

Customer Quality Improvement of Software Systems

Randy Hackbarth
Avaya Labs Research

4125 Johnson Avenue, Western Springs, IL 60558 5

randyh@avaya.com

Audris Mockus
Avaya Labs Research

211 Mt. Airy Road, Basking Ridge, NJ 07920 10

audris@avaya.com

John Palframan
Avaya Labs Research

211 Mt. Airy Road, Basking Ridge, NJ 07920 15

palframan@avaya.com

Ravi Sethi
Computer Science Department

University of Arizona, Tucson, AZ 85721 20

rsethi@email.arizona.edu

Ravi Sethi was with Avaya Labs Research when this work was done.

POSSIBLE TWEETS 25

• What’s worse: ten software systems with one defect or one system with ten
defects?

• Customer Quality: the chance that a customer system will encounter a software
defect

• Top 1% of source code files have over 60% of fixes 30

• Focus quality assurance resources on the top 1%

• Avaya case study: improve customer quality of software systems and know it

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

2 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

Customer Quality Improvement of Software Systems

Randy Hackbarth, Audris Mockus, John Palframan, and Ravi Sethi 35

Avaya Labs Research

The proposed software quality improvement method is data driven and has three
elements: (a) a downstream metric that quantifies quality as perceived by
customers; (b) an upstream implementation quality index that measures the
effectiveness of error removal practices during development; and (c) prioritization 40

tools and techniques for focusing limited development resources. The downstream
customer quality metric measures the impact on customers of serious defects; it is
based on data collected after systems are deployed. The upstream implementation
quality index serves as a predictor of future customer quality; it has a positive
correlation with the customer quality metric. The prioritization techniques are used 45

to focus limited resources on the riskiest files in the code. This paper is based on a
multi-year program to improve the quality of delivered systems at Avaya, a global
provider of business communication and collaboration systems. Governance for the
Avaya program was provided by regular reviews with an R&D quality council.

Index Terms: Software quality method, customer perceived quality, data-driven 50

software process improvement, software risk mitigation, case study

INTRODUCTION

We focus on quality as perceived by customers – customer quality in short – in
terms of the impact on customers of serious defects. As Watts Humphrey notes,
“the cost and time spent in removing software defects currently consumes such a 55

large proportion of our efforts that it overwhelms everything else.” [1] Other
aspects of quality, such as whether a product does what customers expected, are
outside the scope of this paper.

Let us refer to an installation of a product at a customer site as a system. We
reserve the term customer found defect (CFD) for the relatively few customer 60

service requests that survive thoroughly vetting by customer support and
development personnel.

The customer quality method in this paper has the following elements:

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

 Customer Quality Improvement of Software Systems • 3

• A customer quality metric based on the proportion of systems reporting CFDs.
Ten systems reporting one CFD – even the same CFD – is worse than one 65

system reporting ten CFDs.

• An index of error-removal practices during implementation that is a predictor of
future post-install customer quality.

• The metrics are accompanied by prioritization techniques and tools for focusing
limited resources on the riskiest files in the project’s code repository. 70

Other metrics may be added – say, for testing practices – as long as they correlate
with improved customer quality downstream. Further, the method allows other
prioritization or risk-management techniques to be added.

Such a customer quality improvement method has been adopted company-wide at
Avaya, a global provider of business communication and collaboration systems. 75

Avaya already had a strong commitment to quality when the company faced quality
issues with some of its products in 2011. With strong executive focus and
governance provided by an R&D quality council, the method contributed to
continuing 30+% year-over-year improvements in key customer quality metrics.

CUSTOMER FOUND DEFECTS 80

Not all defects are equal. Most defects are found and fixed during development or
testing, before a product is delivered. Once the product is in use, customers have to
observe an issue and care enough to report it, for the issue to reach a services
organization. The issue must then survive various screening levels to be escalated
to the development group. The development team does its own screening before 85

identifying the issue as a software defect. At Avaya, less than 1% of customer
service requests materialize as CFDs; see Figure 1.

