companies have devoted substantial effort to develop software anal-
ysis platforms for the entire enterprise, aiming to improve the quality of soft-
ware they build and to help the enterprise achieve its business goals by providing
recommendations to software development organizations/teams, monitoring soft-
ware development trends, and prioritizing research areas. For example, Avaya, a
telecommunications company, built a platform [31], which collects software devel-
opment related data from most of its software development teams and third parties
and enabled systematic measurements and assessments of the state of software.
CodeMine [12], is a software platform developed by Microsoft that collects a vari-
ety of source code related artifacts for each software repository inside Microsoft. It
is designed to support developer decisions and provide data for empirical research.
We hope that similar benefits can be realized with the WoC platform targeted to
the entire FLOSS community.

Large scale software mining efforts also include domain specific languages.
Robert Dyer et al. developed Boa [17–21, 47], both as a domain specific language
and as an infrastructure, to ease open source-related research over large scale
software repositories. The approach is focused on the design and benefits of an
infrastructure and language combination. However, the lack of explicit tools to
deal with operational data problems make it of limited use to achieve our aims.
Their collection procedures -discovery, retrieval, storage, update, and completeness
issues (for example, only certain languages are supported)- are not the primary
focus of this effort. The tools to deal with operational data problems common in
version control data are also lacking in Boa.

The system described in this paper is loosely modeled after a system described a
decade ago [40,41]. In comparison, at that time, git was just beginning to emerge
as a popular version control system, but now it dominates the FLOSS project
landscape. The number of software forges and individually hosted projects was
much larger then in contrast to the consolidation of forges and the overwhelming
dominance of GitHub. Furthermore, the scale of the FLOSS ecosystem is more
than an order of magnitude larger now and it continues to experience very rapid
growth. WoC could not, therefore, reproduce that design closely and, instead, is
focused on preserving the original git objects and on creating a design that enables
both efficient updating of this huge database and ways to cross-reference it so that
the complete network of relationships among code and people is readily available.
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3 Building the WoC Infrastructure

The process of mining individual git repositories is complex to begin with [8], but
becomes even more difficult on a large scale [24]. Specifically, using operational
data from software repositories requires resolution to three major problems [42]:
the lack of context, missing attributes or observations, and incorrect data. This
makes critical tasks such as debugging and testing complex and time consuming.
To cope with these big data challenges we employed both vertical and horizontal
prototyping [3, 9, 36,48] before building the complete infrastructure.

In this section, we present a prototype WoC implementation. It has four stages:
project discovery, data retrieval, correction, and reorganization as shown in Fig-
ure 1, which is typical of most big data systems, that use the layered data approach
where the initial layers accumulate and process raw data and the later layers pro-
duce cleaned/augmented data.

Fig. 1 Overarching data flow

3.1 Project Discovery

Millions of projects are developed publicly on popular collaborative platforms/-
forges such as GitHub, Bitbucket, GitLab, and SourceForge. Some of the FLOSS
projects can be identified from the registries maintained by various package man-
agers (e.g. CRAN, NPM) and Linux distributions (e.g. Debian, Fedora). Most
other project repositories, however, are hosted in personal or project-specific sites.
A complete list of FLOSS repositories is, therefore, difficult to compile and main-
tain since new projects and forges are constantly being created and many older
forges disappear continually. There is also a tendency for the FLOSS repositories
to migrate to (or be mirrored on) several very large forges [38]. A number of older
forges provide convenient approaches to migrate repositories to other viable forges
before being shut down. This consolidation has alleviated some of the challenge of
discovering all FLOSS projects [41], though the task remains nontrivial. We discuss
several approaches to project discovery below. To package our project discovery
procedure we have created a docker container2 that has the necessary scripts.

Using Search API: Some APIs may be used to discover the complete collection
of public code repositories within a forge. The APIs are specific to each forge and

2 https://github.com/ssc-oscar/gather
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come with different caveats. Most APIs tend to be rate limited (for user or IP
address) and the retrieval can be sped up by pooling the IDs of multiple users.

Using Search Engine: Search engines (e.g. Google or Bing) can supplement the
discovery of FLOSS project repositories on collaborative forges when the forge
does not provide an API, or when the API is broken. The primary drawback is
the incompleteness of the repositories discovered.

Keyword Search: Some forges provide keyword based search of public reposito-
ries, which is a complementary approach when a forge does not provide APIs for
the enumeration of repositories and the results returned from search engines are
lacking.

Using these and other opportunistic approaches help ensure that they comple-
ment each other in approximating the publicly available set of repositories though
it does not guarantee the completeness. We expected that various ways of crowd-
sourcing the discovery (with incentives to share a project’s git URL) would help
increase the coverage in the future.

3.2 Project Retrieval

This data retrieval task can be done in parallel on a very large number of servers
but requires a substantial amount of network bandwidth and storage. The simplest
approach is to create a local copy of the remote repositories via git clone command.
As of May 2019, we estimate over 73M unique repositories (excluding GitHub
repositories marked as forks, repositories with no content, and private repositories).
A single thread shell process on a typical server CPU (we used Intel E5-2670) with
no limitations on network bandwidth clones between 20K and 50K repositories
(the time varies dramatically with the size of a repository and the forge) in 24
hours. To clone 73M repositories in one week would, therefore, require between
two and five hundred servers. However, we do not possess dedicated resources of
that size and, therefore, optimize the retrieval by running multiple threads per
server and retrieving a small subset of the repositories that have changed since the
last retrieval. Specifically, we use five Data Transfer Nodes of a cluster computing
platform3.

3.3 Data Extraction

Code changes are organized into commits that typically change one or more source
code files within the project. Once the repository is cloned as described above, we
extract the Git objects4 from each repository and store them in a single database.

3.3.1 Data Model

Git [10] is a content-addressable filesystem containing four types of objects. The
reference to these objects is a SHA15 [22] calculated based on the content of that

3 No. node: 300, Bandwidth up to 56 Gb/s
4 https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
5 https://en.wikipedia.org/wiki/SHA-1
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object. A few typical Git objects are described below.
commit: A commit is a string including the SHA1’s of commit parent(s) (if any),
the folder (tree object), author ID and timestamp, committer ID and timestamp,
and the commit message.
tree: A tree object is a list that contains SHA1’s of files (blobs) and subfolders
(other trees) contained in that folder with their associated mode, type, and name.
blob: A blob is the compressed version of the file content (the source code) of a
file.
tag: A tag is the string (tag) used to associate readable names with specific versions
of the repository.

