
3 0 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

In this article, we look for technical solu-
tions to accommodate the business needs
for distributed software development. In
doing so, we investigate quantitative ap-
proaches to distributing work across geo-
graphic locations to minimize communica-
tion and synchronization needs. Our main
premise is inspired by Melvin Conway’s
work, which suggests that a software prod-
uct’s structure reflects the organizational
structure of the company that produced it,2

and David Parnas’s work suggesting soft-
ware modularity should reflect the division
of labor.3 Here, we introduce ways to quan-
tify the three-way interactions between an
organization’s reporting structure, its geo-
graphic distribution, and the structure of its
source code. We based our analysis on
records of work items (for this analysis, a
work item is the assignment of developers
to a task, usually to make changes to the
software).

Work items
For software development to be most ef-

ficient, the organization’s geographic distri-
bution and reporting structure should
match the division of work in software de-
velopment. Tightly coupled work items that
require frequent coordination and synchro-
nization should be performed within one
site and one organizational subdivision.

We try to identify such work items empir-
ically by analyzing the changes made to soft-
ware. When a set of work items all change
the same set of code, we refer to the set of
code as a chunk. We use the term module to
mean a set of code contained in a directory of
files, which follows the usage of the develop-
ment projects whose software we analyzed.

Our main contribution is to define an
analysis process for identifying candidate
chunks for distributed development across
several locations based on quantitative evi-
dence. As part of this process, we have defined

focus
Globalization by Chunking:
A Quantitative Approach

Audris Mockus, Bell Labs

David M. Weiss, Avaya Laboratories

Distributing
development
over many sites,
often in different
countries, can
cause productivity-
reducing
coordination
difficulties. This
article introduces
methods for
assessing and
minimizing
coordination
problems by
identifying tightly
coupled work
items, or chunks,
as candidates for
independent
development.

B
ecause of economic, political, and practical needs, businesses reg-
ularly distribute their software production globally.1 Participants
at the different development sites often suffer inhibited commu-
nication and coordination because they are remote from each

other. One result of the affected communication and coordination might be
reduced productivity and an increased production interval.

global software development

■ a method to quantify the impact on de-
velopment time and effort of work items
spanning development sites;

■ a method to identify work item-induced
chunks in software systems;

■ a process to identify chunks that could
be developed independently in different
organizations or in different develop-
ment sites, including a way to define
quantitative measures that describe
chunks; and

■ an algorithm to find chunks (in terms of
independent changeability).

Work items range in size from very large
changes, such as releases, to very small
changes, such as individual deltas (modifica-
tions) to a file. A release, also called a cus-
tomer delivery, is a set of features and prob-
lem fixes. A feature is a group of modification
requests associated with new software func-
tionality. And, an MR is an individual request
for changes. Put another way, each release can
be characterized as a base system that a set of
MRs modifies and extends. Figure 1 shows a
hierarchy of work items with associated
attributes.

The source code of large software prod-
ucts is typically organized into subsystems
according to major functionality (database,
user interface, and so on). Each subsystem
contains source code files and documenta-
tion. A version control system maintains the
source code and documentation versions.
Common VCSs are the Concurrent Version-
ing System,4 which is commonly used for
open source software projects, and commer-
cial systems, such as ClearCase, Continuus
Change Management Suite, or Visual
SourceSafe. We frequently deal with Source
Code Control System and its descendants.5

VCSs operate over a set of source code
files. An atomic change or delta to the pro-
gram text comprises the deleted lines and
the lines added to make the change. Deltas
are usually computed by a file-differencing
algorithm (such as Unix diff), invoked by
the VCS, which compares an older version
of a file with the current version. Included
with every delta is information such as the
time it was made, the person making it, and
a short comment describing it.

In addition to a VCS, most projects em-
ploy a change request management system
that tracks MRs. Whereas deltas track

changed lines of code, MRs are collections
of deltas made for a single purpose—for ex-
ample, to fix a simple defect. Some com-
monly used problem-tracking systems in-
clude ClearDDTS from Rational and the
Extended Change Management System
(ECMS).6 Most commercial VCSs also sup-
port problem tracking. Usually, such sys-
tems associate a list of deltas with each MR.