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

4 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

 Figure 1. At Avaya, less than 1% of Customer Service Requests are classified as
Customer Found Defects (CFDs). 90

FIELD QUALITY: CUSTOMER QUALITY METRIC (CQM)

The metric for customer quality is based on the fraction of systems affected by
defects. It represents the probability that a randomly chosen customer will be
affected. Lower probability is better. We say that a system is affected by a defect
even if the same defect has been previously reported. A few systems reporting 95

many defects is better than many customer sites affected by a few defects.

The fraction of affected systems better reflects the impact on customers than
traditional product quality metrics [2] like defect density and the number of CFDs.
Defect density is a property of the code rather than customer experience. The
experience across Avaya products is that the number of CFDs measures the breadth 100

of product deployment rather than the probability that a customer system will be
affected. Figure 2 shows data for releases of the Avaya Aura® Communication
Manager. Mature quality practices and a wealth of data make it a good candidate
for illustrating trends. Based on 272,000 system installs and upgrades since 2002,
the number of CFDs increases linearly with the number of installed systems. 105

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Customer Quality Improvement of Software Systems • 5

Figure 2. (a) Number of CFDs measures installs.
(b) Three-Month CQM (lower is better).

To facilitate quality comparisons across products and releases, we use two
parameters: 110

• Product maturity period, m (shaded in Figure 3). Quality improves as a product
matures, since early defects get fixed and later installs go more smoothly. The
product maturity period is the first m months after release. At Avaya, m is
usually 7 months.

115

Figure 3. To be considered for the Customer Quality Metric, a system must be
installed within the m-month product maturity period (shaded), and report a CFD
within an n-post-install interval. 120

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

6 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

• Post-install interval, n (solid lines in Figure 3). While a longer interval
captures more issues, thus providing a more accurate indication of customer
experience, it requires waiting longer after release for the data. At Avaya, post-125

release quality is estimated using one, three, and six month intervals.

Definition. The n-month Customer Quality Metric (CQM) [3] is the fraction of
systems installed within the first m months after release that have a trouble ticket
leading to a CFD within their n-month post-install interval.

Lower CQM is better, since lower implies proportionately fewer defects. Within 130

Avaya, the current three-month CQM standard for new releases is 2%. The three-
month CQM values for releases 1.1 through 6.2 of Communication Manager in
Figure 2(b) are all below the 2% corporate standard. CQM values have been
dropping in Avaya: 77% of tracked projects met this standard in 2013, up from 30%
in 2011. 135

ERROR REMOVAL: IMPLEMENTATION QUALITY INDEX (IQI)

What development practices does a project need to improve today, in anticipation of
improved customer quality in the future? The scoring mechanism for IQI (defined
below) provides development teams with guidance on where to invest proactively in
error-removal practices. 140

Definition. The Implementation Quality Index (IQI) for a development project is a
measure of the effectiveness with which the project engages in four error-removal
practices:

• Static analysis, using industry standard tools.

• Code coverage, e.g., developing unit “white-box” tests coincident with writing 145

code and assuring adequate coverage via execution of a code coverage tool

• Code reviews and inspections.

• Automated regression testing, primarily “black-box” tests.

Each practice is assigned a score on a scale of 0-4; higher is better. Scoring is based
on criteria specific to the practice, with 4 for “done well,” 2 for “done partially,” 0 for 150

“done poorly or not at all.”

IQI is the average of the scores for the individual practices.

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Customer Quality Improvement of Software Systems • 7

The Avaya standard for IQI is 3.0; see Figure 4. Although diminishing returns
start to set in, individual teams perceive enough benefit that they are increasingly
setting higher targets than 3.0. An IQI score below 2.0 reflects poor practices. 155

Figure 4. The Implementation Quality Index (IQI) is scored on a scale of 0-4.

