
Software Changes and Software Engineering:
Why Not?

A. Mockus

audris@mockus.org

Avaya Labs Research

Basking Ridge, NJ 07920

http://www.research.avayalabs.com/user/audris



The Specifications

✦ Provide a list of “don’t do it!” for software measurement based

on software change repositories

✦ Influence a young generation of researchers

2 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



The Result

✦ It was too boring even to think about such task

✦ Smart people learn from other’s mistakes, stupid learn from their

own, the rest are ...

✦ Can I learn from my own experiences and you from other’s?

✧ Report personal work/review experiences

✧ Critique own work (mostly)

✧ To be fair annotated/expanded previous talks

3 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Don’t do it

✦ Irrelevant topic

✦ Overly specialized results

✦ Gross mistakes

4 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Outline

✦ Background

✦ The no-nos

✦ The end

5 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Motivation

✦ What world needs

✧ Understand and improve software practice

✧ Informed (quantitative) tradeoffs between schedule, quality, cost

✧ Understanding: where effort is spent, where defects are

introduced

✧ Acting: the impact of technologies/processes/organization

✦ Obstacles - lack of focus on software measurement

✧ Low priority except in emergencies

✧ Need for immediate results (short time horizon)

✧ Lack of resources for measurement/improvement

✧ Multiple stakeholders (developer/support/product management)

6 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Background

✦ Software is created by making changes to it

✧ A delta is a single checkin (ci/commit/edput) representing an atomic

modification of a single file with following attributes

✧ File, Date, Developer, Comment

✧ Other attributes that often can be derived:

✧ Size (number of lines added,deleted)

✧ Lead time (interval from start to completion)

✧ Purpose (Fix/New)

✦ Approach

✧ Use project’s repositories of change data to model (explain and

predict) phenomena in software projects and to create tools that

improve software productivity/quality/lead times

7 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Systems commonly used in a typical
organization

✦ Sales/Marketing: customer information, customer rating,

customer purchase patters, customer needs: features and quality

✦ Accounting: Customer/system/software billing information and

maintenance support level

✦ Maintenance support: Currently installed system, support level

✦ Field support: dispatching repair people, replacement parts

✦ Call center support: customer call/problem tracking

✦ Development field support: software related customer problem

tracking, installed patch tracking

✦ Development: feature and development, testing, and field defect

tracking, software change and software build tracking
8 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Advantages of project repositories

✧ The data collection is non-intrusive (using only existing data minimizes

overhead). Requires in-depth understanding of project’s development

process

✧ Long history on past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations. It takes time and

effort to get to that point.

✧ The information is fine grained, at the MR/delta level. Links to higher

level (more sensible) attributes like features and releases is often

tennuous.

✧ The information is complete, everything under version control is

recorded. Except for fields, often essential, that are incosistently or

rarely filled in.

9 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Advantages of project repositories

✧ The data are uniform over time. That does not imply that the process

was constant over entire period.

✧ Even small projects generate large volumes of changes making it

possible to detect even small effects statistically. As long as the relevant

quantities are extractable.

✧ The version control system is used as a standard part of the project, so

the development project is unaffected by experimenter intrusion. It is no

longer true when the such data is used widely in organizational

measurement.

10 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Irrelevant topic

✦ It is tempting to model things that are easy to measure

✧ Counts, trends, patterns

✦ It is tempting to try topics that are well formulated

✧ Which modules will get defects

11 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Trends

Number of changes, lines added, deleted, unchanged over the years

12 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Patterns

Developer changes over 24 hours

13 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Patterns

14 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Patterns II

Numbers of changes and lines added by hour and type

15 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Module Summaries

16 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Where faults occur?

✦ Assume the best possible outcome, i.e., we can predict exactly!

✧ This can be evaluated by, for example, looking at actual occurance

after the fact

✧ 50% of the faults occur in 20% of the modules

✧ Unfortunately, these 20% of the modules contain 60% of the code!?

17 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Some models of software changes

✦ Quality: model of customer experience [11, 14]

✦ Effort: estimate interval and benchmark process

✧ What makes some changes hard and long [6]

✧ What processes/tools work and why [2, 3]

✧ How do you create a hybrid OSS/Commercial process [9, 5]

✦ Estimation: predict project repair effort from planned new

features

✧ Plan for field problem repair after the release [13, 14]

✧ Release readiness criteria [13, 8]

18 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Some development support tools

✦ Finding relevant people [10]

✦ Finding related defects [4]

✦ Finding related changes [1, 15, 7]

✦ Finding independently maintainable pieces of code [12]

19 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Real-Real Problems?

✦ Ask two question:

✧ Suppose the questions I am posing can be answered beyond the

wildest optimistic projections - what difference will it make?

✧ Suppose I will get some handle on these questions - what difference

will it make?

20 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Audience that is too narrow

✦ “Simulating the process of simulating the process”

✦ Similarly the tools that support software project data analysis

21 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



SoftChange

✦ http://sourceforge.net/projects/sourcechange

✦ The SoftChange project will create software to summarize and analyze

software changes in CVS repositories and defect tracking systems

✦ Requirements

✧ retrieve the raw data from the web or the underlying system via

archive downloads, CVS logs, and processing Bugzilla web pages;

✧ verify completeness and validity of different change records by

cross-matching changes from CVS mail, CVS log, and ChangeLog

files; matching changes to PR reports and identities of contributors;

✧ construct meaningful measures that can be used to assess various

aspects of open source projects.