There are several reasons for MRs, in-
cluding fixing previous changes that caused
a failure during testing or in the field and in-
troducing new features to the existing sys-
tem. Some MRs restructure the code to
make it easier to understand and maintain.
The latter activity is more common in heav-
ily modified code, such as in legacy systems.

Based on informal interviews in several
software development organizations within
Lucent, we obtained the following guide-
lines for dividing work into MRs:

■ The software-development team splits
work items that affect several subsys-
tems (the largest building blocks of
functionality) into distinct MRs so that
each MR affects one subsystem.

■ The team further organizes a work item
in a subsystem that is too much for one
person into several MRs, each suitable
for one person.

For practical reasons, organizations avoid
strictly enforcing these guidelines so that
some MRs cross subsystem boundaries and
some have several people working on them.

Work-item-based measures of
coordination needs

Changes performed both within and out-
side of work items require coordination. For

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 31

DeltaTime, date File, module

Change management
system

Version control system

Developer No. of lines
added, deleted

Software release

Feature

Modification requestDescription

Figure 1. Hierarchy of
work items and
associated data
sources. Dashed lines
define data sources,
thick lines define
changes, and thin
lines define work-item
properties. The arrows
define “contains”
relationships among
changes; for example,
each modification
request is a part of a
feature.

a software release, all coordination happens
within the release, whereas for an individual
delta on a file, coordination is between the
file’s other deltas.

Changes made as part of an MR require
tight internal coordination and are prefer-
ably done by a single developer. For exam-
ple, a change to a function’s parameters
would require a change in function declara-
tion, function definition, and all the places
where the function is called. Conversely, co-
ordination between MRs, although needed,
typically does not represent as much coordi-
nation as do changes within one MR. The
tight coordination needed within MRs sug-
gests that they’re the smallest work items
that can be done independently of each
other. In particular, MRs can be assigned to
distinct development sites or distinct organ-
izations. This hypothesis is supported by the
evidence that MRs involving developers dis-
tributed across geographic locations take
much longer to complete.7

Based on the guidelines for dividing work
into MRs described previously, the work
items encompassing several MRs might re-
flect only a weak coupling among parts of
the code that they modify. Consequently,
such work items might be divided among
several developers.

The tight coupling of work in an MR
suggests the following measure of work-
item-based coupling between entities in a
software project. For two entities A and B,
the number of MRs that result in changes to
or activity by both A and B define the meas-
ure of absolute coupling. For example, if A
and B represent two subsystems of the
source code, the absolute measure of work-
item coupling would be the number of MRs
such that each MR changes the code in both
subsystems. The coupling for two group of
developers would be represented by the
number of MRs such that each MR has at
least one developer from each group as-
signed to it. A coupling between the code
and a group of developers is defined in a
similar fashion. To adjust for A and B’s size,
dividing the absolute measure by the total
number of MRs that relate to A or B can
provide measures of relative coupling.

Coordination needed to accomplish MRs
is also embodied in other activities and in
ways that aren’t reflected in the preceding
coupling measures. Examples are coordina-

tion among MRs in a feature or during sys-
tem integration and testing.

Empirical evaluation of work-
coupling measures

Let’s now examine the work-coupling
measures of a major telecommunications
software project to investigate their rela-
tionship to the development interval (also
known as project lead time or project devel-
opment time). The project involved work in
a complex area of telephony, where market
requirements and standards are changing
rapidly. Such conditions make coordinating
the development work extremely difficult
and subject to continuous change. Addition-
ally, the product competes in an aggressive
market—a situation that brings extreme
time pressures to development work.

You can find a detailed study of the project
elsewhere.7 Here, we focus on coupling meas-
ures between different project sites (located in
Germany, England, and India) and their rela-
tionship with development interval. We define
work interval as the difference between the
date of the last delta and the first delta for an
MR. Such a measure is a good approximation
of the period of time, or interval, that imple-
menting the change requires.