The IQI practices themselves are standard industry practices. Their combination
is known to be effective for error removal: from the benchmarking data provided by 160

Capers Jones [2], the combination of reviews, static analysis, and testing is 85%-
99% effective in error-removal. The IQI practices relate to several CMMI level 3
process areas, such as Technical Solution (TS), Verification (VER), and Validation
(VAL) as well as the level 2 process area, Measurement and Analysis (MA).

Scoring for IQI. At Avaya, scoring for IQI is done in two stages. The initial165

scoring is done by the projects themselves. For the initial scoring, projects are
provided with a standard template and detailed guidelines, specific to each practice,
on what would be considered a top score (4), a moderate score (2) or a poor score (0).
See Table I for a summary of the scoring guidelines.

An R&D Quality Council often adjusts the initial score during a review with 170

probing questions; e.g.,

• How consistent is the scoring, compared to other projects?

• How effectively is the team engaging in the practices?

• Are they acting on the defects uncovered?

The resulting IQI score is accompanied by supporting comments that capture any 175

concerns in plain English.

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

8 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

Table I. Guidelines for scoring practices for the Implementation Quality Index (IQI).

PRACTICE GREEN (4) YELLOW (2) RED (0)

Static Analysis

 Run Regularly? Part of build process Occasionally Sparingly or not at all

 Defects Tracked? Yes No No

 High Impact
Defects Corrected?

All Most Few

Code Coverage

 Percentage of code ≥ 75% ≥ 50% < 20%

Code Reviews

 Extent of Reviews All new/changed code Most code Ad-hoc or no reviews

Automated Regression Testing

 Percentage of Tests ≥ 70% ≥ 40% < 20%

 Investment Ongoing Much manual testing Lacking

Correlation with Customer Quality. Based on experience with over 50 major 180

projects, we have observed a positive correlation between improved development
practices (higher IQI) and improved field quality (lower CQM); see Figure 4. This
empirical relationship justifies the time and effort spent in improving IQI.

RISK MITIGATION

Simply providing information about the risk (high CQM) and suggested process 185

improvements (through IQI scoring) was not enough: the projects needed help with
focusing their improvement efforts. We therefore developed risk-prediction
techniques and tools for prioritizing remediation actions.

Risk Factors. The intuition that some parts of the source code are riskier than
others is not new. 190

• Anecdotal Evidence. Grady and Caswell recommend focus on “the most
complex modules. [4]” At IBM in the 1980s, Humphrey recalls a case where “86
percent of the [1600] modules had had no defects in three years. So 14 percent
of the modules had all the defects, and 3 percent had half of them. [5]”

• Defect Prediction. A number of studies have shown that prior changes are a 195

good predictor of post-release defects [6,7].

Practical applications of such predictions have lagged, however [8]. Risk
prediction needs to be focused and accompanied with tool support. For example,

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Customer Quality Improvement of Software Systems • 9

“20% of the files” does not provide enough guidance for the deployment of limited
resources. 200

Based on regression analysis of historical defect data, the weighted sum of the
following factors (over the trailing three years) was a good predictor of risky files—
files likely to have future CFDs:

− Number of past CFDs fixed in the file × 20

− Number of file authors who have left × 10 205

− Number of modification requests (MRs) × 0.1

− Number of unique versions × 0.01

The weights, 0.01 for unique versions and 20 for past CFDs, take into account the
fact that there can be orders of magnitude more versions than CFDs; see the
examples in Figure 5. 210

Figure 5. A rendering of a risk-mitigation tool that links analysis with code, developer, and
organizational data. 215

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

10 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

For Avaya projects, our experience is that the top 1% of files identified by this
heuristic contribute to fixes to 60+% of the CFDs. Mockus et al. describe an earlier
version of the risk predictor [9].

Tool Support. The interactive risk-mitigation tool illustrated in Figure 5
supports both problem discovery and problem resolution. It satisfies the diverse 220

needs of developers tasked with fixing the code and product managers tasked with
budgeting and scheduling risk-reduction efforts.

