
Analogy Based Prediction of Work Item Flow in Software Projects: a Case Study

Audris Mockus
Avaya Labs Research

Department of Software Technology Research
233 Mt Airy Rd., Basking Ridge, NJ 07920

Abstract

A software development project coordinates work by us-
ing work items that represent customer, tester, and devel-
oper found defects, enhancements, and new features. We set
out to facilitate software project planning by modeling the
flow of such work items and using information on historic
projects to predict the work flow of an ongoing project. The
history of the work items is extracted from problem tracking
or configuration management databases. The web-based
prediction tool allows project managers to select relevant
past projects and adjust the prediction based on staffing,
type, and schedule of the ongoing project. We present the
workflow model, and briefly describe project prediction of a
large software project for Customer Relationship Manage-
ment (CRM).

Key Words and Phrases: software changes, project
schedule, analogy based prediction

1. Introduction

Despite considerable research and practical experience it
is still a formidable challenge to understand and accurately
predict what will happen in a large software project. We
focus on a problem of planning and managing development
and testing resource allocation in large software projects.
Our goal is to obtain a detailed model and predictions of
how work flows in a large software project.

Specific questions that we wanted to answer were:

1. Will the release quality goals be achieved by set date?

2. Is the current software work on track with respect to
the situation in past projects.

We model inflow and outflow of work items or Modifi-
cation Requests (MRs) into and out of the project as a set of
queues of various priority MRs. The MRs may arrive from
developers adding enhancements or new features, testers
or developers discovering problems during development, or

customer support team and customers reporting problems
found in the field. MRs can get into the queue if they are re-
assigned from a different project or change their priority. In
such case they are removed from the corresponding queue
they came from. MRs are dequeued if they are fixed, deter-
mined to be duplicates, change priority, or are assigned to a
different project.

The history of a project is reconstructed from MR history
files that record all changes to attributes of an MR. The MR
history indicate the date and time, the person, and the mod-
ification to MR attributes including priority, release, own-
ership, and resolution status. The data collection and pro-
cessing in the considered project is conducted weekly (im-
plemented as a cron job1) before project team meetings.

The availability of project history allows calculation and
presentation of vital project characteristics, including work
inflow (new MRs) and outflow (resolved MRs) as well as
queue length or backlog of MRs. In the considered project
many of the critical process steps including project readi-
ness for customer deployment were determined by the size
of backlog in various priority queues.

We employed analogy based prediction method to calcu-
late the anticipated work items and the anticipated state of
the project at the proposed release date. The past project(s)
were suitably transformed and used as a predictor for the
ongoing project. This approach allowed us to perform
very detailed predictions because complete evolution of the
project is reproduced via the analogy transformation. The
challenge was to construct a suitable transformation that
would lead to accurate predictions.

We start from our motivating questions in Section 2. Sec-
tion 3 describes ways to obtain data on work items. The
model of MR flow for a software project is introduced in
Section 4; Section 5 describes the result of applying such
models to actual projects; Section 6 considers ways to val-
idate these empirical results, and Section 7 outlines steps
needed to model other software projects. We conclude with
literature review in Section 8 and discussion.

1A cron job is a unix shell command executed according to the specified
schedule.

1



DRAFT: Submitted to ISESE’03, Rome, Italy 2

2. Motivation

We set out with the desire to answer the two basic ques-
tions stated in Section 1. While similar issues were ob-
served in many projects, we present our findings for one
project. The principal concern was whether or not the re-
lease date would be met. Would there be sufficient time and
effort to complete the features scheduled for the release, in-
cluding repairing any problems that arose during the devel-
opment, and fixing existing outstanding problems. To be
“ready” the project had to satisfy a number of release cri-
teria expressed in maximal numbers of critical, high, and
low priority MRs that had to be satisfied before the product
was delivered to customers. These quantities had to be pre-
dicted for the anticipated release date. In addition, it was
important to track progress in achieving the desired goals at
weekly and monthly intervals.

2002.5 2003.0 2003.5 2004.0

0
10

20
30

40
50

Time

M
R

s

Old project inflow
Old project outflow
New project inflow
New project outflow

Figure 1. Analogy based predicted project
workflow.

Figure 1 shows weekly numbers of new and resolved
MRs for two projects. Dotted and dash-dot lines show ar-
rival and resolution of MRs for the ongoing project, while
solid an dashed lines show the appropriately transformed
past project. Three vertical lines indicate dates at which
the initial prediction was done, the proposed release date at
the time of the initial prediction, and the current plan for
the release date. The proposed release date has slipped by
about five weeks since the time of the initial prediction. The
purpose of the analogy is to predict the workflow using the
transformed past release.

The next section describes background information on
using change management and version control repositories
to obtain information on software changes that is used to
obtain and predict the workflow in a software project.

3. Background

The basic premise of analyzing software changes is
that software is created incrementally through a series of

work items, each potentially resulting in a change to the
source code or documentation. Each incremental change is
recorded by a version control and, possibly, problem track-
ing system. The data typically contains a set of attributes
such as the following:

• The identity of the person making the change.