✦ Road map at:

http://sourceforge.net/docman/display_doc.php?docid=15813&group_id=58432P

22 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Gross Errors

✦ Lack of validation

✧ Limited understanding of the process

✧ Insufficient data cleaning

✧ Eliminating missing/default/auto values

23 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Missing data

✦ MCAR — missing completely at random: never happens

✦ MAR — missing at random: missingness is random conditional

on non-missing values

✦ Other — missingness depends on the value itself: most common

24 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Example

✦ Two projects are compared

✦ First has 30% of the cases where the attribute is missing

✦ Second has 60% of the cases where the attribute is missing

✦ Comparison is perforemed by doing a two-samle t-test on the

attributes that are not missing

25 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Example: “the right way”

✦ Sample cases with missing attributes and interview relevant

people to determine:

✧ Do actual values for missing cases differ from values for

non-missing cases

✧ Is the difference the same for both projects

✧ Can the difference be explained by other non-missing/default values

✦ If there is no possibility for validation assess the impact of

non-random missingness

✦ And: don’t forget to take logs before doing non-rank based tests

26 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



What is the problem?

Priority project A Projet B Project C

1 10 62

2 201 1642 16

3 3233 9920 659

4 384 344 1

27 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Methodology: Main Principles

Main focus on supporting the 9[5-9]% of the work related to

extraction/cleaning/validation

✦ Use levels and pipes, a la satellite image processing

✦ Validation tools (regression, interactive) for each level/transition

✧ Traceability to sources from each level

✧ Multiple operationalizations within/accross levels

✧ Comparison against invariants

✧ Detecting default values

✧ Handling missing values

28 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Project Data: Levels [0-2]

✦ Level 0 — actual project. Learn about the project, access its

systems

✦ Level 1 — Extract raw data

✧ change table, developer table (SCCS: prs, ClearCase: cleartool -lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Level 2 — Do basic cleaning

✧ Eliminate administrative and automatic artifacts

✧ Eliminate post-preprocessor artifacts

29 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Project Data: Validation

✦ Learn the real process

✧ Interview key people: architect, developer, tester, field support,

project manager

✧ Go over recent change(s) the person was involved with

✧ to illustrate the actual process (What is the nature of this work

item, why/where it come to you, who (if any) reviewed it, ...)

✧ to understand what the various field values mean: (When was

the work done in relation to recorded fields, ...)

✧ to ask additional questions: effort spent, information exchange

with other project participants, ...

✧ to add experimental questions

✧ Apply relevant models

✧ Validate and clean recorded and modeled data

✧ Iterate
30 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Serious Issues with the Approach

✦ Data cleaning and validation takes at least 95% effort - analysis

only 1 to 5 percent

✦ It is very tempting to model easiy-to-obtain yet irrelevant

measures

✦ Need to understand implications of missing data

✦ Using such data will change developer behaviour and, therefore,

the meaning such data may have

31 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Pitfalls of using project repositories

✦ A lot of work — try something simpler first

✦ Easy to study irrelevant phenomena or tool generated artifacts

✦ Different process: how work is broken down into work items

✦ Different tools: CVS, ClearCase, SCCS, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create models of key problems in software

engineering based on repository data

✧ Easy to compute a lot of irrelevant numbers

✧ Interesting phenomena are often not captured even in software

project data

32 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Discussion

✦ A vast amount of untapped resources for empirical work

✦ The usage of VCS/CM is rapidly increasing over time (startups

than do not use them are rapidly disappearing)

✦ Immediate simple applications in project management: MR

inflow/outflow

✦ It is already being used in more advanced projects

✦ Remaining challenges

✧ Build and validate models to address all problems of

practical/theoretical significance

✧ What information developers would easily and accurately enter?

✧ What is the “sufficient statistic” for a software change?

33 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



.
References
[1] Raymond Ng Annie Ying, Gail Murphy and Mark Chu-Carroll. Predicting source code

changes by mining change history. IEEE Transactions of Software Engineering, 30(9), 2004.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the
impact of software tools: A case study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[3] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost.
Bell Labs Technical Journal, 5(2):7–18, April–June 2000.

[4] D. Cubranic and G.C Murphy. Hipikat: A project memory for software development. TSE,
31(6), 2005.

[5] T Dinh-Trong and Bieman J.M. Open source software development: A case study of freebsd.
IEEE Transactions of Software Engineering, 31(6), 2005.

[6] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An
empirical study of global software development: Distance and speed. In 23nd International
Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[7] Miryung Kim and David Notkin. Using a clone genealogy extractor for understanding and
supporting evolution of code clones. In International Workshop on Mining Software
Repositories, 2005.

[8] Audris Mockus. Analogy based prediction of work item flow in software projects: a case
study. In 2003 International Symposium on Empirical Software Engineering, pages 110–119,
Rome, Italy, October 2003. ACM Press.

34 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



[9] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[10] Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to
identifying expertise. In 2002 International Conference on Software Engineering, pages
503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[11] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, April–June 2000.

[12] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.
IEEE Software, 18(2):30–37, March 2001.

[13] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in
software projects. In 2003 International Conference on Software Engineering, pages 274–284,
Portland, Oregon, May 3-10 2003. ACM Press.

[14] Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived software quality. In
ICSE 2005, St Louis, Missouri, May 2005. ACM Press.

[15] Thomas Zimmermann, Peter Weissgerberv, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes.

35 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005



Bio

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in Applied Mathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Software Technology Research Department

of Avaya Labs. Previously he worked at Software Production Research Department of Bell Labs.

36 A. Mockus Software Changes and Software Engineering Dagstuhl, 2005