The tool links risky file analysis with code, developer, and organizational data.
Code data includes the source code of individual files, modification requests (MRs),
related files (files that were identical in the past to a candidate risky file), and other 225

data from version control systems. Organizational data includes historical data
from corporate directories, to identify authors who have left and when they left the
organization. From code data, we can infer the expertise of each author with this
and other files. MRs and CFDs provide helpful context to those who are evaluating
what actions to take with each risky file. The risk-mitigation tool builds on the 230

expertise browser [10].

The tool accommodates the variety of defect amelioration approaches that were in
use. The nature of the risk and future development plans led to policies like the
following:

• Place high-risk areas into a “control” program where changes are discouraged 235

or, when necessary, require better inspections and testing.

• Assign owners for areas that are risky because of lost expertise. Give owners
sole responsibility for making most of the changes and overseeing others
working in the area. The intent was to build expertise and increase
accountability. 240

• Consider refactoring or reengineering the riskiest areas that are expected to see
much new development.

For one typical project, 16 files were candidates for control programs and 1 file
was identified for reengineering. Often projects spread risk reduction work over
several releases, starting with the easiest-to-implement steps, such as control 245

programs and ownership/governance policies.

DISCUSSION

The methods in this paper have contributed to dramatic improvements in
customer quality across Avaya. Between 2012 and 2014,

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

 Customer Quality Improvement of Software Systems • 11

• The average customer quality metric (CQM) dropped from 2.9% to well 250

below 1%.

• The average implementation quality index (IQI) improved by 50%.

• Avaya’s experience is that customer perceptions of product quality are a
key contributor to customer satisfaction, measured by net promoter score
(NPS) [11]. NPS has increased by 60%. 255

Others seeking to apply the customer quality improvement method to their own
organizations might proceed as follows:

• If needed, establish data collection about customer deployments, service
alarms and requests, version control, code change information, and related
organizational data. 260

• Measure quality from a customer perspective, using a metric like CQM,
which reflects the fraction of customer systems affected by defects, rather
than the number of defects. In analogy with testing, use a black box
customer quality metric rather than a white box source code metric. As a
reference point, the initial Avaya standard for CQM was 2%. 265

• Once a customer quality metric is in place, use an in-process scoring
mechanism like IQI, so development teams can improve their practices
today, in anticipation of improved customer quality in the future, after the
project is complete and systems are deployed at customer sites.

• Empirically, risk is concentrated in a small fraction of the files, so use a 270

heuristic like the one for risky files to focus improvement efforts. At
Avaya, the teams benefited greatly from concentrating on the top 1% of
risky files.

Any quality improvement program needs governance and strong executive
support. The customer quality improvement method in this paper builds on an 275

active research program to improve the state of software in Avaya, in partnership
with the business groups. Measurable improvements in the state of software at
Avaya accelerated after CQM and IQI became part of the corporate quality metrics.

ACKNOWLEDGEMENTS

David Weiss built up and led the software technology research program while he 280

was with Avaya Labs. Evelyn Moritz created the IQI metric and championed its
use along with quality council leaders Sarah Kiefhaber and Mike Jubenville. Jerry

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

12 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

Glembocki, Saied Seghatoleslami, Dan Kovacs, and Lee Laskin were influential in
establishing the corporate metric program for CQM and IQI.

Jon Bentley provided a careful and helpful review of this paper. 285

We also thank Avaya R&D leaders and team members who have embraced
quality-focused software development and the IQI and CQM metrics in particular
as a means of tracking progress.