• A short comment written by the author of the change.

• The file(s) changed and the lines changed or the file(s)
contents before and after the change.

3.1. Work items in software projects

The purpose of the typical work item in a software or-
ganization is to make a change to a software entity. Work
items range in size from very large work items, such as re-
leases, to very small changes, such as a single delta (mod-
ification) to a file. A hierarchy of changes with associated
attributes is shown in Figure 2.

The source code of large software products is typically
organized into subsystems according to major functionality
(e.g., database, user interface, etc.). Each subsystem con-
tains a number of source code files and documentation.

The versions of the source code and documentation are
maintained using a version control system (VCS) such as
Concurrent Versioning System [4] commonly used for open
source software projects, or a popular commercial system,
such as ClearCase. We frequently deal with Source Code
Control System (SCCS) [17] and its descendants. Version
control systems operate over a set of source code files. An
atomicchange, ordelta, to the program text consists of the
lines that were deleted and those that were added in order
to make the change. Deltas are usually computed by a file
differencing algorithm (such as Unix diff), invoked by the
VCS, which compares an older version of a file with the
current version. Included with every delta is information
such as the time the change was made, the person making
the change, and a short comment describing the change.

In addition to VCS, most projects employ a change re-
quest management system (CMS) or Problem Tracking sys-
tem that keeps track of individual requests for changes,
which we call Modification Requests (MRs). Whereas a
delta is intended to keep track of lines of code that are
changed, an MR is intended to be a change made for a sin-
gle purpose. Each MR may have many deltas associated
with it. Some commonly used problem tracking systems in-
clude ClearDDTS from Rational, and the Extended Change
Management System (ECMS) [10]. Usually such systems
associate a list of deltas with each MR.

Modifications are typically made for one of the following
reasons.



DRAFT: Submitted to ISESE’03, Rome, Italy 3

Time. Date

#lines added

File ModuleDelta

MR

Feature

Software Release Software Patch

Developer

Reporter

Resolver Priority

Project

Control
Version

System

CM
System

Figure 2. Hierarchy of changes and associ-
ated data sources. Boxes with dashed lines
define data sources (VCS and CMS), boxes
with thick lines define changes, and boxes
with thin lines define properties of changes.
The arrows define an “is a part of” relation-
ship among changes, e.g., each MR is a part
of a feature.

• Repairing previous changes that caused a failure dur-
ing testing or in the field.

• Introducing new features to the existing system.

• Restructuring the code to make it easier to understand
and maintain. (An activity more common in heavily
modified code, such as in legacy systems.)

To understand the activities occurring in a software de-
velopment project, it is critical to know which MRs be-
long to each of these categories. Fortunately, this informa-
tion is often recorded in CM systems as a field identifying
whether the MR represents a new feature or repairs a prob-
lem. Unfortunately, the quality of this classification varies
by project. In cases when it is unacceptably low for the
purpose of a particular analysis we use an automatic clas-
sification technique that uses words in the MR abstract to
determine the purpose of the MR [11]. The automatic clas-
sification of MR abstracts tends to produce medium to high
quality classification as was shown in [11]. For the projects
reported in Section 5 the CM systems had high quality at-
tributes identifying class of an MR.

Based on informal interviews in a number of soft-
ware development organizations within AT&T, Lucent, and
Avaya we obtained the following guidelines that are used to
divide work into MRs:

1. Work assignments that affect several subsystems (the
largest building blocks of functionality) are split into
distinct MRs so that each MR affects one subsystem;

2. A work assignment in a subsystem that is too much for
one person is further organized into several MRs so
that each one could be completed by a single person.

For practical reasons these guidelines are not strictly en-
forced, so that some MRs cross subsystem boundaries and
some have several people working on them.

A group of MRs associated with new software function-
ality is called a feature. A set of features and repairs con-
stitute a customer delivery, also known as a release. Put
another way, each release can be characterized as a base
system modified and extended by a set of MRs.

3.2. Organization Specific Work Item Process

In the considered organization the MRs were tracked via
customized CRM system that was also its product, i.e., the
resulting software of the project was used to track work
items. The system involved all aspects of software pro-
duction and support from items related to customer reports,
patches and software modification requests to requirements
changes. We investigate the part related to MRs because
that is more or less similar to other configuration manage-
ment systems used in most large software projects. The
source code version control system used was ClearCase.
The ClearCase comment for software changes included rel-
evant MR numbers.

The MRs may be created by developers adding enhance-
ments or new features, testers or developers discovering
problems, or customer support team reporting problems in
the field. When or after an MR is created it is assigned,
among other things, a priority, release, resolver, and res-
olution status. As time goes by, these attributes may be
changed if, among other things, MRs are fixed, determined
to be duplicates, change priority, or are assigned to a differ-
ent project (we use release and project terms interchange-
ably).

