
Domain-Specific Defect Models

Audris Mockus

audris@avaya.com

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/



Outline

✦ Fascination with defects

✦ Core issues in common approaches

✦ Assumptions used in defect models

✦ Domains and dimensions

✦ Costs and benefits

✦ Recommendations

2 Audris Mockus Domain-Specific Defect Models Defects’08



Fascination with defects in SE

✦ How to not introduce defects?

✧ Requirements and other process work

✧ Modularity, high-level languages, type-checking and other

LINT-type heuristics, garbage collection, . . .

✧ Verification of software models

✦ How to find/eliminate defects?

✧ Inspections

✧ Testing

✧ Debugging

✦ How to predict defects?

✧ When to stop testing and release?

✧ What files, changes will have defects?

✧ How customers will be affected?
3 Audris Mockus Domain-Specific Defect Models Defects’08



Some applications of defect models

✦ Faults remaining, e.g., [5], e.g., when to stop testing?

✦ Repair effort, e.g., development group will be distracted from

new releases?

✦ Focus QA on [where in the code] faults will occur,
e.g., [18, 6, 8, 19, 1, 17]

✦ Will a change/patch result in any faults [13]

✧ such data are rare, may require identification of changes that caused

faults [20]

✦ Impact of technology/practice on defects, e.g., [3, 2]

✦ Tools, e.g., [4, 21], benchmarking, e.g., [11],

availability/reliability, e.g., [7, 16, 10]

4 Audris Mockus Domain-Specific Defect Models Defects’08



State of defect prediction

✦ Context: focus QA on modules that will experience faults

post-release

✦ Almost impossible to beat past changes [6, 8]

✦ Use some measure of code size if change data is not available

✦ Other things that have been shown to matter: coupling (calls,

MRs, organization, experience)

✦ What really matters tend to be outside the scope of software

itself: the number of customers, configurations, installation date,

release date, runtime [15, 12]

✦ Not clear if such models provide value

– Even with perfect prediction the affected area is too large

(exceeds release effort) for any meaningful QA activity
5 Audris Mockus Domain-Specific Defect Models Defects’08



Post release defects for two releases
N

or
m

al
iz

ed
 d

ef
ec

ts
 p

er
 w

ee
k

G
A 

D
at

e

0

5

10

15

20

25

30
V 5.6

G
A 

D
at

e

V 6.0

No defect prediction could handle these two releases!

6 Audris Mockus Domain-Specific Defect Models Defects’08



Defect density and customer experiences?

D

D

D

D

D

D

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity IQ1

IQ1

IQ1
IQ1

IQ1
IQ1

IQ3

IQ3

IQ3
IQ3

IQ3

IQ3

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

D
IQ1

IQ3

DefPerKLOC/100
Probability 1m.

Probability 3m.

Even if predictions of defects were perfect they would not reflect

software quality as perceived by end users

7 Audris Mockus Domain-Specific Defect Models Defects’08



Defect prediction —perpetum mobile of SE

✦ Why predictors do not work?

✧ Defects primarily depend on aspects that have little to do with code

or development process

✧ Therefore, such predictions are similar to astrology

✧ Hope that AI can replace human experts is premature

✦ Why people engage in irrational behavior, e.g., defect prediction?

✧ The promise to see the future is irresistible.

✧ The promise is phrased in a way the absurdity is well concealed.

8 Audris Mockus Domain-Specific Defect Models Defects’08



How the deception is perpetrated?

✦ By not comparing to naïve methods, e.g., locations with most
changes

✦ By not verifying that it provides benefits to actual
developers/testers — “we test features not files” or “we needto
have at least some clues what the defect may be, not where”

✦ By selecting misleading evaluation criteria, e.g, focusing on 20%
of the code that may represent more than release-worth of effort

✦ By comparing Type I,II errors of a product with40% rate to a
product with0.5% rate

✦ By suggesting impractical solution, e.g., how many SW project
managers can competently fit an involved AI technique?

✦ By selecting complicated hard-to-understand prediction method,
e.g., BN models with hundreds of (mostly implicit) parameters

9 Audris Mockus Domain-Specific Defect Models Defects’08



Then why do it?!?//1111one/

May be to summarize the historic data in a way that may be useful for

expert developers/testers/managers to make relevant design, QA, and

deployment decisions?