For each MR, we determined whether
the individuals associated with it were co-
located or resided at more than one site.
MRs that have individuals from more than
one site are classified as multisite; the rest
are classified as single-site. The ratio of multi-
site MRs to total MRs is a relative measure
of MR coupling between sites; the ratio pro-
vides an approximation of the coordination
needs between the sites.

The work-interval comparison in Table
1 considers MRs done over two years—
July 1997 to July 1999—that were non-
trivial (required more than one delta). Be-
cause multisite MRs involve at least two
people, to avoid bias we excluded single-
person MRs from the first comparison.
Table 1 shows that approximately 18 per-
cent of multiperson MRs are multisite and
incur an average penalty of 7.6 days with
95-percent confidence interval of [3,13]
days. We can use the MR-coupling meas-
ure between sites (216 MRs) together with
average interval penalty (7.6 days) and av-
erage number of participants in multiper-
son MRs (2.6) to obtain the total delay of

The tight
coordination

needed within
MRs suggests

that they’re the
smallest work
items that can

be done
independently
of each other.

3 2 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

11.7 (7.6*216*2.6/365) person years (PY).
These data suggest that multisite MRs

carry a significant penalty of increased work
interval and that reducing the number of
multisite MRs could reduce work interval
by eliminating these delays. Work done by
James Herbsleb and others indicates that,
primarily, communication inefficiencies
caused the longer development intervals.7

Globalization: A problem of
distributing software development

Our main goal is to help project manage-
ment make better-informed decisions
through quantitative evaluation of possible
consequences. We start by asking, “What
work could be transferred from a primary
site with resource shortages to a secondary
site that has underutilized development re-
sources?” To answer, we evaluate a particu-
lar transfer approach’s costs and benefits
and use an algorithm to find the best possi-
ble transfer. In studying such transfers in
Lucent Technologies, we observed the fol-
lowing approaches being considered or
used:

■ Transfer by functionality, in which the
ownership of a subsystem or set of sub-
systems is transferred. This was the
most commonly applied approach in the
software organizations we studied. Dis-
tributing development among different
sites by functional area ensures that
each site will have its own domain ex-
pertise and therefore require only a
small- to medium-sized development
group that could be trained relatively
quickly. The main disadvantage is that
adding new functionality might require
using experts from several sites, thereby
increasing the need to coordinate fea-
ture work between sites.

■ Transfer by localization, in which devel-
opers modify the software product lo-
cally for a local market. An example of
such a modification is translating the
documentation and user interface into a

local language. An advantage of such an
approach is that the local development
team is highly aware of its customers’
needs and knows the local language and
the nature of locality-specific features. A
disadvantage is the requirement to
maintain experts in all the domains that
might require change when adapting the
system to the local market. Often, such
an adaptation requires expertise in vir-
tually all of the system’s domains.

■ Transfer by development stage, in which
developers perform different activities at
different locations (for example, develop-
ers might perform design and coding at a
different site than system testing). The
advantages include having development-
stage experts at a single site, but the dis-
advantages include a need to communi-
cate and coordinate between sites to
proceed to the next development stage.

■ Transfer by maintenance stage, in which
developers transfer older releases prima-
rily for the maintenance phase when
they no longer expect to add new fea-
tures to the release. This makes more re-
sources available for developing new
functionality at the site uninvolved in
the maintenance phase. The disadvan-
tages include a potential decrease in
quality and increase in problem resolu-
tion intervals because the site maintain-
ing the product hasn’t participated in
the design and implementation of the
functionality they maintain. Communi-
cation needs between the original site
and the maintaining site might increase
when difficult maintenance problems
require the original site’s expertise.