For our model we needed to capture changes in prior-
ity, reassignments to different releases, and various modes
of MR resolution. This information had to be obtained by
processing MR history: a text field capturing log of MR at-
tribute changes, including MR creation. The log included
date, individual making the change, and names and val-
ues of the attributes changed. The data collection and pro-
cessing was implemented as a weekly cron job run before
project team meetings.

3.3. The value of analyzing changes

The analysis of software changes has a number of dis-
tinct benefits that may not be immediately obvious.

• The data collection is nonintrusive, using only exist-
ing data and making analysis possible in commercial
projects that are usually under intense schedule pres-
sure and do not have time or resources to collect addi-
tional data.



DRAFT: Submitted to ISESE’03, Rome, Italy 4

• Long history on past projects is available, enabling
comparison to what happened in the past and cus-
tomization and calibration of the methods to the exist-
ing environment. Nonetheless, one must be mindful of
changes to the environment and application that make
comparisons problematic.

• The information is fine grained, at the MR/delta level.
Such fine level data collection on a large scale would
not be possible otherwise.

• The information is complete, all parts of software, doc-
umentation, test cases that are under version control
are recorded.

• The way the version control system is used rarely
changes, making data uniform over time.

• Even small projects generate large volumes of changes
making it possible to detect even small effects statisti-
cally.

• The version control system is used as a standard part
of the project, so the development project is unaffected
by experimenter intrusion eliminating observer effects.

We believe that MRs are a very rich source of informa-
tion about software development and that their analysis can
evoke rewarding insights. Unfortunately drawing conclu-
sions about characteristics of a project is fraught with chal-
lenges. We describe some of these challenges in the follow-
ing sections. Basic to all of them is that special care must
always be taken to obtain information on how version con-
trol and change management are used in the project so as
not to misinterpret the MR classifications or misunderstand
the process used to create, make progress on, and record
information about MRs.

The next section describes the project model we used, or
the way MRs are injected and resolved in a software project.

4. Work Item Flow Model

We model inflow and outflow of work items or Modifi-
cation Requests (MRs) into and out of the project. A project
can be thought of as a set of queues of various priority MRs.
The MRs are placed in these queues when they are created
or reassigned from a different project or priority. The MR
leaves a queue if it is resolved or reassigned to a different
project or priority.

The MRs are created by developers adding enhance-
ments or new features, testers or developers discovering
problems, or customer support team reporting problems in
the field. Therefore, suitably chosen MRs can represent
work on new features, defects detected during development,
and defects detected by customers. Only very early stages

of the software project, like planning, that require little or
no involvement from developers, have no traces in a typical
CM and version control systems. It is worth noting, that in
the experience of authors, all projects continue to perform
to some extent all stages of a project including planning, ar-
chitecture, enhancements, testing, and repair activities over
entire duration of the project. Obviously, the effort for dif-
ferent activities is unevenly distributed over time: for ex-
ample, testing related activities constitute a larger fraction
of total effort spent toward the end of the project.

MRs are resolved if they are fixed, determined to be du-
plicates, or determined not to represent an issue that needs
or can be fixed by changing software.

To simplify later discussion we introduce following no-
tation. Letinp(t) =

∑
i sourcei(t) be inflow, outp(t) =∑

j sinkj(t) be outflow, andlp(t) =
∑

s≤t inp(s) −∑
s≤t outp(s) to be queue length at time period t. Here pa-

rameterp denotes the queue identified by project id and pri-
ority, sourcei(t) denotes the number of MRs arriving from
sourcei at time intervalt, sinkj(t) denotes the number of
MRs departing to sinkj at time intervalt, ands ≤ t denotes
all non-overlapping time intervalss up to and includingt.

All the considered quantities are directly observed (by
processing MR history data as described in Section 3.1) for
past and ongoing project up to the current time (there are
two notions of current time: when the initial prediction was
done and when this description was revised four months
later). It is worth noting, that simply displaying MR inflow,
outflow, and queue lengths can help project management
see immediately the “big picture” of the project, including
the current and historic rate at which new problems arrive
and are solved, as well as the size of the work backlog and
whether or not it is decreasing over time. Such information
allows timely decision regarding staffing allocation and cor-
rections to project schedule.

Our main objective, though, is to provide the same form
of transparency going forward in time. More specifically,
we want to estimate the size of various MR queues at the
proposed release date at least few months or more in ad-
vance. Furthermore, we want to predict the development,
i.e., inflow and outflow of MRs, up to the release date, so
that the project could track its progress by following the
predicted path.

While it is possible to model inflow and outflow of MRs
parametrically, see, e.g., [14], we chose to design an anal-
ogy based method, i.e., we assume that a suitable transfor-
mation of a past project can yield accurate predictions for
the ongoing project.