10 Audris Mockus Domain-Specific Defect Models Defects’08



Some approaches used to model defects

✦ Mechanistic: e.g., a change will cause a fault

✦ Invariants: e.g., ratio of post-SV defects to pre-SV changes is

constant

✦ Data driven

✧ All possible measures

✧ principal components (measures tend to be strongly correlated),

✧ fitting method

✦ Mixed: a mix of metrics from various areas that each has a reason

to affect defects, but a regression or AI method are used to find

which do

11 Audris Mockus Domain-Specific Defect Models Defects’08



Mechanism to the extreme

✦ Axiom 1: a change will cause an average number ofµ faults with

average delay ofλ [14]

✧ Empirical relationship between changes and defects is well

established

✧ New features can only be predicted based on the business needs: use

them as a predictor of fixes

✧ The−log(Likelihood) is

X

i

µNti

“

1 − e
−λ(t−ti)

”

− B[0,t] log(µλ) −

X

sk

Bsk
log

0

@

X

i:ti<sk

e
−λ(sk−ti)

1

A

12 Audris Mockus Domain-Specific Defect Models Defects’08



2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kl
y 

no
rm

al
iz

ed
 M

R
s

New feature MRs
Actual Defect MRs
Predicted Defect MRs (Jan, 2001)
Predicted Defect MRs (Nov, 2001)

13 Audris Mockus Domain-Specific Defect Models Defects’08



Calendar Weeks

No
rm

ali
ze

d 
M

Rs
 p

er
 w

ee
k

0

10

20

30

40

1994 1996 1998 2000 2002

r1 r7

r2

0

10

20

30

40

r8
0

10

20

30

40

r3 r9

r4

0

10

20

30

40

r10
0

10

20

30

40

r5 r11

r6

New MRs
Actual Repair MRs
Predicted Repair MRs

14 Audris Mockus Domain-Specific Defect Models Defects’08



Invariance to the extreme

✦ Axiom 2: The history of MRs for releasen will be a scaled and

shifted version of the history of MRs for releases

n − 1, n − 2, . . . [9]

✧ Anything can be predicted: inflow, resolution, test defects, customer

reported defects, number of people on the project, release date, effort

. . .

15 Audris Mockus Domain-Specific Defect Models Defects’08



2002.5 2003.0 2003.5 2004.0

0
20

0
40

0
60

0
80

0
10

00
12

00

Time

M
R

s

P
re

di
ct

io
n 

D
on

e:
 M

ar
ch

 1
, 2

00
3

P
re

di
ct

ed
 G

A
: J

ul
y 

15
, 2

00
3

A
ct

ua
l G

A
: A

ug
 2

6,
 2

00
3

Old project inflow
Old project outflow
New project inflow
New project outflow

16 Audris Mockus Domain-Specific Defect Models Defects’08



Most common approach

✦ Axiom 3: ∃f : ∀l, f(m, l) = d(l) that given measuresm will

produce the number of defectsd(l) at locationl

✦ f̂(m, l) = argf min
∑

l (f(m, l) − d(l))
2

✦ Common measuresm

✧ Code measures: structural, OO, call/data flow

✧ Process measures: change properties, age, practices, tools

✧ Organization measures: experience, location, managementhierarchy

✧ Interactions: coupling, cohesion, inflow, outflow, social network

measures for call/data flow, MR touches, workflow, ...

17 Audris Mockus Domain-Specific Defect Models Defects’08



Locations l

✦ Lines, functions,files, packages/subsystems, entire system

✦ Functionality (features)

✦ Chunks — groups of files changed together

✦ Changes — MRs/work items and their hierarchy

✦ Geographic locations

✦ Organizational groups

✦ Tool/practice users

18 Audris Mockus Domain-Specific Defect Models Defects’08



Defectsd

✦ Customer reported defects

✦ Alpha/Beta defects

✦ Customer requested enhancements

✦ System test reported

✦ Found in integration/unit test/development

✦ Higher severity levels

19 Audris Mockus Domain-Specific Defect Models Defects’08



What predictors may contribute?