The globalization problem—the diffi-
culty of distributing development among
several sites—is multifaceted, involving
trade-offs in training needs, utilization of
available expertise, and risk assessment, as
well as a number of social and organiza-
tional factors.8

Although we focus on the ways to mini-

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 33

Table 1
Comparison of Work Interval Measured in Calendar Time

Average interval Number of modification
Modification requests Sites (days) requests

Multiperson Single 8.2 979
Multiple 15.8 216

All Single 6.8 1408

mize the need for coordination and commu-
nication among sites, in practice it is equally
important to use documentation, practices,
and tools to enable better communication
and coordination. This includes maintaining
systems documentation, user manuals, and
design and requirements documents; provid-
ing good email, telephone, and video-confer-
ence facilities, and using presence-awareness
tools such as instant messengers and elec-
tronic message boards. (A reference of com-
munication and coordination needs for glob-
ally distributed software development and a
list of promising tools are available else-
where.)1,7

Qualitative factors
Globalization might lead to transfer of

work that is in some way undesirable to the
primary site. The last three globalization ap-
proaches noted in the preceding section reflect
different types of undesirable work, such as
localization, maintenance (often referred to as
current engineering), testing, and tools sup-
port. We observed several instances of func-
tionality transfer (the first approach), where
the areas undesirable to the primary site are
transferred. (Of course, they might have been
transferred for other reasons as well.)

The decision to transfer work might in-
volve informal risk-management strategies,
especially if the transfer is to a secondary
site that hasn’t worked with the primary site
before or had problems working with the
primary site in the past. The risk-manage-
ment strategies consist of identifying work
that isn’t critical to the overall project in
general and to the primary site in particular
so that the completion of the project (espe-

cially the work in the primary location)
would not be catastrophically affected by
potential delays or quality problems at the
secondary site. Examples of such “noncriti-
cal” work include simulation environments,
development-tool enhancements, current
engineering work, and parts of regression
testing. To some extent, the risk manage-
ment can be done by transferring a func-
tional area, such as a part of operations, ad-
ministration, and management.

For the work transfer to be successful, the
receiving location needs appropriate training.
If the work involves knowing the fine points
of legacy systems, the primary site must ex-
pect to offer significant training. Such a situ-
ation is likely to arise if the maintenance or
testing stages are transferred. The amount
of training might be especially high if the
secondary location has high programmer
turnover and therefore must continuously re-
train personnel. The training needs vary de-
pending on how specialized the work is.

Quantitative evaluation criteria
Although there are a number of dimensions

to costs and benefits, we focus on quantifying
several aspects of the globalization problem.
We propose two globalization scenarios:

■ when an organization evaluates the
competing globalization factors, and

■ when an organization generates global-
ization solutions.

The most common globalization ap-
proach that we have seen is to divide func-
tionality among the locations. We quantify
a number of factors for that approach.

3 4 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

1997

100

80

60

40

20

0

Year
1998

Relative coupling
Fraction of multisite modification requests
Difference

1999

Fr
ac

tio
n

of
 m

ul
tis

ite
m

od
ifi

ca
tio

n
re

qu
es

ts

1997

100

80

60

40

20

0

Year
1998

Relative coupling
Fraction of multisite modification requests
Difference

1999

Fr
ac

tio
n

of
 m

ul
tis

ite
m

od
ifi

ca
tio

n
re

qu
es

ts

(a) (b)

Figure 2. Two globalization candidates. For both candidates, the solid line shows the yearly trend of
relative measure of work-item-based coupling between the candidate and the complement, the dashed
line shows the trend of the fraction of multisite maintenance requests within a candidate, and the
dotted line shows the difference between the two trends: (a) candidate 1 appears to be significantly
better for distribution than candidate 2 (b).

Work coupling. Work items spanning multiple
locations tend to introduce coordination
overheads and associated delays. Conse-
quently, having as few of such work items as
possible is desirable. This criterion can be
measured by the number of MRs that modify
both the candidate and the complementary
parts of the software. That number is the
measure of absolute coupling between the
candidate and the rest of the system. Chunks
are the candidates that minimize this meas-
ure, because they have the minimal amount
of coupling to the rest of the code base.

In addition to predicting future coordina-
tion needs, assessing the candidate part of
software’s current coordination overhead is
important. Organizations can make that as-
sessment by counting the MRs which in-
volve participants from multiple locations.