More specifically, we consider following transformation
for the incoming MRs:

ino((t− Center + Lag) ∗ Scale + Center) = (1)

inp(t) ∗ C + error(t),



DRAFT: Submitted to ISESE’03, Rome, Italy 5

whereino represents predictor of incoming MRs for ongo-
ing project andinp are incoming MRs for the past project
used in the analogy,Lag represents the time lag between
onsets of the projects,Scale represents the difference in
time duration between projects,Center is the time around
which the project is rescaled (we typically choose the start
of system test), andC is MR inflow adjustment based on
the size and type of the project and on the quality of past re-
leases already in the field that generate MRs that need to be
resolved in the ongoing project. MR resolution is predicted
using a similar transformation:

outo((t− Center + Lag) ∗ Scale + Center) = (2)

inp(t) ∗ Prodo/Prodp + error(t)

whereProdp is team productivity in projectp. It may be
approximated by staffing levels or could also be estimated
from existing data.

The transformation parametersLag, Scale, Center,
Prod, andC can be estimated or overridden by the ana-
lyst (project manager). In our implementation we left for
project manager to determine following parameters because
that was information they could accurately provide.

1. Prod is the productivity of the team. We used staffing
levels of the project as a substitute for team produc-
tivity. While it is a rough approximation, we did not
need to obtain more precise productivity assessments,
mainly because the same people were involved in past
and current projects.

2. Scale is the duration of the project. In our case it was
easier for an expert to anticipate the duration of the
project than to determine its start date. We left an op-
tion for this parameter to be estimated from existing
data.

3. Center is the time around which to rescale the analo-
gous project. We used start of system test because at
that time MR activity peaked and because project man-
agers were reasonably confident about the anticipated
system test start date.

After the parameters have been estimated or set, the
transformed past project can be used to calculate the size
of queues at the release date and to track progress of the
ongoing project.

4.1. Estimating transformation parameters

The basis for finding optimal parameters are equations
2 and 3. One can simply look for the parameter values
that minimize sum of squared errors

∑
s error2(t). We

minimized the error of predicting the backlog of MRs at

the release date. The error is based on cumulative inflow
and outflow of MRs, where cumulative inflow is simply
cinp(t) = sums≤tinp(s). More specifically, the mini-
mized function was:∑
s<=t0

(cino((s− Center + Lag) ∗ Scale + Center)− (3)

cinp(s) ∗ Prodo/Prodp ∗ Scale)2 ,

where(t0 − Center + Lag) ∗ Scale + Center is equal to
current time at which the prediction is performed. There
are no observed data beyond that point for the ongoing
project. The cumulative counts of the past projectcinp(s) ∗
Prodo/Prodp have to be multiplied byScale because the
time intervals are stretched (this is a discrete version of
the Jacobian when integration variable, in this case time,
is transformed).

Some of the parameters can be estimated more directly:
for example, the parameterProd may be estimated by cal-
culating the number of MRs solved by the project team, and
the members of the team can be obtained from MR data
for the ongoing project or from project management for the
projects that have not started.

Another parameterC can be broken down into parts ac-
cording to the sources MRs are coming from. Lets recall
that inp(t) =

∑
i sourcei(t). The three principal MR

sources are:

1. Field or customer reported MRs (sourcef ). Such MRs
have a relatively constant flow punctuated by introduc-
tion of a new major release causing a flood of new
MRs in first few months. The timing of introduction
is known and can be included in the model.

2. Developer generated MRs working on the code
(sourced). The intensity of such MRs depends on the
number of developers working on the release. More
developers tend to create more MRs per unit time,
so this source can be adjusted by the ratio of devel-
oper staffing between past and current project. In fact,
all the developers are known for the past and cur-
rent projects, so we can directly calculate the ratio of
team MR generation productivities for past and present
projects.

3. Testers or verifiers generating MRs in the course of
testing (sourcev). More testers generate more MRs
per unit time, so this source can be adjusted by the ratio
of tester staffing between past and current project. As
with developers, all testers are known in the past and
current project, so we can directly calculate the ratio
of team MR generation productivity for the past and
present projects.



DRAFT: Submitted to ISESE’03, Rome, Italy 6

Separating the parameter into three parts we can rewrite
Equation 2 as

ino((t− Center + Lag) ∗ Scale + Center) = (4)

sourcef,p(t) ∗ Cf + (sourced,p(t) +
sourcev,p(t)) ∗ Cd + error(t),

The parametersProd can be estimated similarly to esti-
mating coefficientCd, except developer productivity when
solving MRs (rather than creating MRs) has to be used here.

4.2. Assumptions

To perform accurate prediction the model has to learn
(incorporate information) from completed projects. Basi-
cally, we assume that the organization has completed some
projects that are similar to the project to be predicted, e.g.,
similar development team, process, and software function-
ality. This is to ensure that it is possible to transform a pre-
vious project so it would resemble the current project.

While the project can be predicted before it’s start, all
transformation parameters have to be chosen by experts.
After the project has started, some or all of the parameters
can be estimated from the data of the ongoing project (see
Section 4.1.) The prediction can become more accurate in
more advanced stages, because more accurate estimates of
the transformation parameters are available. As the results
in Section 5 indicate, the prediction was quite accurate per-
formed when less than 20 percent of work on the project has
been completed.

