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✦ Fascination with defects

✦ Core issues in common approaches
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✦ Costs and benefits
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Fascination with defects in SE

✦ How to not introduce defects?

✧ Requirements and other process work

✧ Modularity, high-level languages, type-checking and other

LINT-type heuristics, garbage collection, . . .

✧ Verification of software models

✦ How to find/eliminate defects?

✧ Inspections

✧ Testing

✧ Debugging

✦ How to predict defects?

✧ When to stop testing and release?

✧ What files, changes will have defects?

✧ How customers will be affected?
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Some applications of defect models

✦ Faults remaining, e.g., [5], e.g., when to stop testing?

✦ Repair effort, e.g., development group will be distracted from

new releases?

✦ Focus QA on [where in the code] faults will occur,
e.g., [18, 6, 8, 19, 1, 17]

✦ Will a change/patch result in any faults [13]

✧ such data are rare, may require identification of changes that caused

faults [20]

✦ Impact of technology/practice on defects, e.g., [3, 2]

✦ Tools, e.g., [4, 21], benchmarking, e.g., [11],

availability/reliability, e.g., [7, 16, 10]
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State of defect prediction

✦ Context: focus QA on modules that will experience faults

post-release

✦ Almost impossible to beat past changes [6, 8]

✦ Use some measure of code size if change data is not available

✦ Other things that have been shown to matter: coupling (calls,

MRs, organization, experience)

✦ What really matters tend to be outside the scope of software

itself: the number of customers, configurations, installation date,

release date, runtime [15, 12]

✦ Not clear if such models provide value

– Even with perfect prediction the affected area is too large

(exceeds release effort) for any meaningful QA activity
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Post release defects for two releases
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No defect prediction could handle these two releases!
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Defect density and customer experiences?
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Even if predictions of defects were perfect they would not reflect

software quality as perceived by end users
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Defect prediction —perpetum mobile of SE

✦ Why predictors do not work?

✧ Defects primarily depend on aspects that have little to do with code

or development process

✧ Therefore, such predictions are similar to astrology

✧ Hope that AI can replace human experts is premature

✦ Why people engage in irrational behavior, e.g., defect prediction?

✧ The promise to see the future is irresistible.

✧ The promise is phrased in a way the absurdity is well concealed.
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How the deception is perpetrated?

✦ By not comparing to naïve methods, e.g., locations with most
changes

✦ By not verifying that it provides benefits to actual
developers/testers — “we test features not files” or “we needto
have at least some clues what the defect may be, not where”

✦ By selecting misleading evaluation criteria, e.g, focusing on 20%
of the code that may represent more than release-worth of effort

✦ By comparing Type I,II errors of a product with40% rate to a
product with0.5% rate

✦ By suggesting impractical solution, e.g., how many SW project
managers can competently fit an involved AI technique?

✦ By selecting complicated hard-to-understand prediction method,
e.g., BN models with hundreds of (mostly implicit) parameters

9 Audris Mockus Domain-Specific Defect Models Defects’08



Then why do it?!?//1111one/

May be to summarize the historic data in a way that may be useful for

expert developers/testers/managers to make relevant design, QA, and

deployment decisions?
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Some approaches used to model defects

✦ Mechanistic: e.g., a change will cause a fault

✦ Invariants: e.g., ratio of post-SV defects to pre-SV changes is

constant

✦ Data driven

✧ All possible measures

✧ principal components (measures tend to be strongly correlated),

✧ fitting method

✦ Mixed: a mix of metrics from various areas that each has a reason

to affect defects, but a regression or AI method are used to find

which do
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Mechanism to the extreme

✦ Axiom 1: a change will cause an average number ofµ faults with

average delay ofλ [14]

✧ Empirical relationship between changes and defects is well

established

✧ New features can only be predicted based on the business needs: use

them as a predictor of fixes
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Invariance to the extreme

✦ Axiom 2: The history of MRs for releasen will be a scaled and

shifted version of the history of MRs for releases

n − 1, n − 2, . . . [9]

✧ Anything can be predicted: inflow, resolution, test defects, customer

reported defects, number of people on the project, release date, effort

. . .
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Most common approach

✦ Axiom 3: ∃f : ∀l, f(m, l) = d(l) that given measuresm will

produce the number of defectsd(l) at locationl

✦ f̂(m, l) = argf min
∑

l (f(m, l) − d(l))
2

✦ Common measuresm

✧ Code measures: structural, OO, call/data flow

✧ Process measures: change properties, age, practices, tools

✧ Organization measures: experience, location, managementhierarchy

✧ Interactions: coupling, cohesion, inflow, outflow, social network

measures for call/data flow, MR touches, workflow, ...
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Locations l

✦ Lines, functions,files, packages/subsystems, entire system

✦ Functionality (features)

✦ Chunks — groups of files changed together

✦ Changes — MRs/work items and their hierarchy

✦ Geographic locations

✦ Organizational groups

✦ Tool/practice users
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Defectsd

✦ Customer reported defects

✦ Alpha/Beta defects

✦ Customer requested enhancements

✦ System test reported

✦ Found in integration/unit test/development

✦ Higher severity levels
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What predictors may contribute?

