

Making the Software Factory Work: Lessons from a Decade
of Experience

Harvey P. Siy1, James D. Herbsleb1, Audris Mockus1, Mayuram Krishnan 2, George T. Tucker 3
1Bell Labs, Lucent Technologies, Naperville, IL 60563

2 University of Michigan Business School, Ann Arbor, Michigan 48109
3 Bell Labs/Lucent Technologies, Holmdel, NJ 07733

Abstract
At the heart of proposals to use process-oriented techniques
for creating organizations that are capable of creating high-
quality software at low cost is a focus on software process
maturity, organizational learning to foster continuous
improvement, and contractual arrangements that support an
exclusive focus on software construction activities, as
opposed to a broader focus on end-to-end development of
an entire product.

We study an organization that was to provide fast, low cost,
high quality software development services to product
teams within Lucent Technologies. The vision called for an
organization with a culture distinct and isolated from the
rest of Lucent, characterized by a commitment to a well-
defined software development process, use of state-of-the-
art technology that fits into the process, and use of various
forms of feedback to recognize and take advantage of
opportunities for process improvement.

The organization has operated for nearly a decade now, and
has evolved over the years as the basic principles have been
put to the test in actual product development work. We use
a rich collection of data from interviews, questionnaires,
software metrics, and software process assessments to
advance our knowledge of how to create and sustain an
effective, medium-size process-centered software
development organization.

1. Introduction
There has been much discussion in recent years of process-
oriented techniques for creating organizations that are
capable of creating high-quality software, very quickly and
at low cost e.g., [2]. At the heart of this proposal is a focus
on software process maturity, organizational learning to
foster continuous improvement, and contractual
arrangements that support an exclusive focus on software
construction activities, as opposed to a broader focus on
end-to-end development of an entire product. The
Advanced Software Construction Center (ASCC) of Lucent
Technologies1 was created to provide fast, low cost, high
quality software development services to product teams

1 Formerly a part of AT&T.

within Lucent. The vision called for an organization
characterized by

• a commitment to following a well-defined
software development process,

• use of state-of-the-art technology that fits
into the process, and

• use of various forms of feedback to
recognize and take advantage of
opportunities for process improvement.

The Center has operated for nearly a decade now, and has
evolved over the years as the basic principles have been put
to the test in actual product development work. This
experience has produced many lessons about what works
and what does not work, about problems, workarounds, and
solutions. The goal of this paper was to use a very rich
collection of data from interviews, questionnaires, software
metrics, and software process assessments to advance our
knowledge of how to create and sustain an effective,
medium-size process-centered software development
organization.

2. The site
Work on the innovative "Silver Bullet" [3,4] techniques for
interval reduction began in 1990, and ASCC was founded
in 1991, with the goal of putting these principles into
practice to achieve breakthroughs in increasing productivity
and reducing cycle time. This was to be accomplished with
a process-oriented "software factory" [2] that dealt only
with architecture, design, code, and test, not systems
engineering, requirements, or maintenance. The
organization was to function as a sort of software
subcontractor, with no contact with the end customer.

The first step was to define a detailed software development
process, for which a number of experienced internal
consultants were engaged [3]. The desire was to create a
process-oriented culture, quite different from the culture
prevalent in many other parts of the organization. To this
end, only a few experienced developers were transferred,
and the staff was filled out with new bachelor's level
graduates. All staff members were given extensive training

in the new processes, and detailed on-line documentation
was available.

At the time these data were collected, ASCC had a staff of
about 100 people, with plans to continue growing at an
increasing rate. By this measure ASCC has been very
successful. But this success did not come easily, and
progress was as often achieved by changing or adjusting the
philosophy as it was by implementing the original
intentions, as our results below indicate.

3. Principles put into action
We were primarily interested in understanding what
happened when the basic principles, which underlie the
efforts of many software organizations, were put into
practice. For each of the basic principles, we describe how
it was initially implemented, the kinds of successes and
problems arising from the initial implementation, and the
adjustments made in order to address problems. In some
cases, the results were also supported with quantitative
analyses.

The basic principles had to do both with the process
orientation of the organization, and with the software
factory-style business arrangements:

Process orientation:

• Task of process specification is separated
from the task of process execution

• Detailed process specification created
before actual development work

• Assigning responsibility and assuring
accountability for process improvement

Software factory arrangements:

• Software-only contract shop business
arrangements

• Implementing organizational learning for
continuous improvement

4. Data collection and analysis
We combined qualitative and quantitative methods to
investigate the results of applying these principles. The
qualitative data allowed us to understand how process
improvements were actually implemented, and investigate
in some depth how the improvements, their consequences,
and adjustments were perceived by staff and managers at all
levels. The assessments allowed us to view the
organization at several distinct points in time from the
independent, external2 viewpoint of assessors who gathered
data and interpreted it according to standard models and

2 The assessors were external in the sense that they were
from another Lucent organization, and were therefore able
to be more objective than an organizational self-assessment
might be.

methods. The assessment results gave us considerable
insight into the strengths and weaknesses of the process,
and a firm basis for understanding the improvement actions
that were taken in response. Finally, we have quantitative
data that we used, when possible, to test hypotheses derived
from the qualitative data. In most cases, quantitative results
supported conclusions tentatively reached on other bases.

