

Modeling
Software

Evolution

Audris Mockus

Bell Laboratories

Software Production Research

http://www.bell-labs.com/~audris

Overview
• Main issue in software production

– expensive to maintain

• Solutions
– understand how software evolves

– use software data to aid decision making
• track customer faults

• what/when/how much to redesign/rewrite

• Issues
– creative process, no repetition, not random

– structured data (organization, code, process, usage)

– non-uniform data across and within projects

Business Needs
• Satisfy customer

– get new functionality fast

– minimize faults and fix them fast

• Make developers more productive

– enhance decision support tools

– minimize data collection overhead

• Apply methodology to multiple projects

– use generally available information

• Bottom line

–make software easy to change

Large-Scale Software
 two decades of development
 distributed/real-time software

– 8x more complex than application software (SEI)
 scale:

– 100 million lines of code
– 100 thousand pages documentation
– 20 supported versions

 sophisticated development process
 thousands of software engineers

Becomes hard to change - DECAYS

Software Data are Rich
• Interrelated hierarchies of:

– change: delta ∈MR ∈IMR ∈ Feature

– organization: developer ∈ group ∈ dept., ...

– structure: file ∈ module ∈ subsystem | global declarations

– semantics: data | call processing | network protocol | ...

– execution: data flow | concurrency | call graph, ...

• Time structure
– phase: requirements→design→implementation→testing→support

– calendar: hour, day, week, month, year

– business: market events and management decisions

How Code Evolves
• By adding and deleting line blocks

before: after:

// initialize

int i=0; int i=0;

while (i++) while (i++ < N)

 read (x); read(x);
– one line deleted

– two lines added

– two lines unchanged

What is Recorded?

• Change itself (added and deleted lines)

• Who made the change (login, organization)

• When the change was made - date and time

• Description of the change (text)

• Size:
– ~100M lines, ~3M changes, ~5K logins

What is NOT Recorded
• Why

– estimate from textual description

• How difficult
– estimate from spread, size, and time

• Will it cause fault in the future
– estimate fault potential

• Are new changes the same as old changes
– delta →MR →IMR

Why the change was made?
• Hyperlink to Purpose

– Add new functionality (new) 35%

– Fix faults (bug) 30%

– Cleanup/restructure (clean) 20%

– Code inspection (inspection) 15%

• estimation using keyword

– e.g. new, add → new; fix, fault → bug

• validated using IMR data, developer survey

– 85% classified, 70% match developer opinions

• time/size/interval profiles

http://www-spr.research.bell-labs.com/~audris/decay/classes.html
file:///decay/classes.html
http://www-spr.research.bell-labs.com/~audris/decay/classes.html

Is definition of a change constant?

• Data recorded/estimated
– delta → login, size, file, MR
– MR → description, interval, difficulty, type, IMR

– IMR → 89 recorded fields

• Are MRs affected by management policy?

http://www-spr.research.bell-labs.com/~audris/decay/classes.html#year
http://www-spr.research.bell-labs.com/~audris/decay/classes.html#year
http://www-spr.research.bell-labs.com/~audris/decay/classes.html#year

Fault Potential

• Do past changes predict future faults
– predict proportion of faults

• in a two year period
• for 88 modules

– numbers, sizes, age of changes

• Best predictor:
– past number of faults

– but NOT: complexity, connectivity, #authors

Is the change difficult?
• Difficult

– more than 2 files touched, many delta, fault fix

• Frequently repeated, predominant
– more 100 times, at least 30% of the time

• Are different parts equally difficult?

• Are changes becoming harder over time?

• Where to reengineer the code?

http://www-spr.research.bell-labs.com/~audris/decay/classes.html#subs

Can developers know:
• Which subsystems/modules are hard?

• What types of changes are frequent?

• Who writes the most code?

• Access platform goals:
– standard Netscape interface

– no software/data to install

– point and click

Link: Subsystem comparison, summary, and
SeeSoft drill-down to modules

http://www-spr/~audris/summ/summ.html
http://www-spr.research.bell-labs.com/~audris/summ/summ.html
http://www-spr/~audris/summ/summ.html

Link: Developer activity

http://www-spr/~audris/decay/developer.html

Table view

Profile view

Aggregation eye

 Summary
• Key problem - make software easier to change

– why change is made

– why change is difficult

• Obtain essential properties of changes

– Data source available for all SW projects

– Non-intrusive data collection

– Methodology to describe software projects

• Technology to distribute the results

• Potential to predict the impact of:

– organizational (team size)

– process (code inspections)

– technology (compilers, computer languages)