Obviously, we assume that the development work is
recorded via MRs, which may be untrue in smaller or more
collocated projects.

An interesting issue is the impact of the monitoring on
the course of the project. If the monitoring causes project
management to add staff or to drop functionality in some
release, the staffing and functionality changes must be ac-
counted for when performing predictions based on that re-
lease.

5. Empirical Results

The project under consideration involves a large Cus-
tomer Relationship Management (CRM) system that was
developed over 10 years, consisting of more than 5 mil-
lion lines of source code. About half was C++ code, about
quarter was Java code, and the remaining code involved C
and other languages. More than 100 developers were in-
volved in this project over time and there were more than
30K MRs. The effort spent on predicted and used for pre-
diction projects ranged from 1K to 2K person months. Du-
rations of the projects are visible from the presented figures.

The development team was based in four primary loca-
tions in the United States and a site in Australia. This dis-
tribution of teams was due to history of acquired companies
that were consolidated to work on this CRM product.

The considered project divides MRs into critical, high,
and low priorities. Critical MRs indicate issues that prevent
product from functioning, i.e., blocks major functionality,
or involves data loss. High MRs are related to less severe is-
sues that are likely to be observed by a customer, e.g., block-
ing minor functionality, incorrect documentation, noncriti-
cal memory and resource leaks. Low MRs are enhancement
and convenience/aesthetic or spelling and appearance issues
and inconsistencies found by code analysis tools (e.g. Pu-
rify). More details on the process used are in Section 3.2.

For our analysis we present results related to low priority
MRs because the backlog of these MRs posed challenges to
the project at the time of analysis and because the results
regarding other types of MRs are similar and would make
this report repetitive.

5.1. Estimating transformation parameters

We chose to discretize project time into calendar weeks
because that was the desired resolution for the progress re-
ports and backlog predictions. Consequently, the time peri-
odst ands in Equations 2,5,3 represent calendar weeks.

One of the critical choices is the selection of past projects
that are reasonably similar to the predicted project. For ex-
ample, to predict a major release it makes sense to use past
major releases, and, similarly, minor releases are likely to
mirror past minor releases. Some releases are done mostly
for internationalization, some to add an new computing
platform or to integrate with a different external software
provider. In our case we were predicting a feature (major)
release and we chose to use another major release and a plat-
form release to perform predictions based on recommenda-
tions of the project manager. We will present the results
based only on the major release, mostly due to space con-
straints.

Consistently about 90 percent of all MRs in four in-
spected releases were raised by developers and testers and
the remainder came from the field in steady streams similar
in both projects. This information provides us with esti-
mates for Equation 5:Cf = 1 corresponding to the coef-
ficient for inflow of field MRs. We chose to use ratio of
project staffing of 80 percent for ongoing project as an esti-
mate forCd. We also chose as 80 percent the MR resolution
ratio Prodo/Prodp in Equation 3. The parameterCenter
was chosen to correspond to system test start date of the
release. These parameter estimates were obtained in dis-
cussion with project managers. The uncertainty about the
values of these parameters was harder to elicit but ranges
of at least plus or minus 10 percent represent an “educated



DRAFT: Submitted to ISESE’03, Rome, Italy 7

guess” of their variability.
The remaining parametersScale and Lag were esti-

mated by minimizing Equation 4. Optimal values were the
Scale = 1 indicating that both projects follow similar time
line, andLag = 50 indicating that ongoing project sched-
ule is shifted by 50 work weeks. The same values were suit-
able for MR outflow as well. As was mentioned earlier, the
prediction was performed at the time indicated by the first
vertical line in Figure 1. Optimal parameters at the time of
writing wereScale = 1.1 andLag = 51 indicating slightly
longer duration of the predicted project. The results are re-
ported only using the estimates of the initial prediction.

Figure 3 illustrates cumulative MR arrivals and closures
for the ongoing and past projects. The total number of MRs
is normalized to add to 1000 for confidentiality reasons.

2002.5 2003.0 2003.5 2004.0

0
20

0
40

0
60

0
80

0
10

00

Time

M
R

s

July 15, 2003

Old project inflow
Old project outflow
New project inflow
New project outflow

Figure 3. Cumulative numbers of MR inflow
and outflow.

The solid line shows cumulative MR inflow for the old
release that has been transformed as described above. The
dashed line shows outflow for the same release. Dotted and
dash-dot lines show inflow and outflow for the ongoing re-
lease. The planned release date is marked on the plot. At the
time of writing the planned release date has been changed
as shown in Figure 1.

While the new project is evolving more gradually, the
two projects behave similarly up to the time of prediction.
While new MR generation has been as predicted up to the
present time, the MR resolution lagged considerably since
the time of prediction as can be seen by comparing dash and
dash-dot lines.

5.2. Predictions of backlog

Currently the prediction is implemented as a web based
tool where an expert (project manager) fills a form by select-
ing relevant past release and suitable transformation param-
eters including an option to optimize some or all of these
parameters. Upon submittal of the form the results are cal-
culated on the server within a short time (depending on the
amount of optimization but not exceeding one minute).