Figure 2 compares two globalization can-
didates. Each candidate is represented by a
list of files that people involved in the global-
ization decision review. Both candidates start
with approximately the same degree of rela-
tive coupling, but Candidate 1’s relative cou-
pling tends to decrease in time whereas Can-
didate 2’s tends to increase. Additionally,
Candidate 1 requires considerably more multi-
site MRs than candidate 2. Consequently,
Candidate 1 appears to be significantly better
for distribution than Candidate 2.

Amount of effort. When assigning a part of
the code to a remote location, it is impor-
tant to ensure that the effort needed on that
part of the code matches the candidate loca-
tion’s development-resource capacity. It is
also important that the candidate embodies
some minimal amount of work; transferring
a candidate that requires only a trivial
amount of effort might not be worthwhile.

The organization can estimate the amount
of work that a candidate needs by assessing
that candidate’s historical effort trends. As-
suming that a developer spends roughly
equal amounts of effort for each delta,
adding the proportions of deltas each devel-
oper completed on the candidate during that
year can give an approximation of the total
effort spent during a year. For example, a de-
veloper who completed 100 deltas in a year,
50 of which apply to a particular candidate,
would contribute .5 technical head-count
years to the candidate. (The scale of effort is
thus in terms of PY.) In our experience, re-

sources of between 10 and 20 PY were avail-
able in the remote locations, roughly corre-
sponding to a group reporting to a technical
manager. The assumption that each delta
(done by the same programmer) carries
equal amount of effort is only a rough ap-
proximation. In fact, in a number of soft-
ware projects, a delta that fixes a bug re-
quires more effort than a delta that adds new
functionality.9 However, in our problem the
approximation of equal effort per delta is
reasonable because there is fairly large pre-
diction noise (because the effort spent on a
candidate might vary over time). Further-
more, each programmer is likely to have a
mixture of different deltas in the candidate,
averaging out the distinctions in effort
among the different types of deltas. In cases
when managers need more precise estimates,
models are available9 that could help find a
more precise effort for each delta.

Learning curves. When a chunk of code is
transferred to developers who are unfamiliar
with the product, the developers might need
to substantially adjust their effort. In one of
the projects we studied, a typical rule of
thumb was that the remote new team would
reach full productivity was 12 months. Figure
3 presents an empirical estimate of such a
curve. The productivity is measured by the
number of deltas a developer completes in a
month. We shifted the time for each developer
to show their first delta occurring in month
one, which let us calculate productivity based
on the developer’s experience with the trans-
ferred code. The figure shows that the time to
reach full productivity (flat learning curve) is
approximately 15 months. Because develop-
ers in this project train for three months be-
fore starting work, the total time to reach full
productivity is 18 months.

Algorithm to find the best candidates
We also investigated ways to generate

candidates that optimize a desired criterion.
Organizations can compare such automati-
cally generated alternatives to existing can-
didates using qualitative and quantitative
evaluations.

Based on the previous analysis, we
have the following criteria for evaluating
candidates:

■ The number of MRs that modify both

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 35

In one of the
projects we
studied, a

typical rule of
thumb was that
the remote new

team would
reach full

productivity in
12 months.

the candidate and the rest of the system
should be minimized.

■ The number of MRs within the candi-
date that involve participants from sev-
eral sites should be maximized.

■ The effort needed to work on the candi-
date should approximately match the
spare development resources at the pro-
posed remote site.

Because the first two criteria both meas-
ure the number of undesirable MRs, we can
minimize the difference between them. In
other words, let A be the number of multi-
site MR’s at present, and let B be the num-
ber of multisite MRs after the organization
transfers the candidate to a remote site. The
increase in multisite MRs because of such a
transfer can be expressed by the difference:
B � A. The number B can be approximated
by the number of MR’s that cross the candi-
date’s boundary (the first criterion). The
number A represents multisite MRs that are
entirely within a candidate, and, presum-
ably, they will become single-site MRs once
the organization transfers the candidate to a
new location (the second criterion).