Figure 2 illustrates the relationships among the Git objects described above.
The snapshot at any entry point (commit) is constructed by following the arrows
from left side to right side. Each commit points to a tree(folder), and each tree
points to blobs(files in this folder) inside it and its subtrees(subfolders).

Fig. 2 Git objects

3.3.2 Object Extraction

While a standard Git client allows extraction of raw git objects, it displays them
for manual inspection. For bulk extraction of the git objects, first we list all ob-
jects within the git database, categorize them, and then create a bulk extractor
based on a portable pure C implementation of libgit2 6. We run listing and ex-
traction using 16 threads on each of the 16-CPU node on a cluster7. The process
takes approximately two hours for a single node to process 50K repositories. The
extraction procedure represents a microservice.

3.4 Data Storage

The collection of public Git repositories as a whole replicates many of the same
git objects hundreds of times [41]. Without removing this redundancy, the re-
quired storage for the entire collection exceeds 1.5PB, and it also makes analytics
tasks virtually impossible without extremely powerful hardware. Many reasons for
this redundancy exist, such as pull-based development, usage of identical tools or
libraries, and copying of code.

To avoid redundancy of git object among repositories, we store all git objects
into a single database. The database is organized into four parts corresponding to

6 https://libgit2.org/
7 CPU: E5-2670, No. node: 36, No. core: 16, Mem size: 256 GB
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each type of git object. Each part is further separated into a cache and content.
The cache is used to rapidly determine if the specific object is already stored in
our database and is necessary for data extraction described above. Furthermore,
the cache helps determine if a specific repository needs to be cloned. If the heads
(the latest commits in each branch in .git/refs/heads) of a repository are already
in our database, there is no need to clone the repository altogether.

Cache database is a key-valued database, with the twenty byte Git object
SHA1 being the key and the packed integer (indexing the location of the object
in the corresponding value database) being the value. The value database consists
of an offset lookup table that provides the offset and the size of the compressed
git object in a binary file (containing concatenated compressed git objects). While
this storage allows for a fast sweep over the entire database, it is not optimal for
random lookups needed, for example, when calculating diffs associated with each
commit. For commits and trees, therefore, we also create a key value database
where key is SHA1 of the git object and value is the compressed content of the
said object. Cache performance is relatively fast: a single thread on Intel E5-2623 is
capable of querying of 1M git objects in under 6 seconds, or over 170K git objects
per second per thread. This can be multi-threaded and run on multiple hosts, thus
reaching any desired speeds with expanded hardware.

Needless to say, with 24B objects occupying over 80TB we need to use parallel
processing to do virtually anything. Thankfully, we can use SHA1 itself to split the
database into pieces of similar size. We, therefore, split each of the database into
128 slices based on the first seven bits of Git object SHA1. This results in 128 key-
offset cache databases for all four types of objects, 128 content databases as flat
files for the four types of objects, and 128 key value databases for commits and
trees: 128*(4+4+2) databases with each capable of being placed on a separate
server to speed up parallel tasks. The individual databases containing content
range from 20MB for tags up to over 0.5TB for blobs. The largest individual cache
databases are over 2Gb for tree object SHA1s.

Databases are fragile and may get corrupted due to hardware malfunction,
internet attack, pollution/loss by unrecoverable operation, etc. To enhance the
robustness and reliability and to avoid permanent data loss, we maintain three
copies of the databases: two copies on two separate running servers and one copy
on a workstation that is not permanently connected to Internet. In the future, we
will consider keeping a copy using a commercial cloud service.

Furthermore, due to the size of the data and complexity of the pipeline, some
of the objects may have been missed or have been retrieved but are not identical
to originals. Techniques to validate the integrity of the data at every stage of the
process are necessary. We therefore, include numerous tests to ensure that only
valid data gets propagated to the next stage.

In particular, the errors when listing and extracting objects are captured and
the operation is repeated in case a problem occurs. The extracted objects are
validated to ensure that they are not corrupt and also to ensure that they are not
going to damage the database or the analytics layer. To validate correctness, the
object is extracted per git specifications and recreated from scratch. The SHA1
signature is compared to ensure it matches that of the original object. A substantial
number of historic objects have issues due to a bug in git that has since been fixed.
Furthermore, a much smaller number of objects also had issues that we assume
are either caused by problematic implementations of git or problems in operation
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(zero-size objects that may be occasionally created when git runs out of disk space
during a transaction).

Despite the scrubbing and validation efforts, some of the data may still be
problematic or missing, therefore a continuous process of checking the database
for missing or incorrect data is needed. We plan to add a missing object recovery
service that identifies missing commits, blobs, and trees, and retrieves and stores
them (in case they are still available online).

3.5 Update

The process of cloning all GitHub repositories takes an increasing amount of time
with the growth in size of existing repositories and the emergence of new ones, given
fixed hardware. Currently, to clone all git repositories (over 90M including forks),
we estimate the total time to require six hundred single-thread servers running
for a week and the result would occupy over 1.5PB of disk space. Fortunately,
git objects are immutable and we can leverage that to simplify and speed up the
updates. More generally, to get acceptable update times, we use a combination of
two approaches:

– Identify new repositories, clone and extract Git objects
– Identify updated repository and retrieve only newly added Git objects

The work flow is illustrated in Fig. 3.

Fig. 3 Update workflow

In fact, only approximately three million new projects were created and an
additional two million updated during Dec, 2018.
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3.5.1 Procedures for new repositories

Forge-specific APIs are utilized to obtain the complete list of public repositories as
described above. A comparison with prior extract yields new repositories. The list
may include renamed repositories and forks. We can exclude forks for GitHub, since
it is an attribute returned by GitHub API. Other forges contain fewer repositories,
so the forks are not large enough to be a concern.

3.5.2 Procedures for updated repositories

First we need to identify updated repositories from the complete list of reposi-
tories. Since we are not sure how GitHub determines the latest update time for
a repository, we use a forge-agnostic way of identifying updated repositories. We
modified the libgit2 library so that we can directly obtain the latest commit of
each branch in a Git repository for an arbitrary Git repository URL, without the
need to clone the repository. If any of the heads contain a commit that is not
already in our database, the repository must have had updates and needs to be
obtained.

Fig. 4 Incremental commits

Fig. 5 Future workflow

We are working on a strategy to reduce the amount of bandwidth needed to do
the updates. Instead of cloning an updated repository, we’d like to retrieve only
incremental Git objects (see Fig. 4) that are generated during the time gap between
two consecutive updates. This can be easily done via git fetch for a git repository,
but since we do not keep the original git repository and it is time consuming to pre-
populate it with git objects, we plan to customize git fetch protocol by inserting
additional logic in order to use our database backend that comprises git objects
from all repositories. The procedure consists of two steps:
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1. Customize git fetch protocol8 to work without git’s native database.
2. Keep track of the heads for each project that we have in our database so that

we can identify latest commits to the modified git fetch.

