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The Specifications

✦ Provide a list of “don’t do it!” for software measurement based

on software change repositories

✦ Influence a young generation of researchers
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The Result

✦ It was too boring even to think about such task

✦ Smart people learn from other’s mistakes, stupid learn from their

own, the rest are ...

✦ Can I learn from my own experiences and you from other’s?

✧ Report personal work/review experiences

✧ Critique own work (mostly)

✧ To be fair annotated/expanded previous talks
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Don’t do it

✦ Irrelevant topic

✦ Overly specialized results

✦ Gross mistakes
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Outline

✦ Background

✦ The no-nos

✦ The end
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Motivation

✦ What world needs

✧ Understand and improve software practice

✧ Informed (quantitative) tradeoffs between schedule, quality, cost

✧ Understanding: where effort is spent, where defects are

introduced

✧ Acting: the impact of technologies/processes/organization

✦ Obstacles - lack of focus on software measurement

✧ Low priority except in emergencies

✧ Need for immediate results (short time horizon)

✧ Lack of resources for measurement/improvement

✧ Multiple stakeholders (developer/support/product management)
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Background

✦ Software is created by making changes to it

✧ A delta is a single checkin (ci/commit/edput) representing an atomic

modification of a single file with following attributes

✧ File, Date, Developer, Comment

✧ Other attributes that often can be derived:

✧ Size (number of lines added,deleted)

✧ Lead time (interval from start to completion)

✧ Purpose (Fix/New)

✦ Approach

✧ Use project’s repositories of change data to model (explain and

predict) phenomena in software projects and to create tools that

improve software productivity/quality/lead times
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Systems commonly used in a typical
organization

✦ Sales/Marketing: customer information, customer rating,

customer purchase patters, customer needs: features and quality

✦ Accounting: Customer/system/software billing information and

maintenance support level

✦ Maintenance support: Currently installed system, support level

✦ Field support: dispatching repair people, replacement parts

✦ Call center support: customer call/problem tracking

✦ Development field support: software related customer problem

tracking, installed patch tracking

✦ Development: feature and development, testing, and field defect

tracking, software change and software build tracking
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Advantages of project repositories

✧ The data collection is non-intrusive (using only existing data minimizes

overhead). Requires in-depth understanding of project’s development

process

✧ Long history on past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations. It takes time and

effort to get to that point.

✧ The information is fine grained, at the MR/delta level. Links to higher

level (more sensible) attributes like features and releases is often

tennuous.

✧ The information is complete, everything under version control is

recorded. Except for fields, often essential, that are incosistently or

rarely filled in.
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Advantages of project repositories

✧ The data are uniform over time. That does not imply that the process

was constant over entire period.

✧ Even small projects generate large volumes of changes making it

possible to detect even small effects statistically. As long as the relevant

quantities are extractable.

✧ The version control system is used as a standard part of the project, so

the development project is unaffected by experimenter intrusion. It is no

longer true when the such data is used widely in organizational

measurement.
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Irrelevant topic

✦ It is tempting to model things that are easy to measure

✧ Counts, trends, patterns

✦ It is tempting to try topics that are well formulated

✧ Which modules will get defects
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Trends

Number of changes, lines added, deleted, unchanged over the years
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Patterns

Developer changes over 24 hours
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Patterns
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Patterns II

Numbers of changes and lines added by hour and type
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Module Summaries
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Where faults occur?

✦ Assume the best possible outcome, i.e., we can predict exactly!

✧ This can be evaluated by, for example, looking at actual occurance

after the fact

✧ 50% of the faults occur in 20% of the modules

✧ Unfortunately, these 20% of the modules contain 60% of the code!?
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Some models of software changes

✦ Quality: model of customer experience [11, 14]

✦ Effort: estimate interval and benchmark process

✧ What makes some changes hard and long [6]

✧ What processes/tools work and why [2, 3]

✧ How do you create a hybrid OSS/Commercial process [9, 5]

✦ Estimation: predict project repair effort from planned new

features

✧ Plan for field problem repair after the release [13, 14]

✧ Release readiness criteria [13, 8]
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Some development support tools

✦ Finding relevant people [10]

✦ Finding related defects [4]

✦ Finding related changes [1, 15, 7]

✦ Finding independently maintainable pieces of code [12]
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Real-Real Problems?

✦ Ask two question:

✧ Suppose the questions I am posing can be answered beyond the

wildest optimistic projections - what difference will it make?