✦ The value may not be in seeing the future but in understanding

the past: gain insights

✧ Formulate hypotheses

✧ Create theories

✧ Suggest ideas for tools or practices

✦ Focus QA

✧ Instead of telling what files will fail, tools that help experts assess

situation and evaluate actions may prove more useful

✧ Need to find sufficiently small set and type of locations to match

resources that could be devoted for QA

✦ Domain specific questions/analysis based on the cost-benefit

analysis

20 Audris Mockus Domain-Specific Defect Models Defects’08



Utility function: costs to repair

✦ What value will prevention bring?

✧ Reduces costs to repair:

✧ Domain: low cost for web service, high cost for embedded,

heavy/large consumer products, aerospace

✧ Number of customers: few customers can be served by the

development group itself

✧ Reduce cost of outage/malfunction:

✧ Domain: low for desktop apps, high for aerospace, medical, or

large time-critical business systems (banking, telephony, Amazon,

Google)

✧ Number/size of customers: fewer/smaller customers=⇒ less

cost

✧ Improve vendor reputation: personal reputation for internal products

21 Audris Mockus Domain-Specific Defect Models Defects’08



Utility function: costs to prevent

✦ How costly to prevent?

✧ Utility of the prediction in prevention

✧ Ability to test/verify all inputs for all configurations

✧ The size and complexity ofl

✧ Less cost for internal customer (more control over environment),

web services (few installations), harder for a component ofa

complex real-time multi-vendor system with a large customer base

✦ Other considerations

✧ Will quick repair of field problems count as prevention?

✧ Cost of alpha/beta trials

✧ Cost of testing

✧ Cost of better requirements/design/inspections

22 Audris Mockus Domain-Specific Defect Models Defects’08



Ultimately

Will prediction reduce prevention costs below
the repair costs?

23 Audris Mockus Domain-Specific Defect Models Defects’08



From domains to dimensions

✦ NASA: single use, limited replacement/update, errors critical,

often completed by contractors

✦ Online services: few installations, many users, costly downtime

✦ Consumer devices: many users, expensive to replace somewhat

alleviated by Internet connectivity

✦ Internal projects: single user, no difference between testing and

post-SV

✦ Office productivity: many users, error cost absorbed by end users

✦ Switching/servers: downtime costly, but software easy to update

✦ Mainframes - availability, no downtime

24 Audris Mockus Domain-Specific Defect Models Defects’08



Relevant dimensions

✦ Cost of defects

✧ Quality requirements: medical, mainframe, productivity

✧ Numbers of users

✦ Cost of prevention

✧ Scale/complexity of software

✧ Complexity of the operating environment: e.g., multi-vendor

✧ Resources needed to test/inspect/fix

✦ Cost of repair

✧ Few, internal users/installations

✧ Easy/inexpensive to upgrade

✦ Other considerations

✧ How accurate (similar releases/configurations/custumer set)

✧ What data is available: contractors may not share change data
25 Audris Mockus Domain-Specific Defect Models Defects’08



Which domains are likely to benefit?

Cost of repair

Cost to prevent

Impact of outage

Bulky consumer electronics

Medical

Safety
NASAOnline services

Productivity

Internal

Communications

Mainframe

26 Audris Mockus Domain-Specific Defect Models Defects’08



Recommendations

✦ Resist the urge to be an astrologer, no matter how sophisticated

the technique

✧ Use defect models to quantify the effect of methods/tools onquality

improvements

✧ Consider relevant dimensions and the utility if predicting

✧ Compare to naïve/simple predictors

✧ Stay, if possible, with a transparent evaluation criteria

✦ Summarize the historic data in a way that may be useful for

expert developers/testers/managers to make relevant design, QA,

and deployment decisions

27 Audris Mockus Domain-Specific Defect Models Defects’08



References
[1] Erik Arisholm and Lionel C. Briand. Predicting fault-prone components in a java legacy system. InInternational Symposium on

Empirical Software Engineering, pages 8 – 17, 2006.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the impact of software tools: A case study of the
version editor.IEEE Transactions on Software Engineering, 28(7):625–637, July 2002.

[3] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriented design metrics as qualityindicators.IEEE Transactions on
Software Engineering, 22(10):751–761, Oct 1996.