For the second step, the database backend will use the project name as input
and provide the list of heads for the project. These heads are then sent to the
remote so that the set of latest commits (and related trees/blobs) will be calculated
out and transferred back as illustrated in Figure 5. By following this strategy, we
could drastically speed-up mining incremental Git objects from repositories in each
update.

3.6 Data Reorganization

Objects in Git are organized in a way for fast reconstruction of a repository at
each commit/revision. In fact even the seemingly simple operation of identifying
what files changed in a commit is computationally intensive. Furthermore, there
is no consideration for the projects, files, or authors as first-class objects. This
limits the usability of the git object store for research and suggests the need for
an alternative data design. Since our objective is to obtain relationships among
projects, developers, and files, we have created an alternative database that allows
both a rapid lookup of these associations and sweeps through the entire database
that make calculations based on such relationships.

3.6.1 Analytic Database

The scale of the desired database limits our choices. For example, a graph database 9

like neo4j would be extremely useful for storing and querying relationships, includ-
ing transitive relationships. However, it is not capable (at least on the hardware
that we have access to) of handling hundred’s of billions of relationships that exist
within the entire FLOSS. In addition to neo4j, we have experimented with more
traditional database choices. We evaluated common relational databases MySQL
and PostgreSQL and key value databases or NoSQL [35] databases MongoDB, Re-
dis, and Cassandra. SQL like all centralized databases [2] has limitations handling
petabyte datasets [37, 50]. We, therefore, focus on NoSQL databases [43] that are
designed for large scale data storage and for massively parallel data processing
across a large number of commodity servers [43].

For the specific needs of the cache database and for key value stores for the
analytics maps we use a C database library called TokyoCabinet (similar to berke-
ley db) using a hash-indexed as described above, to provide approximately ten
times faster read query performance than a variety of common key value databases
such as MongoDB or Cassandra. Much faster speed and extreme portability lead
us to use it instead of more full-featured NoSQL databases.

8 git fetch downloads only new objects from the remote repository
9 a database that uses graph structures for semantic queries with nodes, edges and properties

to represent and store data
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3.6.2 Maps

Apart for the general requirement to be able to represent global relationships
among code, people, and projects, we also consider the basic patterns of data
access for several specific research tasks as use cases in order to design a database
suitable for accomplishing research tasks within a reasonable time frame. The
specific use cases are:

1. Software ecosystem research would need the entire set of repositories belonging
to a specific FLOSS sub-ecosystem, e.g., the set of all repositories that use
Python language.

2. Developer behavior research would need to identify all projects that a specific
developer worked on, the files they authored, and software technologies they
used.

3. Code reuse research would need to identify all projects where a specific piece
of code occurs and determine how it got there.

To support the first task, a mapping from file names to project names would
be necessary. The second task would require author to project, file, and to content
of the versions of the file authored by that developer (in order to access the source
code and identify what components or libraries were employed). The last task
would require a map between blobs (that contain snippets of code) and projects.
It would also require a map between blobs and commits in order to identify the
time when the specific piece of code was introduced.

We have identified a number of objects and attributes of interest here: projects,
commits, blobs, authors, files, and time. The complete set of possible direct maps
for an arbitrary pair is 30. Since author and time are properties of the commit
and are not properties of projects, blobs, or files, it makes sense to place com-
mit at the center of this network database. The author-to-file map can then be
constructed as a composition of author-to-commit and commit-to-file maps; and
author-to-project map can be constructed via author-to-commit and commit-to-
project maps. We also need to associate file names with the corresponding blobs
since a single commit may create multiple files. Out of the 12 maps10, only 10
need to be instantiated because commit-to-author and commit-to-time maps are
embedded as the properties of the commit object.

In addition to having the commit at the center, for certain tasks we also needed
to have a blob-to-file map as well. For example, we want to identify module use in
Python language files. First, we need to identify relevant files via suitable extension
(e.g., .py), then we can determine all the associated commits via file to commit
map. These commits, however, may involve other files and if we use commit to
blob map to identify associated blobs, we would get blobs not just for python, but
also for all files that were modified in commits that touched at least one python
file. The file-to-blob map allows us to reduce the number of blobs that need to be
analyzed dramatically.

In addition to these basic maps we create additional maps, such as the author
ID to author ID map for IDs that have been established to belong to the same
person (see Section 5.2), and project to project maps to adjust for the influence

10 bidirectional maps between the commit and five objects/attributes and between file and
blob
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of forking. Project-to-project maps are based on the transitive closure of the links
induced between two projects by a shared commit. Explicit forks that can be
obtained as a GitHub project property do not generalize to other forges and, even
on GitHub, represent only a fraction of all repositories that have been cloned from
each other and then developed independently. Project-to-project map also handles
instances where repositories exist on multiple forges or when they are renamed.

As with the original data we utilize multiple databases and use compressed files
for sweep operations and TokyoCabinet for random lookup. We separate maps into
32 instead of 128 databases we use for the raw objects since maps tend to be much
smaller in size than, for example, blobs. For commits and blobs we use the first
character of SHA1 for database identification. For authors, files, and projects,
we use the first byte of FNV-1a Hash 11. Both approaches yield quite uniform
distribution over bins.

As noted above, the maps from commit to metadata are not difficult to achieve
because most of the metadata is part of the content of a commit object. However,
git blobs introduced or removed by a commit are not directly related to the com-
mit and need to be calculated by recursively traversing trees of the commit and its
parent(s). A Git commit represents the repository at the-state-of-world and con-
tains all the trees (folders) and blobs (files). To calculate the difference between a
commit and its parent commit, i.e., the new blobs, we start individually from the
root tree that is in the commit object, traverse over each subtree and extract each
blob. By comparing two sets of blobs of each commit, we obtain the new blobs
for the child commit. This step requires substantial computational resources, but
the map from the commit to the blobs authored in a commit is used in numerous
research scenarios and, therefore, is necessary. On average, it takes approximately
one minute to obtain changed files and blobs for 10K commits in a single thread.
With 1.5B commits, the overall time for a single thread would take 104 days, but
it needs to be done only on approximately 20-40M new commits generated each
month.

4 Architecture for research workflows

To make WoC more easily usable in a wide variety of research scenarios, we have
designed an architecture to help simplify, support, and evaluate the implementa-
tion of research tasks. This section describes that architecture, along with critical
performance benchmarks to inform the users on the computational tasks for al-
ternative implementations.