There are three parts on the presentation page:

1. The table of predictions for the number of unsolved
MRs at the release date that includes currently open
MRs, MRs that will arrive minus MRs that will be
resolved before the release date. These numbers can
be directly obtained from Figure 3. The vertical gap
between the inflow and outflow curves for a release
shows the backlog of MRs at that particular moment
in time. The number of MRs that will arrive is the dif-
ference in hight of the solid line between present and
the top of the curve, the number of solved MRs is the
difference in hight of the dashed line between present
and the GA date. Yet another important number is the
number of new MRs after the release date, because it
describes the number of problems a customer may see
if the product is deployed at the proposed date.

2. The second item on the presentation page is Figure 3
for the chosen releases and transformation parameters.
In case the parameters are chosen by an expert this fig-
ure provides visual feedback to determine if the trans-
formation parameters are properly selected.

3. The last item presents the progress of the project with
respect to past prediction in order to make decisions
about schedule, staffing, or recalibrating the predic-
tion with more recent information. While the cumu-
lative counts in Figure 3 clearly show the backlog and
the total number of remaining and past MRs, it is not
very helpful illustrating ongoing activities. Figure 1
can better illustrate weekly activities by showing how
many MRs were created and resolved during a week.

Because the project is not finished at the time of the writ-
ing, it is too early to judge the accuracy of the predictions,
however understanding of the workflow has proved to be
very helpful to project managers by quantifying the capa-
bilities of the development process, by providing compar-
isons to past projects, and by presenting detailed predictions
of remaining work and, in the later project stages, the re-
maining defects for various choices of release dates. This
allowed project managers make informed decisions about
realistic release dates when dealing with unanticipated con-
tingencies related to staffing changes and to make trade-offs
between earlier release dates and lower number of defects
remaining after release.

6. Validation

There are several threats to validity. First, is the fact that
our assumption that a past project can be transformed to re-
semble current projects may be flawed. Only ongoing inves-
tigations of this and other projects can bring a clear answer
to this question. Second assumption is that the actual activ-
ity in the project is reflected in the flow of work items cap-
tured by the configuration management system. We found



DRAFT: Submitted to ISESE’03, Rome, Italy 8

evidence of that in many of the projects we studied, and, in
particular in the project described here. However, it is im-
portant to ascertain this assumption if a similar method is to
be applied in a new project. In fact, it is not essential that all
activity would be captured in MRs, as long as the activity
leaving MR traces represents a reasonably stable proportion
of all activity in the project.

Other set of validity threats relates to the way the pro-
posed analogy-based method is executed. In particular,
the choice of unsuitable past projects, inappropriate choice
of transformation parameters, and unanticipated events, in-
cluding changes to the development process and the way
MRs are created, prioritized, or assigned to a project could
throw the predictions off target.

Another issue is seemingly arbitrary precision (many
significant digits) of the prediction because after the trans-
formation one gets a complete history of the past project
that now describes the future of an ongoing project. Such
detail and precision does not necessarily lead to higher ac-
curacy. We try to counteract this issue in two ways. The first
approach is to decrease precision by smoothing the history
of the past project, so that only a general trend remains as
illustrated in Figure 5. The second approach recommends
project management to consider predictions obtained with a
range of plausible parameter values and using several past
projects. Figure 4 illustrates the impact of increase and
decrease of the estimated reporting productivity coefficient
(represented by staffing levels) by ten percent. The illus-
tration shows relatively large bounds increasing over time,
and the actual inflow (dotted line) has stayed within bounds
and close to the prediction (dashed line) for more than four
months after the date (indicated by the first vertical line) the
prediction was performed. The second vertical line shows
planned release date at the time of prediction.

It should be noted, that theLag andScale coefficients
were not reoptimized for these changes unfairly increas-
ing the bounds. However other parameters are uncertain
as well, potentially increasing the bounds. We are work-
ing on ways to obtain statistical 90 percent probability error
bounds.

In the future, we expect such informal consideration to
be automated using, perhaps, a Bayesian model.

Of course, from the project planning perspective the ul-
timate validity is the accuracy with which the backlog and
entire project evolution are predicted.

7. Application to other projects

The utility of the presented model in other projects can
be shown if the model is used in project planning or project
understanding. In this section we outline the steps needed to
apply the model in a software project. There are four basic
stages: change data extraction, change data validation, and

2002.5 2003.0 2003.5 2004.0

0
20

0
40

0
60

0
80

0
10

00

Time

M
R

s

Old project inflow
New project inflow
Lower bound for inflow
Upper bound for inflow

Figure 4. The inflow prediction bounds ob-
tained by varying the Cd coefficient by ten
percent.