✦ The value may not be in seeing the future but in understanding

the past: gain insights

✧ Formulate hypotheses

✧ Create theories

✧ Suggest ideas for tools or practices

✦ Focus QA

✧ Instead of telling what files will fail, tools that help experts assess

situation and evaluate actions may prove more useful

✧ Need to find sufficiently small set and type of locations to match

resources that could be devoted for QA

✦ Domain specific questions/analysis based on the cost-benefit

analysis
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Utility function: costs to repair

✦ What value will prevention bring?

✧ Reduces costs to repair:

✧ Domain: low cost for web service, high cost for embedded,

heavy/large consumer products, aerospace

✧ Number of customers: few customers can be served by the

development group itself

✧ Reduce cost of outage/malfunction:

✧ Domain: low for desktop apps, high for aerospace, medical, or

large time-critical business systems (banking, telephony, Amazon,

Google)

✧ Number/size of customers: fewer/smaller customers=⇒ less

cost

✧ Improve vendor reputation: personal reputation for internal products
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Utility function: costs to prevent

✦ How costly to prevent?

✧ Utility of the prediction in prevention

✧ Ability to test/verify all inputs for all configurations

✧ The size and complexity ofl

✧ Less cost for internal customer (more control over environment),

web services (few installations), harder for a component ofa

complex real-time multi-vendor system with a large customer base

✦ Other considerations

✧ Will quick repair of field problems count as prevention?

✧ Cost of alpha/beta trials

✧ Cost of testing

✧ Cost of better requirements/design/inspections
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Ultimately

Will prediction reduce prevention costs below
the repair costs?
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From domains to dimensions

✦ NASA: single use, limited replacement/update, errors critical,

often completed by contractors

✦ Online services: few installations, many users, costly downtime

✦ Consumer devices: many users, expensive to replace somewhat

alleviated by Internet connectivity

✦ Internal projects: single user, no difference between testing and

post-SV

✦ Office productivity: many users, error cost absorbed by end users

✦ Switching/servers: downtime costly, but software easy to update

✦ Mainframes - availability, no downtime
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Relevant dimensions

✦ Cost of defects

✧ Quality requirements: medical, mainframe, productivity

✧ Numbers of users

✦ Cost of prevention

✧ Scale/complexity of software

✧ Complexity of the operating environment: e.g., multi-vendor

✧ Resources needed to test/inspect/fix

✦ Cost of repair

✧ Few, internal users/installations

✧ Easy/inexpensive to upgrade

✦ Other considerations

✧ How accurate (similar releases/configurations/custumer set)

✧ What data is available: contractors may not share change data
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Which domains are likely to benefit?

Cost of repair

Cost to prevent

Impact of outage

Bulky consumer electronics

Medical

Safety
NASAOnline services

Productivity

Internal

Communications

Mainframe

26 Audris Mockus Domain-Specific Defect Models Defects’08



Recommendations

✦ Resist the urge to be an astrologer, no matter how sophisticated

the technique

✧ Use defect models to quantify the effect of methods/tools onquality

improvements

✧ Consider relevant dimensions and the utility if predicting

✧ Compare to naïve/simple predictors

✧ Stay, if possible, with a transparent evaluation criteria

✦ Summarize the historic data in a way that may be useful for

expert developers/testers/managers to make relevant design, QA,

and deployment decisions
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Abstract
Defect prediction has always fascinated researchers and practitioners. The promise of being able to

predict the future and acting upon that knowledge is hard to resist. Complex models used to perform

the predictions and the lack of fair comparisons to what may happen in practice obscure the core

assumption that quantitative methods using generic measures can improve upon decisions made by

people with intimate knowledge of the project. We consider how defect analysis techniques may be

beneficial in a domain-specific context and argue that more explicit and more realistic objectives that

address practical questions or further deeper understanding of software quality are needed to realize

the full potential of defect modeling. This can be achieved by focusing on issues specific to a

particular domain, including the scale of software and of user base, economic, contractual, or

regulatory quality requirements, and business models of software providers.
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