4.1 Architecture

The research workflow architecture is illustrated in Figure 6. The figure shows the
application layer, built on top of the three lower layers:
Application Layer: This layer is where the research tasks are implemented by
use of WoC. We provide a library of applications to illustrates various types of
research analyses that can be implemented using WoC.

11 http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-1a
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Fig. 6 Architecture of the Tool

API Layer: The applications may use Shell or Python API, or may reuse or
modify Perl files (used to support Shell API) to access and process the WoC
data. A more detailed description of the Shell and Python APIs can be found in
Section 4.2.
Data Layer:

As described above, to be able to identify the relationships rapidly we con-
structed several types of relationships (or basemaps) that cross-reference the git
objects and other properties. In particular, we treat project, commit, blob, author,
file name as the first class objects and map them to their properties (e.g., time,
parent commit, head commit, child commit, etc.). In addition to these basemaps,
we also construct technical dependencies that are derived from importing exter-
nal dependencies for several languages (Language Maps). These dependencies are
calculated based on each version of a file. The data is described in more detail in
Section 4.3.
Storage Layer All the data are hosted on six servers, which are connected to each
other through NFS (network file system). Users can login to any of the servers (da0
to da5) and and run their applications on multiple servers.

4.2 API

We support three primary APIs for WoC users to access the dataset: Shell, Python,
and Perl. Presently, running an application requires being logged in to one of the
hosting servers.

4.2.1 Shell API

For the lowest level access we provide Shell API that is modeled after core phi-
losophy of Unix12: have a set of specialized commands that are connected in a

12 https://en.wikipedia.org/wiki/Unix philosophy
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workflow through their standard input and output and via creation of files, E.g.,
according to Doug McIlroy: “Make each program do one thing well. To do a new
job, build afresh rather than complicate old programs by adding new features”.
The entire application workflow can be built using exclusively shell and standard
Unix utilities such as ‘join’, ‘sort’, ‘cut’, ‘uniq’, ‘sed’, and ‘wc’ with added spe-
cialized commands to extract data from key-value databases. The key information
for this API is the knowledge of how to use shell and standard Unix command
and the description of the databases. To enable this approach we also provide all
databases as key-sorted (and compressed) text files that can be used with ‘grep’,
‘join’, or ‘sort’ to produce any desired queries. We also add a random lookup oper-
ation getValue mapname to access values of a key object in the provided mapname.
In addition, we add the command showCnt type to access the content of each
git object given in the standard input where type is one of tag, tree, commit,

blob. A few examples are listed below:

– Checking the content of a Git object given a SHA:

1 # (on da3) e.g., show a commit SHA’s content:
2 echo e4af89166a17785c1d741b8b1d5775f3223f510f | showCnt commit
3 # Output Formatting:
4 # Commit SHA;Tree SHA;Parent Commit SHA;Author;Committer;Author Time;

Commit Time
5 e4af89166a17785c1d741b8b1d5775f3223f510f;

f1b66dcca490b5c4455af319bc961a34f69c72c2;
c19ff598808b181f1ab2383ff0214520cb3ec659;Audris Mockus <audris@utk.
edu>;Audris Mockus <audris@utk.edu>;1410029988 -0400;1410029988 -0400

– Given an object, check its related objects:

1 # (on da3) e.g., show the names of the projects associated with a given
commit SHA:

2 # ‘‘getValue" command takes a database name as an argument and keys
presented as standard input and produces key-value pairs as output.

3 echo e4af89166a17785c1d741b8b1d5775f3223f510f | getValue /da0_data/
basemaps/c2pFullP

4 # Output Formatting: Commit SHA;ProjectNames
5 e4af89166a17785c1d741b8b1d5775f3223f510f;W4D3_news;chumekaboom_news;

fdac15_news;fdac_syllabus;igorwiese_syllabus;jaredmichaelsmith_news;
jking018_news;milanjpatel_news;rroper1_news;tapjdey_news;
taurytang_syllabus;tennisjohn21_news

4.2.2 Python API

At the top level of abstraction, we provide Python API via package oscar13 that
implements the key notions of author, file, project, commit, blob, and tree as the
corresponding classes. The enumeration below describes Python classes that were
created by wrapping up data objects 1. Each of the classes has a couple of methods
attached to access corresponding properties. For the methods that contain slash(/),
the method before slash returns actual data in string, while the one after return a
generator of corresponding python instances. E.g. Author.commit shas() returns

13 https://github.com/ssc-oscar/oscar.py
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a list of the SHAs of commits that the person authored; Author.commits() returns
a generator of Commit objects built from those SHAs.

1. Author(‘...’) - initialized with a combination of name and email, e.g. “Albert
Krawczyk <pro-logic@optusnet.com.au>”
– .commit shas/commits - all commits by this author
– .project names - all projects this author has committed to

2. Blob(‘...’) - initialized with SHA of blob
– .commit shas/commits - commits creating or modifying (but not removing)

this blob
3. Commit(‘...’) - initialized with SHA of commit

– .blob shas/blobs - all blobs in the commit
– .child shas/children - the commit that follows this commit
– .changed file names/files changed
– .parent shas/parents - the commit that this commit follows
– .project names/projects - projects this commit appears in

4. Commit info(‘...’) - initialized like Commit()
– .head
– .time author - the commit time and its author

5. File(‘...’) - initialized with a path, starting from a commit root tree. This
represents a filename, regardless of content or repository; e.g. File(“.gitignore”)
represents all .gitignore files in all repositories.
– .commit shas/commits - All commits that include a file with this name

6. Project(‘...’) - initialized with project name/URI
– .author names - all author names in this project
– .commit shas/commits - all commits in this project

4.2.3 Perl APIs

While the Python API provides high level of abstraction, it is not very compu-
tationally efficient. In order to provide an intermediate level of efficiency between
that of Python and Shell APIs, we also provide a way to implement applications or
their components in Perl language. For example, the shell commands getValue and
showCnt are both implemented in Perl. The Perl API instead of creating classes of
objects as in Python, it handles the maps directly. To support writing WoC work-
flows in Perl we provide a variety of utility functions in package ‘WoC.pm.’ We
also have, over the course of evolving WoC, created a number of applications that
can be used as templates and modified by the users for their needs. For example,
we can parse the content of the commit to obtain its tree, parent commit, author,
and time:

1 use WoC;
2 my ($tree, $parent, $authName, $authEmail) = ("","","","");
3 my ($pre, @rest) = split(/\n\n/, $code, -1);
4 for my $l (split(/\n/, $pre, -1)){
5 $tree = $1 if ($l =~ m/^tree (.*)$/);
6 $parent .= ":$1" if ($l =~ m/^parent (.*)$/);
7 ($authName, $authEmail) = gitSignatureParse($1) if ($l =~ m/^author (.*)$/);
8 }
9 ($auth, $ta) = ($1, $2) if ($auth =~m/^(.*)\s(-?[0-9]+\s+[\+\-]*\d+)$/);

10 $parent =~ s/^:// if defined $parent;
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We also have examples on how to parse, for example, a python source code
to obtain the dependencies defined by the import statements (a segment is shown
below):

1 for my $l (split(/\n/, $code, -1)){
2 if ($l =~ m/^\s*import\s+(.*)/) {
3 my $rest = $1;
4 $rest =~ s/\s+as\s+.*//;
5 my @mds = $rest =~ m/(\w[\w.]*[\,\s]*)*/;
6 for my $m (@mds) { $matches{$m}++ if defined $m};
7 }
8 if ($l =~ m/^\s*from\s+(\w[\w.]*)\s+import\s+(\w*)/) {
9 if ($2 ne ""){ $matches{"$1.$2"} = 1; }

10 else{ $matches{$1} = 1; }
11 }
12 }

For more detail please refer to the tutorial page of our repository14.

4.3 Description of the WoC Data

We use abbreviated object names for WoC data and basemaps as shown in Table 1.
As noted above, types of basemaps are created to represent relationships among
these objects, which are illustrated in Figure 7. Notice that some maps are missing
in Figure 7, because initially we built maps with commit being the core, and
other maps were built as certain research tasks the users were attempting to do
would benefit from them. The basemaps are stored in TokyoCabinet databases for
random queries and key-sorted compressed text files of these basemaps are also
created to enable quick sweeps over the whole dataset and to enable the shell API.

In addition to the basemaps, programming language based maps are created
to enable language oriented analytic and applications. These contain mappings
that list repositories, and the modules they depended on, at a given UNIX times-
tamp under a specific commit. The format of each entry in these maps are like
the following, where module1;module2;... represent the modules that repository
depended on at the time of that commit:

commit;repository_name;timestamp;author;blob;module1;module2;...

So far, 12 maps are ready including C, C#, Java, JavaScript, Python, R, Rust,
Go, Swift, Scala, and Fortran. It is likely that more language maps will be added
in the future.

Table 1 Objects Terminology

Object Abbreviation Annotation Entity Type

a author string
b blob SHA
c commit SHA
f file name string
p project string

14 https://bitbucket.org/swsc/lookup/src/master/
15 ‘File’ in this figure refers to ‘File name’
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Fig. 7 Maps between primary objects15(Basemaps)

4.4 Performance Benchmark

The anticipated workflow of a specific research task involves a set of queries that
proceed from selecting an initial sample of interest such as a set of files related to
a specific language, a set of projects or authors with certain properties or other
collection. This is typically followed up by one or more network operation such
as identifying blobs associated with the selected files, projects associated with the
initial set of developers and so on. These tasks can typically be implemented in
numerous ways, each leading to different computer memory, disk IO, and compu-
tational overheads. To help users decide upon the the best way to proceed and,
more generally, to gauge the time needed for their desired workflow, we set up
experiments to test our WoC infrastructure performance on such queries. Our
existing basemaps should meet users’ need in most cases by a query of a single
map (e.g. author to commit). However, in cases where a map is not ready (e.g.
file to project in Figure 7), users might need to combine/join two or more maps
to achieve their goal. We, therefore, tested the performance of both single map
queries and combined map queries, and present the results below.

Since the file16 to project map is not pre-computed, we can start from the file
to commit map to test single map query performance and then join the results
with the commit to project map to test the combined map query. We randomly
selected 100, 1K, 10K, 100K, and 1M file names from our dataset, and used the
Python and Shell APIs without any other task being run on the server to find
the corresponding commits in which the files were modified and the projects those
commits belong to. We collected the time it took to run each test and show them
in Figure 8 for the single map queries, and Figure 9 for the combined map queries.

From Figures 8 and 9, we see that the run time increases linearly as the task size
increased, highlighting the scalability of the WoC infrastructure. We also found
Shell API to be three to four times faster than Python API (Figure 8 and right
part of Figure 9), for the same query. One hypothesis is the interpreted nature of

16 By file, we refer to the file name (including folder path) in the rest of our paper.
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Fig. 8 Single Map Query Performance

Fig. 9 Combined Maps Query Performance

Python. Specifically, the data access parts of Shell API are implemented in Perl.
While Perl is an interpreted language just as Python, many of the functions are
implemented natively in C language, while in Python more performance-critical
code is interpreted.

It is worth noting that the x-axis on Figure 9 represents the number of queries,
which in this scenario is the sum of the number of file to commit queries and the
number of commit to project queries.

We tested the performance of the tool for 100 to 1M queries. If a research
workflow involves the initial sample of objects for a very large part of the WoC
database, we recommend leveraging the database in the form of compressed text
for key-value basemaps instead, because as the number of random access queries
increases, it exceeds the time it takes to sweep the entire database using efficient
shell commands such as grep. In fact, a single sweep of the file to commit com-
pressed data only takes 38 hours while 1M queries of the file to commit basemap
takes 56 hours using Shell API.
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5 Applications

To evaluate if the experimental platform is capable of supporting research tasks
conducted as a part of actual investigations and to provide a set of vignettes for
other researchers, we conducted two types of studies. First, we implemented several
basic and involved research tasks that require the entirety of FLOSS data as a part
of the investigation. Furthermore, we also recruited three researchers external to
our group to either conduct investigations of their own utilizing WoC or to provide
us with their research problems that can only be solved by using WoC. Below we
report both the experiences and results from these experiments.

5.1 Use of programming languages

Language popularity may influence developers decisions as it may affect the market
for their software as well as their job prospects. For example: What language-
specific API should developer provide for their component? What language should
the developer use to implement their product?

To plot, for example, Java language use trend we use WoC to identify all files
with .java extension. Then, via file-to-commit map, obtain the complete set of
commits authoring these files. Commit dates are used to plot the time trends of
language-specific commits, authors (property of a commit), projects (via commit
to project map) and, if desired, lines of code changed. The entire process is highly
parallelizable since each map is separated into 32 instances and can be processed
independently. The entire calculation, while not interactive on our hardware, can
be performed in tens of minutes. For illustration, we show the ratio of the number
of commits over the number of developers (a measure of productivity) each year
in Fig. 10. The ratio decreases for most languages, perhaps because as a language
becomes more popular, the less experienced contributors join and lower the average
productivity.