[4] D. Cubranic and G.C Murphy. Hipikat: A project memory forsoftware development.TSE, 31(6), 2005.

[5] S. R. Dalal and C. L. Mallows. When should one stop testingsoftware?Journal of American Statist. Assoc, 83:872–879, 1988.

[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using software change history.IEEE Transactions on
Software Engineering, 26(2), 2000.

[7] J. Jelinski and P. B. Moranda. Software reliability research. In W. Freiberger, editor,Probabilistic Models for Software, pages
485–502. Academic Press, 1972.

[8] T. M. Khoshgoftaar and N. Seliya. Comparative assessment of software quality classification techniques: An empirical case study.
Empirical Software Engineering, 9(3):229–257, September 2004.

[9] Audris Mockus. Analogy based prediction of work item flowin software projects: a case study. In2003 International Symposium on
Empirical Software Engineering, pages 110–119, Rome, Italy, October 2003. ACM Press.

[10] Audris Mockus. Empirical estimates of software availability of deployed systems. In2006 International Symposium on Empirical
Software Engineering, pages 222–231, Rio de Janeiro, Brazil, September 21-22 2006. ACM Press.

[11] Audris Mockus, Roy T. Fielding, and James Herbsleb. Twocase studies of open source software development: Apache and mozilla.
ACM Transactions on Software Engineering and Methodology, 11(3):1–38, July 2002.

[12] Audris Mockus and David Weiss. Interval quality: Relating customer-perceived quality to process quality. In2008 International
Conference on Software Engineering, pages 733–740, Leipzig, Germany, May 10–18 2008. ACM Press.



[13] Audris Mockus and David M. Weiss. Predicting risk of software changes.Bell Labs Technical Journal, 5(2):169–180, April–June

2000.

[14] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in software projects. In2003 International

Conference on Software Engineering, pages 274–284, Portland, Oregon, May 3-10 2003. ACM Press.

[15] Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived software quality. InICSE 2005, pages 225–233, St Louis,

Missouri, May 2005. ACM Press.

[16] John D. Musa, Anthony Iannino, and Kazuhira Okumoto.Software Reliability: Measurement, Prediction, Application. McGraw-Hill

Book Company, 1987. ISBN: 0-07-044093-X.

[17] Nachiappan Nagappan, Brendan Murphy, and Victor R. Basili. The influence of organizational structure on software quality: an

empirical case study. InICSE 2008, pages 521–530, 2008.

[18] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone switches.IEEE Trans. on Software Engineering,

22(12):886–894, December 1996.

[19] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predicting the location and number of faults in large software systems.

IEEE Trans. Software Eng., 31(4):340–355, 2005.

[20] JacekŚliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce fixes? InProceedings of the 2005 international

workshop on Mining software repositories, pages 1 – 5, 2005.

[21] Annie Ying, Gail Murphy, Raymond Ng, and Mark Chu-Carroll. Predicting source code changes by mining change history. IEEE

Transactions of Software Engineering, 30(9), 2004.



Abstract
Defect prediction has always fascinated researchers and practitioners. The promise of being able to

predict the future and acting upon that knowledge is hard to resist. Complex models used to perform

the predictions and the lack of fair comparisons to what may happen in practice obscure the core

assumption that quantitative methods using generic measures can improve upon decisions made by

people with intimate knowledge of the project. We consider how defect analysis techniques may be

beneficial in a domain-specific context and argue that more explicit and more realistic objectives that

address practical questions or further deeper understanding of software quality are needed to realize

the full potential of defect modeling. This can be achieved by focusing on issues specific to a

particular domain, including the scale of software and of user base, economic, contractual, or

regulatory quality requirements, and business models of software providers.



Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, and improving software development. He

designs data mining methods to summarize and augment software change data, interactive

visualization techniques to inspect, present, and controlthe development process, and statistical

models and optimization techniques to understand the relationships among people, organizations,

and characteristics of a software product. Audris Mockus received B.S. and M.S. in Applied

Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991 he received M.S.

and in 1994 he received Ph.D. in Statistics from Carnegie Mellon University. He works in the

Software Technology Research Department of Avaya Labs. Previously he worked in the Software

Production Research Department of Bell Labs.