The algorithm generates possible candi-
dates and selects the best according to the de-
sired criterion. We use a variation of simu-
lated annealing,10,11 whereby new candidates
are generated iteratively from a current can-
didate. The algorithm accepts the generated
candidate as the current candidate with a
probability that depends on whether the eval-
uation criteria for the generated candidate
are better than for the current candidate.

As input to the algorithm, we provide a
set of files or modules; each file is associated
with an effort in PY for the prior year (cal-
culated as described previously). Another
input consists of a set of MRs, in which
each MR is associated with the list of files it
modifies and with an indicator of whether it

is a multisite MR. Finally, we provide a
range of effort in PY for the candidate. Ini-
tially, the algorithm generates a candidate
by randomly selecting modules until it gets
within the bounds of the specified effort.

The new candidate is generated itera-
tively, where the iteration involves randomly
choosing one of three steps:

■ Add a module to the candidate set by
randomly selecting modules from the
system’s complement until one emerges
that does not violate the effort bound-
ary conditions.

■ Delete a module from the candidate set
by randomly selecting modules to delete
from the candidate until one emerges
that does not violate the effort bound-
ary conditions.

■ Exchange modules by randomly select-
ing one module from the candidate and
one from the complement until the ex-
change does not violate the effort
boundary conditions.

Once the new candidate is generated, the
algorithm evaluates the criterion of interest
(coupling to the rest of the system) and
compares it to the current candidate’s value.
If the criterion is improved, the algorithm
accepts the new candidate as the current
candidate; if not, the algorithm accepts the
new candidate as the current candidate with
a probability p < 1. This probability p is re-
lated to the annealing temperature, which
can be decreased with the number of itera-
tions to speed the convergence. Because the
computation speed wasn’t a challenge for
us, we chose to keep the p always above 1/3
to make sure that the algorithm explores the
entire solution space without getting stuck
in a local minimum. If the current criterion
improves upon the criterion value obtained
in any step before the iteration, the current
candidate and the criterion are recorded as
the best solution. This ends the iteration.

In practice, we use a slight modification
of the algorithm, in which we record opti-
mal candidates for different effort bounds
during a single run of the algorithm. Of the
two candidates in Figure 2, the first is opti-
mal among candidates consuming approxi-
mately 10 PY per year, and the second is
optimal among candidates consuming ap-
proximately 20 PY per year.

3 6 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

5

25

20

15

10

5

0

Months of experience

10 15 20

De
lta

s
pe

r m
on

th
(a

ve
ra

ge
)

Figure 3. Learning
curve. The horizontal
axis shows
a developer’s
experience on the
project in months
and the vertical axis
shows the average
number of deltas for
50 developers who
started working on
the project between
1995 and 1998. The
jagged curve
represents monthly
averages, and
the smooth curve
illustrates the trend
by smoothing the
monthly data.

S oftware-development teams could
use similar techniques to compare
the chunks and the modularity of

the code—that is, to check if the work items
match the source code directory structure,
which typically represents the software’s
modularity. In large software systems, the
alignment between work items and organi-
zational and software structures answers
several important practical questions:

■ What is the current work structure, and
does it match the initial architecture?

■ Do the current work and software struc-
tures match the organizational structure?

■ Does the current work structure match
the organization’s geographic distribu-
tion?

■ How do we define a piece of software so
that it is and remains an independent
chunk that developers could develop or
change independently: Is it a file, direc-
tory, or some other entity?

Our approach applies to any project in
which change data have been accumulated.
Even in so-called greenfield projects, the de-
velopment proceeds by incremental change
so that once the project has produced a sub-
stantial amount of code, the algorithm
could be applied to the change data. The
same technique applies to other areas, in-
cluding distributing work to contractors in
the same country or assessing an existing
distribution.

Because of our strong emphasis on inde-
pendent changeability, we think about what
we have done as exposing the empirical in-
formation hiding a software system’s struc-
ture. As a system evolves, decisions that are
embodied in the code’s structure become in-
tertwined such that they are dependent on
each other; a change to one usually means a
change to the others. Evolution of the system
drives the formation of chunks. The chal-
lenge for the software architect is to con-
struct a modular design where the modules
and the chunks closely correspond to each
other throughout the system’s lifetime.