5.2 Correcting Developer Identity Errors

One of the particularly troubling data quality issues with version control systems
is developer name disambiguation. Often, names and emails of developers are miss-
ing, incomplete, misspelled or duplicate [7,23]. Performance of any disambiguation
algorithm depends on the distribution of the actual misspellings in the underly-
ing data. In order to design and evaluate corrective algorithms, it is important
to study a large collection of actual data and unearth patterns of irregularities
that compromise data quality. WoC contains a nearly complete collection of git
author ids (name and email combinations) and is, thus, more representative of
such irregularities than any specific project.

To obtain author IDs we use author-to-commit map containing roughly 30
million distinct author IDs. Common error patterns include organizational ids
and emails (Mozilla, Linux, Google etc), names of tools and projects (OpenStack,
Jenkins, Travis CI), roles such as (admin, guest, root etc.) and words that preserve
anonymity (student, nobody, anonymous etc) as a part of their credentials. We also
found a large number developer IDs to be misspelled.
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Fig. 10 Productivity by Language

Traditional identity correction approaches rely on the misspelling patterns of
author ID (the full name and email) [7, 57, 58]. With WoC data, we can enhance
the traditional string matching with behavioural comparison, by creating similar-
ity measures between author IDs using files modified by developers, time patterns
of commits, and writing styles in commit messages. For illustration — two au-
thor IDs that modify a similar set of files may suggest that these IDs belong to
the same developer. To implement file-based similarity, we used author to commit
and commit to file maps to obtain the set of files modified by a single author
ID. Then file-to-commit and commit-to-author maps were used to calculate sim-
ilarity using weighted Jaccard measure. Commit message text was used to fit a
Doc2Vec [34] model to associate each author ID with their writing style. Tradi-
tional and behavioural similarities were used to train highly accurate machine-
learning model [4].

This experiment demonstrates the utility of WoC data for designing tools to
solve common and vexing data quality problems when constructing developer net-
works. It is also an example of how WoC can be enhanced by incorporating such
techniques and providing corrected data to researchers.

5.3 Cross-ecosystem comparison studies

A second research group used the database to gather comparative statistics about
different software ecosystems. The purpose was to supplement other comparative
data about those ecosystems in support of a study of how ecosystem tools and
practices influence development behavior. The ecosystem study involved a survey,
interviews, and data mining over 18 ecosystems whose repositories listed more than
1.2M packages. Some questions about ecosystem practices could be mined from
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metadata available elsewhere; for example detailed information about dependen-
cies, release frequency, and version numbering practices can be easily extracted
from libraries.io17. However deeper questions about project content would have
been out of reach without WoC; independently building the mechanism to collect
all of these projects, building a database of blobs, files, projects, and authors, and
comparing them using various metrics would have been too much work for too
little gain without the availability of this research platform.

5.3.1 File cloning across ecosystems

One such statistic is rate of file cloning. It was theorized that in ecosystems with
more flexible support for dependencies and a tolerance for the risk of breaking
changes, developers would be more likely to use dependency management tools to
make use of functionality from other projects, rather than copying those files in
directly; hence in such ecosystems we should find relatively few commits adding
a blob that already exists in any other project available through the ecosystem’s
dependency management system.

Using WoC, this analysis was straightforwardly accomplished by joining blob-
to-commit and commit-to-project mappings, filtering for blobs that appeared in
multiple projects, and identifying pairs with one commit in the time frame, and at
least one older commit. Such blobs were discarded when the files were very small
(since these often turned out to be empty or trivial files duplicated by chance or
by tools) resulting in a set of duplicates that, on visual inspection of a sample, did
appear to represent genuine examples of reuse-by-cloning.

Contrary to our expectations, the ecosystem with the most propensity for
cloning was the one with the modern and flexible dependency system: npm. Despite
the strengths of npm’s dependency management system, there is a strong tradition
of copying dependencies like jQuery into projects rather than letting npm retrieve
them. Figure 11 summarizes the findings for a selection of ecosystems.

5.3.2 Developer migration across ecosystems

Another metric of interest was developer overlap between ecosystems. Our ecosys-
tem comparison had included a survey of values and practices in the 18 ecosystems
of interest, and we hypothesized that ecosystems might be similar if many devel-
opers were actually working in both ecosystems, or had migrated from one to the
other.

This question was answered by joining author-to-commit and commit-to-project
data for the 1.2M projects in our study, and relying on the identity matching tech-
nique described in Sec 5.2.

Over all pairs of ecosystems, we found a sizable correlation between similarity
of average responses on ecosystem practice questions (things like frequency of
updating, collaboration with other projects, means of finding out about breaking
changes), and overlap in committers to those ecosystems (Spearman ρ = 0.341, p <
.00001, n = 16 ecosystems). Interestingly, perceived values of the ecosystem (such
as a preference for stability, innovation, or replicability) do not seem to align
with developer overlap (ρ = −0.05, p = 0.44). While more research is needed, we

17 https://libraries.io/
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Fig. 11 Proportion of repository packages that added at least one cloned code file over 1kb
in 2016.

hypothesize that developers may carry practices over from other languages and
platforms they have used in the past, in a sometimes cargo-cult-like way, despite
recognizing that a new ecosystem is designed to accomplish different ends.

In our very large-scale, wide-ranging study, these questions of developer migra-
tion and cloning were of great interest, but would likely have been too expensive to
pursue alongside other lower-hanging fruit, absent WoC’s prepared set of precom-
puted maps between files, blobs, authors, projects, and timestamps. The dataset
with its analytical maps was not designed with these particular ecosystem compar-
ison in mind, but its design happens to make such ecosystem questions relatively
easy to answer.

5.4 Python ecosystem analysis

An external researcher wanted to use WoC to investigate open source sustainabil-
ity by identifying source code repositories for packages in PyPI ecosystem and to
measure package usage directly. While over 90% of npm packages provide reposi-
tory URLs, less than 65% of Python Package Index (PyPI) packages do.

The researcher obtained all packages from PyPi and calculated blob SHA1s
for setup.py file of the first PyPI releases of each package. We filter out resulting
101584 blobs to exclude empty or uninformative blobs (blobs that appear in more
than one commit using blob-to-commit map). The 54218 informative blobs are
then mapped to 54062 unique commits and commits to 51924 unique projects
(adjusted for forking as described in Section 3.6). Repositories were recovered for
96% of the 54218 original packages in approximately 20 minutes of computation.
To ensure that these repositories are, in fact, used to version control corresponding
packages, they can be matched via additional blobs for setup.py and other files
obtained from PyPi for that package.