2002.5 2003.0 2003.5 2004.0

0
1

0
2

0
3

0
4

0

Time

M
R

s

Old project inflow
Old smoothed inflow
New project inflow
Old project smoothed inflow

Figure 5. Illustration of observed weekly vari-
abilities of MR inflow.

change and project modeling. In the data extraction stage
access to the project systems is obtained and raw change
data is extracted. In case of home-grown tools, it may be
necessary to interview a person responsible for tool support
to understand the structure and functionality of such sys-
tems.

The most important is data extraction and validation step.
It leads to history of attribute changes for each MR. Some
attributes may need to be aggregated if they are equiva-
lent from the project model point of view. For example,
the project recorded five priority levels, but decisions were
made based on three levels described above where two of
recorded levels map into “critical” and another two into
“low” priority MRs. The quality of attributes is then as-
sessed and un- or auto-populated attributes and remaining
system generated artifacts are eliminated. When engaging
a new project it is important to interview a sample of devel-



DRAFT: Submitted to ISESE’03, Rome, Italy 9

opers and testers. The interview involves review of recent
changes done by the interviewee to to illustrate the actual
development process and to understand/validate the mean-
ing various attribute values.

The change data may then need augmented to improve
the quality of important attributes. Work in [1] describes
how to estimate MR change effort, estimation of change
purpose is described in [11] or of change risk in [12]. In the
studied project we had to improve the quality of a number
of attributes. For example, the history file identified people
in three ways: full name, login, or database key. We had
automatically to recognize the format in each case and pro-
duce a unified identification for modeling purposes. Many
other fields had dual formats: textual string or database key.

Once the relevant information on software changes is ob-
tained, a work item model should be inspected for historic
releases. Investigating these different projects it is impor-
tant to note the variability and any patterns of MR inflows,
outflows, and queue sizes.

Finally, the predictions for ongoing or planned release
and progress reports for ongoing release can be produced as
described in Section 5.2.

8. Related Work

Previous work [1, 11, 13] has identified version con-
trol and problem tracking databases as a promising repos-
itory of information about a software project. We have cre-
ated methods and tools to retrieve, process, and model such
data at the fine level of Modification Requests (individual
changes to software) in order to understand the relationships
among process/product factors and key outcomes, such as,
quality, effort, and interval.

The work in [14] proposes a model based on the con-
cept that each modification to software may cause repairs at
some later time, investigates the model’s theoretical proper-
ties, and reports its application to several projects in Avaya.
Model’s basic premise is that people involved in a project
leave traces of their work in the form of modifications to
the artifacts on which they work.

Analogy based estimation methods (see, for example,
[18, 19, 9]) rely on collecting a variety of metrics about
past projects and then using that data to identify the most
analogous project(s) and construct the predictor (typically
project effort) from one or several candidates. It may be
possible to consider the workflow as being one of such high-
dimensional metrics and then use techniques for identifying
analogous projects available in the literature. We, however,
focused on more detailed prediction of workflow, including
MR backlogs at certain dates, and on incorporating current
information from an ongoing project.

Typically size, type, and other parameters for the past
projects are used in analogy based estimation. In our case

we have entire workflow history rather than a few summary
parameters. However, it is essential to transform the work-
flow history of the past projects to predict future project.
Furthermore, the choice of most similar projects for the
analogy is often treated as a formal problem. We chose a
simple expert-based estimation due to complex nature of the
parameter space and because we had history of past projects
accomplished by the same team. More generally, our hy-
pothesis is that a single past project by the same team on
the same product may be sufficient to perform a useful pre-
diction. However only more extensive application of the
approach can confirm that conjecture. It remains to be seen
if the approach may be suitable for prediction across teams
or product types.

The investigation of prediction in the final stages of a
software project was considered in [16], where open de-
fects, code churn, test pass rate, and defect find rate metrics
from past projects are compared to the metrics of the current
project. Some quantitative models for managing software
development are discussed in [7]. In our case, we focused
on prediction of MR backlogs at some future date because
they were a part of release quality criteria.

More generally, this work relates to two areas in soft-
ware engineering: cost and schedule estimation and risk as-
sessment. The software cost estimation may be roughly or-
ganized into expert and algorithmic techniques to estimate
software cost and schedule.

The expert based techniques are typically best suited for
projects that are not too different from projects completed
in the past and where the estimator has extensive experience
of estimation with these past projects (a good review of ex-
pert estimation techniques may be found in [8]). The main
drawback is the subjective and non-transparent nature of the
estimation process that makes it harder to justify the esti-
mates. In analogy based estimation we use expert judgment
on key factors that are well know to project managers, like
staffing, release dates, and most similar past projects. Other
parameters may be estimated from an ongoing project data
or overridden by an expert.

Algorithmic techniques such as COCOMO [2, 3] may
be used if the key predictors, such as size of the project, can
be reliably estimated in advance and calibrated with past
projects. The main drawback is that the size of the project
(an input to the algorithm) may be more difficult to estimate
than the cost (the output of the algorithm).