Acknowledgments
We thank the many software developers at Lucent

who have assiduously used the configuration control sys-
tems that provided us with the data we needed to per-
form this and other studies. We also thank development
managers Mary Zajac, Iris Dowden, and Daniel Owens
for sharing their globalization experiences and opinions.

References
1. E. Carmel, Global Software Teams, Prentice-Hall, Up-

per Saddle River, N.J., 1999.
2. M.E. Conway, “How Do Committees Invent?,” Data-

mation, vol. 14, no. 4, Apr. 1968, pp. 28–31.
3. D.L. Parnas, “On the Criteria To Be Used in Decom-

posing Systems into Modules,” Comm. ACM, vol. 15,
no. 12, 1972, pp. 1053–1058.

4. CVS—Concurrent Versions System, www.cvshome.org/
docs/manual/index.html (current 9 Feb. 2001).

5. M.J. Rochkind, “The Source Code Control System,”
IEEE Trans. Software Eng., vol. 1, no. 4, 1975, pp.
364–370.

6. A.K. Midha, “Software Configuration Management for
the 21st Century,” Bell Labs Technical J., vol. 2, no. 1,
Winter 1997, pp. 154–165.

7. J.D. Herbsleb et al., “Distance, Dependencies, and De-
lay in a Global Collaboration,” Proc. ACM 2000 Conf.
Computer-Supported Cooperative Work, ACM Press,
New York, 2000, pp. 319–328.

8. R.E. Grinter, J.D. Herbsleb, and D.E. Perry. “The Geog-
raphy of Coordination: Dealing with Distance in R&D
Work.” Proc. GROUP ’99, ACM Press, New York,
1999, pp. 306–315.

9. T.L. Graves and A. Mockus, “Inferring Change Effort
from Configuration Management Data,” Proc. Metrics
98: Fifth Int’l Symp. Software Metrics, IEEE CS Press,
Los Alamitos, Calif., 1998, pp. 267–273.

10. N. Metropolis et al., “Equation of State Calculations by
Fast-Computing Machines,” J. Chemical Physics, vol.
21, 1953, pp. 1087–1092.

11. S. Kirkpatrick, C.D. Gellat Jr., and M.P. Vecchi, “Opti-
mization by Simulated Annealing,” Science, vol. 220,
May 1983, pp. 671–680.

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 37

About the Authors

Audris Mockus is a member of the technical staff in the Software Production Research
department of Bell Labs, where he designs data-mining methods to summarize and augment
the system-evolution data; Web-based interactive visualization techniques to inspect, present,
and control the systems; and statistical models and optimization techniques to understand the
systems. He is investigating properties of software changes of large software systems. He re-
ceived a BS and an MS in applied mathematics from the Moscow Institute of Physics and Tech-
nology, and an MS and a PhD in statistics from Carnegie Mellon University. He is a member of
the IEEE and American Statistical Association. Contact him at Bell Labs, 263 Shuman Blvd., Rm.
2F-319, Naperville, IL 60566; audris@research.bell-labs.com; www.bell-labs.com/~audris.

David M. Weiss is the director of software technology research at Avaya Laboratories,
where he performs and guides research into ways of improving the effectiveness of software
development. Formerly, he was the director of software production research at Bell Labs. He
has also served as CTO of PaceLine Technologies and as the director of reuse and measure-
ment at the Software Productivity Consortium. At the Congressional Office of Technology As-
sessment, he was coauthor of an assessment of the Strategic Defense Initiative, and he was a
visiting scholar at the Wang Institute. He originated the GQM approach to software measure-
ment, was a member of the A-7 project at the Naval Research Laboratory, and devised the
FAST process for product-line engineering. He has also worked as a programmer and a mathe-
matician. He received a PhD in computer science from the University of Maryland. He is a member of the IEEE and ACM.
Contact him at Avaya Communication, 2C-555, 600-700 Mountain Ave., PO Box 636, Murray Hill, NJ 07974;
weiss@avaya.com, www.avayalabs.com/~weiss.