Another problem being solved by this researcher was identifying which of the
seemingly abandoned projects may be “feature complete,” i.e. already have the
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intended scope and do not require further maintenance [11]. Feature complete
projects should be widely used in contrast to abandoned projects. Proxies of
project usage, e.g., GitHub stars or forks can be used to identify such projects [11].
WoC, however, lets us measure the extent of use directly. As described in Sec-
tion 5.1, all commits modifying Python files are identified (file-to-commit map)
and the resulting commits are mapped to projects (commit-to-project map). Blobs
associated with these commits (commit-to-blob map) are then used to extract im-
ports from these files. The entire procedure could be completed in approximately
four hours using the parallelism of the analytic maps (32 databases) and blob
content maps (128 databases).

The reported usage was compared to project development activity, i.e the total
number of adoptions versus the total number of commits. In some cases, usage was
not accurately reflected in the number of commits. Common examples are packages
providing console scripts and CMS-like projects. In the former case, packages are
not reused in programmatic code and thus don’t get into statistics. In the latter
case, website builders often do not publish their code and thus such usage remains
unobserved. Therefore, while the number of public reuses provides some extra
information about package use, it should be adjusted for package type.

5.5 Repository filtering tool

Millions of repositories on GitHub and other forges also include projects that are
completely unrelated to software development. GitHub is widely used for education
and other tasks such as backing up text files, images, or other data. Researchers
investigating education may need to focus on tutorials, while other researchers
may need a sample of actual software development projects. Furthermore, a way
to select specific subsets of software development projects in order to conduct, for
example, ”natural experiments” would also be highly beneficial. WoC can sup-
port such project segmentation tasks in a variety of ways. An external education
researcher wanted to understand the impact of self-administered programming
tutorials. To do that, WoC was used to identify developers who participated in
tutorials by searching the set of projects in WoC via keywords related to edu-
cation: “assignment”, “course”, “homework”, “class”, “lesson”, “tutorial”, “syl-
labus”, “mooc”, “udacity”. The search yields over 1M projects. While it is only
a small fraction of all projects in WoC but it represents a large sample in abso-
lute terms. Further filtering was needed to find developers who also worked on
actual software projects to measure the impact of self-administered tutorials. The
project-to-commit map identified 605K users of tutorials and, when these users
were mapped to all projects they participated in, we determine that only half of
them contribute to non-tutorial projects. These 300K individuals are potential
subjects of tutorial-impact study. Further information (such as their commit ac-
tivity and project participation) can be obtained from WoC and combined other
data, be used in this research. WoC can be extended with other approaches to
segment projects18. For example, identification of projects with sound software
engineering practices [44] relies on a combination of factors easily obtainable in
WoC, such as history, license, and unit tests.

18 Section 5.2 shows how WoC can also be used to improve them
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5.6 Other Applications

A number of research publications have utilized the WoC database, including:

– The relationship between dependencies of NPM packages, collected using the
WoC infrastructure, and their popularity was discussed in [14].

– The effort contribution and demand patterns of the contributors to the NPM
ecosystem was discussed in [13].

– The investigation of what attributes drive the adoption of a software technology
was discussed in [39].

6 Archetypical Usage of WoC

To increase the utility of this project to a wider research community, we would
like to prioritize easy access to the World of Code to other interested parties. In
this section, we provide a brief introduction and an overview of the World of Code
and how to use it. Moreover, there are some resources already in place that were
designed to assist in this process, which can be found in a public repository19.

After describing WoC and its applications, in this section we demonstrate how
to actually use WoC to implement a specific analysis. A couple of approaches pre-
sented here leverage the WoC tool to implement the Java language trend analysis,
as described in Section 5.1.

1. Identify Java files based on ‘.java’ extension, collect commits that changed
these files, and deduplicate the commits. Now we have all commits where one
or more java files were created/modified. The source code of the custom lsort

command is presented in Appendix B.

1 #start from basemap dump(‘‘file to commit" dump, P represents version),
2 for i in {0..31}; do zcat /da0_data/basemaps/gz/f2cFullP.$i.s | awk -F ";"

"/.java;/{print $2 }" done | ~audris/bin/lsort 10G -u | gzip >
JavaCommits.gz

2. For each commit in commit collection, we can use either Python or Perl API to
find related author and commit time, and then calculate the number of authors
and commits by year – the trend

1 # Using Python
2 import gzip
3 from datetime import datetime
4 from collections import defaultdict
5

6 year2commit_count = {}
7 year2commit_count = defaultdict(lambda: 0, year2commit_count)
8 year2author_count = defaultdict(set)
9 java_commits = gzip.open("JavaCommits.gz", "r")

10 for commit in java_commits:
11 time, author = Commit_info(commit).time_author
12 year = datetime.fromtimestamp(int(time)).year
13 year2commit_count[year] += 1
14 year2author_count[year].add(author)

19 https://github.com/ssc-oscar/lookup
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15 print(year2commit_count)
16 for year, authors in year2author_count.items():
17 print("Year: "+ str(year) + "# of authors: " + str(len(authors)))

1 # Using Perl
2 # we can run /da3_data/lookup/showCmt.perl on every commit and extract

author and time info from there
3 # A simpler way is to utilize basemap c2taFullP.{0..31}.tch (i.e., the

basemap from commit to author and commit time) by calling Cmt2ATShow.
perl (see source code in Appendix)

4 zcat JavaCommits.gz | perl Cmt2ATShow.perl | gzip > JavaYearAuthor.gz
5 # count records for each year, we get the number of commits by year. E.g.,

for year 2014:
6 zcat JavaYearAuthor.gz | grep "^2014;" | wc -l
7 # after deduplication, count records for each year and we get the number

of authors by year. E.g., for year 2014:
8 zcat JavaYearAuthor.gz | sort -u | grep "^2014;" | wc -l

In fact, directly using language maps is more efficient when implementing this
analysis, since language specific information have already been extracted from
base maps and stored as language maps for use.

1 # Alternatively, we use language map: c2bPtaPkgPjava, which consists of commit,
blob, project name, time, author, etc.