REFERENCES

1. W. S. Humphrey. 2004. Defective software works. Software Engineering Institute, Carnegie 290
Mellon University. (January 2004). Retrieved January 16, 2014,
http://www.sei.cmu.edu/library/abstracts/news-at-sei/wattsnew20041.cfm

2. C. Jones. 2013. Software quality in 2013: a survey of the state of the art. Retrieved January
17, 2014 from http:// http://namcookanalytics.com/software-quality-survey-state-art/

3. A. Mockus and D. M. Weiss. 2008. Interval quality: relating customer-perceived quality to 295
process quality. In International Conference on Software Engineering (ICSE ’08). ACM Press,
New York, NY, 723–732.

4. R. B. Grady and D. L. Caswell. 1987. Software Metrics: Establishing a Company-Wide
Program. Prentice-Hall, Englewood Cliffs, NJ.

5. W. S. Humphrey. 2009. Oral history of Watts Humphrey. Interviewed by Grady Booch: 300
June 17-22, 2009. Computer History Museum, Reference No. X5584.2010.

6. T. J. Yu, V. Y. Shen, and H. E. Dunsmore. 1988. An analysis of several soft ware defect
models. IEEE Transactions on Software Engineering 14,9 (September 1988) 1261–1270.

7. T. J. Ostrand, E. J. Weyuker, and R. E. Bell. Where the bugs are. International Symposium
on Software Testing and Analysis (ISSTA ’04) ACM Press, New York, NY, 86–96. 305

8. E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan. 2011. High-impact defects: a
study of breakage and surprise defects. In European Conference on Software Engineering
and ACM SIGSOFT Symposium on Foundations of Software Engineering (ECSE/FSE ’11).
ACM Press, New York, NY, 300–310.

9. A. Mockus, R. Hackbarth, and J. D. Palframan. 2013. Risky files: an approach to focus 310
quality improvement effort. In European Conference on Software Engineering and ACM
SIGSOFT Symposium on Foundations of Software Engineering (ECSE/FSE ’13). ACM
Press, New York, NY, 691–694.

10. A. Mockus and J. Herbsleb. 2002. Expertise browser: a quantitative approach to identifying
expertise. In International Conference on Software Engineering (ICSE ’02). ACM Press, 315
New York, NY, 503–512.

11. F. Reichheld and R. Markey, 2011. The Ultimate Question 2.0: How Net Promoter Companies
Thrive in a Customer-Driven World, Harvard Business Review Press, (September 20, 2011).

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

 Customer Quality Improvement of Software Systems • 13

ABOUT THE AUTHORS

 320

Randy Hackbarth:

Randy coordinates a team dedicated to improving the state of the practice of software development in 325
Avaya . Before joining Avaya, Randy worked for 20 years at Bell Labs, with a focus on establishing,
coordinating and contributing to business unit - research partnership projects. He has an MS in Computer
Science and an MA in Mathematics, both from the University of Wisconsin-Madison. Randy is a member
of IEEE and ACM. Contact him at randyh@avaya.com.
 330

Audris Mockus:

Audris Mockus is affiliated with the University of Tennessee and Avaya Labs Research. He 335

received a B.S. in Applied Mathematics from Moscow Institute of Physics and Technology and a
Ph.D. in Statistics from Carnegie Mellon University. Contact him at audris@avaya.com.

John Palframan: 340

John is a research scientist with Avaya Labs. He works with Randy on improving software practices in
Avaya. Before joining Avaya, John was a technical manager in Bell Labs responsible for developing
communications software and software development tools. He has an M.Math and a B.Math (co-op) 345
from the University of Waterloo. John is a member of the IEEE. Contact him at palframan@avaya.com .

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

14 • R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi

Ravi Sethi

 350

Ravi Sethi launched the research organization in Avaya and was president of Avaya Labs before
joining the University of Arizona. He is a co-author of the popular “dragon book” on compilers.
Ravi has a B.Tech. from IIT Kanpur and a Ph.D. from Princeton. He is an ACM Fellow and a
member of IEEE. Contact him at rsethi@email.arizona.edu . 355

Digital Object Indentifier 10.1109/MS.2015.76 0740-7459/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

