o emmmprTI) i b o il

: 1‘,-;!_ J .

Modeling
Software
Evolution

Audris Mockus Lucent Technologies

Bell Labs Innovations

Bell Laboratories
Software Production Research
http://www.bell-labs.com/~audris

Overview

« Main 1ssue in software production
_ expensive to maintain

o Solutions
_ understand how software evolves
— use software data to aid decision making

o track customer faults
« what/when/how much to redesign/rewrite

o Issues
_ creative process, no repetition, not random
— structured data (organization, code, process, usage)
— non-uniform data across and within projects

Business Needs

Satisfy customer

_ get new functionality fast

_ minimize faults and fix them fast

Make developers more productive
— enhance decision support tools

_ minimize data collection overhead

Apply methodology to multiple projects

_ use generally available information

Bottom line

_make software easy to change

Large-Scale Software

7 two decades of development
* distributed/real-time software
— 8x more complex than application software (SEI)

- scale:
— 100 million lines of code
— 100 thousand pages documentation
— 20 supported versions

* sophisticated development process
* thousands of software engineers

Becomes hard to change - DECAYS

Software Data are Rich

» Interrelated hierarchies of:
— change: delta LIMR LJIMR L] Feature

— organization: developer L] group L dept., ...

— structure: file L] module L] subsystem | global declarations
— semantics: data | call processing | network protocol | ...

— execution: data flow | concurrency | call graph, ...

e Time structure
— phase: requirements — design — implementation — testing — support
— calendar: hour, day, week, month, year

— business: market events and management decisions

How Code Evolves

« By adding and deleting line blocks
before: after:

// initializ
int i=0; int 1i1=0;
while (i++) while (i++ < N)
read (x); read(x):;

— one line deleted

—two tincs added

— two lines unchanged

What 1s Recorded?

* Change 1tself (added and deleted lines)
* Who made the change (login, organization)
* When the change was made - date and time
* Description of the change (text)
* Size:

— ~100M lines, ~3M changes, ~5K logins

What 1s NOT Recorded

Why

— estimate from textual description
How difficult

— estimate from spread, size, and time
Will 1t cause fault in the future

— estimate fault potential

Are new changes the same as old changes

Why the change was made?

— Add new functionality (new) 35%
— Fix faults (bug) 30%

— Cleanup/restructure (clean) 20%
— Code inspection (inspection) 15%
« estimation using keyword
— e.g. new, add - new; fix, fault —» bug
« validated using IMR data, developer survey
— 85% classified, 70% match developer opinions

« time/size/interval profiles

http://www-spr.research.bell-labs.com/~audris/decay/classes.html
file:///decay/classes.html
http://www-spr.research.bell-labs.com/~audris/decay/classes.html

Is definition of a change constant?

* Data recorded/estimated
— delta - login, size, file, MR
— MR - description, interval, difficulty, type, IMR
— IMR - 89 recorded fields

http://www-spr.research.bell-labs.com/~audris/decay/classes.html#year
http://www-spr.research.bell-labs.com/~audris/decay/classes.html#year
http://www-spr.research.bell-labs.com/~audris/decay/classes.html#year

Fault Potential

* Do past changes predict future faults

— predict proportion of faults
* 1n a two year period

* for 88 modules
— numbers, sizes, age of changes
* Best predictor:

— past number of faults

— but NOT: complexity, connectivity, #authors

Is the change difficult?

 Difficult

— more than 2 files touched, many delta, fault fix

* Frequently repeated, predominant

— more 100 times, at least 30% of the time

* Are changes becoming harder over time?

* Where to reengineer the code?

http://www-spr.research.bell-labs.com/~audris/decay/classes.html#subs

Can developers know:

* Which subsystems/modules are hard?
* What types of changes are frequent?

* Who writes the most code?

* Access platform goals:
— standard Netscape interface
— no software/data to install

— point and click

HESS Subsystem Summarizer - Hetscape

Subsystem:

__ Show Summary_|

oa Modules

ARoa
OAaccs
OAacgsmod
OAactsat
OAactsot
DA hstt
OAcacd
OAcl_ot
OAda_cc
OAda_fm
OAda_nr
OAdaannc
OAdascnt
OAdata

OAdatacom i

addmr

Fract All Labels
all an all aff
turn off
addmr:

Fame:

SeeSoft Size: |B00xE00 =l O create SeeSoft window? M Data status window?

http://www-spr/~audris/summ/summ.html
http://www-spr.research.bell-labs.com/~audris/summ/summ.html
http://www-spr/~audris/summ/summ.html

mannin:

| Ower TirnI Global | Sart

Hide Fledrl Harne

Wi
1™ |III =

[t l I e TRl et —I.-I-II-I— =
=
-.—I— o | o

---5 -~ sg-- -5 I.—I-I.-I— =

All icons (dewelopers) are ordered according to
login and then layed ontin an upside-down text
flow order (from left to right and then one row
up, etc). Some of the icons are rmch smaller
than others. Thoss icons represent loging that
did not make many changes. For each icon to

take full space use "Local Scaling™ local |1 .
The numbers of changes are squars rooted
before display. To coose a different

transformation use:

For clozer inspection the view can be panned
{drag left mouse button) and zoomed (shift-drag
left monse button). Icon sizes can be adjusted
using scrollbar on the left. The style of iconic

representation can be one of the following atyles:

. Cheice "3tars” is similar to the
current choice "Rays". Choice "Parallel” would
show the changes as a fime series.

http://www-spr/~audris/decay/developer.html

Table view

EEMEE

_

i

Aggregation eye

Calor: datadlogin. I—I Start Hecnrc.l [io Ma:-:lmurr

Summary

Key problem - make software easier to change
— why change 1s made

— why change is difficult

Obtain essential properties of changes

_ Data source available for all SW projects

— Non-intrusive data collection

— Methodology to describe software projects
Technology to distribute the results

Potential to predict the impact of:
_ organizational (team size)
_ process (code inspections)

_ technology (compilers, computer languages)