2 zcat c2bPtaPkgPjava.{0..31}.gz | cut -d\; -f3,4 | gzip > JavaYearAuthor.gz
3 # now follow the similar approach in Perl example shown above to get the final

result

7 Future work

To have an impact on research practice, the WoC prototype needs to be exposed
via reliable services that help with research and do not overwhelm the platform.
Currently, we only have Python and Perl API available. However, more languages
will be supported in the future. Comparatively small pre-extracted relations will
be stored into relational database to extend our accessibility to users who are
used to SQL. WoC should also accommodate additional data and computational
procedures needed for discovering, correcting, cleaning, augmenting, and modeling
the underlying data. Processing hundreds of terabytes of data on powerful clusters
may be out of reach for most research groups. Therefore, to accommodate mas-
sive queries WoC would require more powerful hardware. Such hardware can be
obtained from cloud vendors, but the costs of hosting and analyzing data on these
platforms might be high. An alternative might be a few high-throughput services
that work on the hardware we currently employ.

The differentiating features of WoC are the completeness of the collection and
access to global relationships. Specifically, two basic services would be difficult to
replicate outside WoC, yet be capable of high throughput on the limited hardware.
First, a reporting service that considers prevalence of certain features, such as lan-
guages, tools, and other technologies as well as the information about contributors
might provide services akin to those provided by a population census. The second
basic service would focus on identifying all entities linked to a specific entity, such
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as files modified by a developer, all repositories containing a specific code, or all
files that use a specific module or technology. These two capabilities, in conjunc-
tion with MSR technology already in use, would provide both, population-level
data and complete links within entire FLOSS ecosystem. It would then be up to
researchers to retrieve additional data on individual projects based on the strati-
fied samples from the first service or derived from the relationships obtained from
the second service.

8 Limitations

We tried to make the assumptions and rationale for specific decisions clear within
each section but it is important to reiterate at least some of the limitations. Despite
a large size (the collection contains over 1.45B commits), there is no guarantee it
closely approximates the entirety of public version control systems as the project
discovery procedure is only an approximation. Our focus on git (due to the sim-
plified global representation) excludes older version control systems that have not
been converted to git yet. We regularly identify issues with data being incomplete
due to collection, cleaning, or processing and we are working on an approach to
continuously validate and correct it. The particular design decisions were focused
on the particular computing capabilities that were available to us at the time
and could/should be revisited as the prototype evolves. The entirety of research
tasks that WoC provides is not exhausted by the few examples we have investi-
gated and certain tasks may require different solutions. We do, however, think that
the micro-services approach allows for simpler addition/extension/replacement of
components as needs or opportunities arise than would be possible with a more
monolithic architecture.

How to reliably clean, correct, integrate, and augment the collected data so that
the resulting analyses accurately reflect the modeled phenomena is a concern. To
ensure the performance of the analytics layer certain objects are filtered from it.
For example, some of the public repositories are created to test the performance/-
capabilities of git and contain many millions of files/blobs in a single commit. Such
commits are excluded from the analytics layer to speed-up the commit-to-file and
commit-to-blob maps. The nature of the data may also create performance prob-
lems. For example, the most common blob is an empty file. Mapping such blobs
to all commits that create them or to all files does not make sense, since there are
millions of commits that have created empty files. These performance-related mod-
ifications may affect some arguably superficial analyses, e.g., what are the commits
with the largest number of files? We explicitly highlight these modification in the
WoC code to minimize potential confusion.

Reproducibility may pose an issue in a constantly updated database. Since git
objects are added incrementally and order in which they are stored is preserved,
we can reconstruct any past version of the object store. For the analytic layer,
which depends on the set of git objects available at the time, we create versions,
where each of the maps described above is tagged with a version identifying the
state of git object store. Preserving these past versions ensures reproducibility of
the results obtained from them.

The research use cases presented do not constitute an empirical evaluation of
WoC usability but, instead, focus on presenting vignettes that are effective for
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these scenarios. Some of these vignettes went through several iterations until the
simplest and fastest implementations were obtained.

9 Conclusions

We introduce WoC: a prototype of an updatable and expandable infrastructure
to support research and tools that rely on version control data from the entirety
of open source projects and discuss some of the research problems that require
such global reach. We discuss how we address some of the data scale and qual-
ity challenges related to data discovery, retrieval, and storage. We enable wide
data access to collected data source by providing a tool built on top of the infras-
tructure, which scales well with completion to query in linear time. Furthermore,
we implement ways to make this large dataset usable for a number of research
tasks by doing targeted data correction and augmentation and by creating data
structures derived from the raw data that permit accomplishing these research
tasks quickly, despite the vastness of the underlying data. Finally, we evaluated
WoC by conducting actual research tasks and by inviting researchers to undertake
investigations of their own. In summary, WoC can provide support for diverse re-
search tasks that would be otherwise out of reach for most researchers. Its focus
on global properties of all public source code will enable research that could not
be previously done and help to address highly relevant challenges of open source
ecosystem sustainability and of risks posed by this global software supply chain.
Transforming the WoC prototype into a widely accessible platform is, therefore,
our immediate priority.

All source codes can be found in a public repository.20
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Appendix A Source Code for Cmt2ATShow.perl

1 #!/usr/bin/perl -I /home/audris/lib64/perl5 -I /home/audris/lib/x86_64-linux-gnu/
perl

2 use strict;
3 use warnings;
4 use Error qw(:try);
5 use TokyoCabinet;
6 use Compress::LZF;
7

8 sub toHex {
9 return unpack "H*", $_[0];

10 }
11 sub fromHex {
12 return pack "H*", $_[0];
13 }
14

15 my $split = 1;
16 $split = $ARGV[1] + 0 if defined $ARGV[1];
17

18 my %c2at;
19 for my $sec (0..($split-1)){
20 my $fname = "$ARGV[0].$sec.tch";
21 $fname = $ARGV[0] if ($split == 1);
22 tie %{$c2at{$sec}}, "TokyoCabinet::HDB", "$fname", TokyoCabinet::HDB::OREADER,
23 16777213, -1, -1, TokyoCabinet::TDB::TLARGE, 100000
24 or die "cant open $fname\n";
25 }
26

27 while (<STDIN>){
28 chop ();
29 my $c = fromHex($_);
30 my $ss = pack ’H*’, substr ($_, 0, 2);
31 my $sec = (unpack "C", $ss)%$split;
32 if (defined $c2at{$sec}{$c}) {
33 my ($time, $author) = split(/;/, $c2at{$sec}{$c});
34 my @parts = localtime($time);
35 my $year= $parts[5] + 1900;
36 print $year.";".$author."\n";
37 }
38 }
39 for my $sec (0..($split-1)){
40 untie %{$c2at{$sec}};
41 }
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Appendix B Source Code for the custom lsort command in tutorial

1 #!/bin/bash
2 export LC_ALL=C
3 export LANG=C
4 sz=${1:-10G}
5 shift
6 sort -T. -S $sz --compress-program=gzip $@