The risk assessment literature covers a number of issues,
but the part most related to our work predicts the number
of defects remaining in software during testing [15, 5, 6].
There are two key differences with our work: we do not
predict defects based on observed defect counts in an ongo-
ing project, but rather predict defect (and other MR) arrival
based on observations in similar projects. The second dif-
ference is that testing models assume that the software does



DRAFT: Submitted to ISESE’03, Rome, Italy 10

not change during testing, which is not an accurate assump-
tion.

9. Discussion

While our focus was fairly narrow: to predict work back-
log at the release date and provide benchmarking for the on-
going release, the workflow model can be applied in more
general settings. For example, it could be used to predict
the number of defects after the release and used to decide
when to stop testing by predicting the number of defects
remaining in the code base after a specified date.

Since the model uses data available in many large soft-
ware projects it is appealing for commercial software set-
tings where all process overhead, including time-consuming
data collection, are treated with skepticism.

In addition to providing a framework for answering a
number of important project planning questions, the work-
flow model may help gain better insights into completed
projects and may help a software organization better under-
stand its strengths and shortcomings. One significant bene-
fit that we expected and observed, was better understanding
of a software projects constraints even by people who di-
rectly involved in development.

The separation of incoming MRs by source into devel-
opment, testing, and customer MRs can be used to check
if novel development technologies and practices including
code inspections and product line engineering lead to detec-
tion of defects in earlier phases of the development process.

While it remains to be seen how widely the work flow
model may be applicable, the reported early results show
initial promise. Authors’ belief is that each project is typ-
ically actively managed and the actual workflow is the re-
sult of the intense effort by various parties to keep things
going. Workflow simply captures a simple summary of
this complexity of decision making. Additional informa-
tion gained from workflow monitoring and comparison to
past projects may help make some project management de-
cisions easier and more quickly and makes it easier to learn
from past projects, but is unlikely to eliminate the need to
make the decisions nor substitute for intelligence needed to
make them.

Acknowledgments

We would like to thank all the people in Avaya, Lu-
cent, and AT&T who provided information directly (via in-
terviews) or indirectly (by working on the products under
study.) In particular we thank J. Maranzano, D. Sokoler,
and others for providing insight on development process,
development tasks, project management and other aspects
of the studied software projects.

References

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: A case
study of the version editor.IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] B. Boehm.Software Engineering Economics. Prentice-Hall,
1981.

[3] B. W. Boehm, B. Clark, E. Horowitz, and et al. Cost models
for future software life cycle processes: Cocomo 2.0.Annals
of Software Engineering, 1(1):1–24, November 1995.

[4] P. Cedeqvist and et al.CVS Manual. May be fond on:
http://www.cvshome.org/CVS/ .

[5] S. R. Dalal and C. L. Mallows. When should one stop testing
software?Journal of American Statist. Assoc, 83:872–879,
1988.

[6] A. L. Goel. Software reliability models: Assumptions, limi-
tations and applicability.IEEE Trans. Software Engineering,
SE-11(12), 1985.

[7] K. Huff, J. Sroka, and D. Struble. Quantitative models for
managing software development processes.Software Engi-
neering Journal, 1(1):17–24, 1986.

[8] M. Jørgensen. A review of studies on expert estimation of
software development effort.Journal of Systems and Soft-
ware, 2002. submitted.

[9] A. Lefteris and I. Stamelos. A simulation tool for efficient
analogy based cost estimation.Empirical Software Engi-
neering, 5(1):35–68, 2000.

[10] A. K. Midha. Software configuration management for the
21st century. Bell Labs Technical Journal, 2(1), Winter
1997.

[11] A. Mockus and L. G. Votta. Identifying reasons for software
change using historic databases. InInternational Confer-
ence on Software Maintenance, pages 120–130, San Jose,
California, October 11-14 2000.

[12] A. Mockus and D. M. Weiss. Predicting risk of software
changes.Bell Labs Technical Journal, 5(2):169–180, April–
June 2000.

[13] A. Mockus and D. M. Weiss. Globalization by chunking: a
quantitative approach.IEEE Software, 18(2):30–37, March
2001.

[14] A. Mockus, D. M. Weiss, and P. Zhang. Understanding and
predicting effort in software projects. In2003 International
Conference on Software Engineering, pages 274–284, Port-
land, Oregon, May 3-10 2003. ACM Press.

[15] J. Musa, A. Iannino, and K. Okumoto.Software Reliability:
Measurement, Prediction, Application. McGrawHill, New
York, 1987.

[16] T. Pearse, T. Freeman, and P. Oman. Using metrics to man-
age the end game of a software project. InSoftware Metrics
Symposium, pages 207–215, 1999.

[17] M. Rochkind. The source code control system.IEEE Trans.
on Software Engineering, 1(4):364–370, 1975.

[18] M. Shepperd, C. Schofield, and B. Kitchenham. Effort es-
timation using analogy. In18th International Conference
on Software Engineering, page 170, Berlin, GERMANY,
March 25 – 29 1996.

[19] F. Walkerden and R. Jeffery. An empirical study of analogy-
based software effort estimation.Empirical Software Engi-
neering, 4(2):135–158, 1999.