✧ Suppose I will get some handle on these questions - what difference

will it make?
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Audience that is too narrow

✦ “Simulating the process of simulating the process”

✦ Similarly the tools that support software project data analysis
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SoftChange

✦ http://sourceforge.net/projects/sourcechange

✦ The SoftChange project will create software to summarize and analyze

software changes in CVS repositories and defect tracking systems

✦ Requirements

✧ retrieve the raw data from the web or the underlying system via

archive downloads, CVS logs, and processing Bugzilla web pages;

✧ verify completeness and validity of different change records by

cross-matching changes from CVS mail, CVS log, and ChangeLog

files; matching changes to PR reports and identities of contributors;

✧ construct meaningful measures that can be used to assess various

aspects of open source projects.

✦ Road map at:

http://sourceforge.net/docman/display_doc.php?docid=15813&group_id=58432P
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Gross Errors

✦ Lack of validation

✧ Limited understanding of the process

✧ Insufficient data cleaning

✧ Eliminating missing/default/auto values
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Missing data

✦ MCAR — missing completely at random: never happens

✦ MAR — missing at random: missingness is random conditional

on non-missing values

✦ Other — missingness depends on the value itself: most common
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Example

✦ Two projects are compared

✦ First has 30% of the cases where the attribute is missing

✦ Second has 60% of the cases where the attribute is missing

✦ Comparison is perforemed by doing a two-samle t-test on the

attributes that are not missing
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Example: “the right way”

✦ Sample cases with missing attributes and interview relevant

people to determine:

✧ Do actual values for missing cases differ from values for

non-missing cases

✧ Is the difference the same for both projects

✧ Can the difference be explained by other non-missing/default values

✦ If there is no possibility for validation assess the impact of

non-random missingness

✦ And: don’t forget to take logs before doing non-rank based tests
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What is the problem?

Priority project A Projet B Project C

1 10 62

2 201 1642 16

3 3233 9920 659

4 384 344 1
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Methodology: Main Principles

Main focus on supporting the 9[5-9]% of the work related to

extraction/cleaning/validation

✦ Use levels and pipes, a la satellite image processing

✦ Validation tools (regression, interactive) for each level/transition

✧ Traceability to sources from each level

✧ Multiple operationalizations within/accross levels

✧ Comparison against invariants

✧ Detecting default values

✧ Handling missing values
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Project Data: Levels [0-2]

✦ Level 0 — actual project. Learn about the project, access its

systems

✦ Level 1 — Extract raw data

✧ change table, developer table (SCCS: prs, ClearCase: cleartool -lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Level 2 — Do basic cleaning

✧ Eliminate administrative and automatic artifacts

✧ Eliminate post-preprocessor artifacts
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Project Data: Validation

✦ Learn the real process

✧ Interview key people: architect, developer, tester, field support,

project manager

✧ Go over recent change(s) the person was involved with

✧ to illustrate the actual process (What is the nature of this work

item, why/where it come to you, who (if any) reviewed it, ...)

✧ to understand what the various field values mean: (When was

the work done in relation to recorded fields, ...)

✧ to ask additional questions: effort spent, information exchange

with other project participants, ...

✧ to add experimental questions

✧ Apply relevant models

✧ Validate and clean recorded and modeled data

✧ Iterate
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Serious Issues with the Approach

✦ Data cleaning and validation takes at least 95% effort - analysis

only 1 to 5 percent

✦ It is very tempting to model easiy-to-obtain yet irrelevant

measures

✦ Need to understand implications of missing data

✦ Using such data will change developer behaviour and, therefore,

the meaning such data may have
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Pitfalls of using project repositories

✦ A lot of work — try something simpler first

✦ Easy to study irrelevant phenomena or tool generated artifacts

✦ Different process: how work is broken down into work items

✦ Different tools: CVS, ClearCase, SCCS, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create models of key problems in software

engineering based on repository data

✧ Easy to compute a lot of irrelevant numbers

✧ Interesting phenomena are often not captured even in software

project data
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Discussion

✦ A vast amount of untapped resources for empirical work

✦ The usage of VCS/CM is rapidly increasing over time (startups

than do not use them are rapidly disappearing)

✦ Immediate simple applications in project management: MR

inflow/outflow

✦ It is already being used in more advanced projects

✦ Remaining challenges

✧ Build and validate models to address all problems of

practical/theoretical significance

✧ What information developers would easily and accurately enter?

✧ What is the “sufficient statistic” for a software change?
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