4.1. Interviews
We conducted interviews with 12 individuals from the
organization in order to develop a balanced and relatively
complete picture of the organization's history, its
improvement efforts, what had worked, and what had not.
We were careful to include a variety of management levels
as well as technical staff, to include individuals known to be
very enthusiastic advocates of process as well as those who
were more skeptical, and we included two process
consultants from outside the organization who had worked
closely with it for a period of years. All of the interviews
were semi-structured, i.e., they were organized around a set
of prepared topics. They were asked what they thought
were the most significant changes in the process over the
years. They were also shown a list with a dozen of the
organization's major process improvement initiatives and
asked about their effectiveness. The questions were open-
ended and the interviewees were given the opportunity to
bring any relevant information into the discussion. To
ensure accuracy, all interviews were tape recorded and the
recordings transcribed.

4.2. Software process assessments
We had available to us the results of four software process
assessments, conducted in 1994, 1995, 1996, and 1997.
These assessments were conducted by Lucent consulting
group, and combined modified versions of the Software
Productivity Research (SPR) CHECKPOINTTM
methodology, and the Software Engineering Institute's
Software Capability Maturity ModelSM (SW-CMM) [12].
Each assessment was conducted by two experienced
assessors from the consulting group. Questionnaires were
administered ahead of time, and two days were spent on site
collecting qualitative data. For each assessment, a report
was produced, showing where the organization stood on
each of the CMM Key Process Areas (KPAs), as well as
each of the areas in SPR's Software Development Profile.
Strengths and weaknesses in each area were identified, and
a set of recommendations was presented.

These assessments must be carefully interpreted. The
CMM assessments of the organization, as became clear to
us, may not objectively reflect what one would intuitively
consider as an organization's process maturity. At the first

TM CHECKPOINT is a trademark of Software Productivity
Research.
SM Capability Maturity Model and CMM are service marks
of Carnegie Mellon University.

assessment the CMM Level was 1, but a whopping 85% of
requirements to reach Level 5 were implemented. Not
surprisingly, in just two years the assessed CMM Level
reached 3 with virtually the same percent of requirements to
reach level 5 being satisfied. So there were only a few
KPAs that varied over the organization's history. We also
collected more detailed data on the nature of the process
used for each release of the project. These data, discussed
in the next section, allowed us to understand and investigate
these effects more thoroughly.

4.3. Process attributes for each project
To reconstruct the process history of each project, we
conducted a survey of process-related activities specific to
that project. The questionnaire was developed from a subset
of the CMM key process areas (KPAs). [12] We asked one
of the consultants who conducted the process assessments
to pick out certain KPAs whose answers he felt had
changed over time. We included all the Level 2 KPAs
except subcontract management (which did not apply to this
organization). We also included process focus, intergroup
coordination and peer reviews from Level 3, and defect
prevention from Level 5. Unlike assessment questions
which are mostly binary valued (e.g., "Did you do this or
not?"), we asked the respondents to rate the frequency of
usage. The assessments measured on this scale are reported
to exhibit higher reliability [7]. The survey had from 2-5
questions for each KPA, in order to ask about different
facets of the goals for each KPA. We selected an average
of three respondents per project to answer the survey.

Many doubts arise as to the validity of any survey
instrument. First is the potential ambiguity of the questions
asked, because some terms may have subtly different
meanings. We mitigated the effect of this potential
ambiguity by conducting the survey as a highly structured
interview, with one of us sitting down with each respondent
to clarify any ambiguous point.

Second, there is the problem of accurate recollection,
especially for projects that have terminated years ago. We
lessened the effect of this potential recall problem by
bringing along information about each project, and having
it on hand during the survey to refresh the respondent's
memory about which project we were asking about, what
release it was, and who else was on the team.

Third, we cannot expect perfect accuracy in the answers to
these types of questions, making it hard to analyze given
small number of respondents evaluating each project. We
addressed this concern by using regression methods that
take into account errors in predictor variables.

With all the cautionary steps taken, analysis of the survey's
validity shows several results. Most respondents perceived
the process to be the unchanging across releases of the same
project, giving the same rating to most process areas for all
releases. The respondents' answers to related questions

were consistent. We tested this in a number of ways: We
tested the inter-rater reliability coefficient across the
respondents within a project. A confirmatory factor
analysis and hierarchical clustering of responses to KPA
questions revealed that the different aspects, or questions,
of the same KPA were related and loaded on a single factor.
For example, all the questions in the defect prevention KPA
form a single cluster.

For many projects, however, the reliability across
respondents was low, i.e., respondents reported varying
perceptions or memories of the project. A close
examination of the responses revealed several respondents
who did not appear to be giving accurate answers. Several
respondents (4), all relatively new to the organization, had
very little experience with software process improvement,
having, for example, never experienced a software process
assessment. We judged that they did not have the necessary
experience with the concepts and terminology to give good
judgments. We also had several others (3) who told us they
had only minimal exposure to the projects or releases they
were reporting on. Based on these considerations, we
excluded a total of 7 respondents from the analysis.

We collected survey data on 9 projects with a total of 42
releases. (ASCC has been involved in substantially more
than 9 projects, however, we were unable to get data on
several projects that dated earlier than 1994 because the
developers involved were no longer available.) To reduce
the number of predictors, we sorted KPA questions into
four broad categories, based on a cluster analysis of the
results and intrinsic similarities among activities: Software
Process Management, Tracking, Defect Prevention, and
Planning.

We first identified the process characteristics that actually
changed over time, on the assumption that these were the
only process factors that could contribute to changes in
things like quality, cycle time, and efficiency. As we
expected, based on the Software Process Assessments, most
KPAs did not show substantial change over time. Recall
that the organization, even in its first assessment, satisfied
85% of the Level 5 KPAs. The exceptions were in the
process areas of Defect Prevention and Tracking. Defect
Prevention activities increased over time, while Tracking
decreased.

These trends are illustrated in Figure 1. Each release of
every product for which we have data is plotted as a point.
The location of the point with respect to the horizontal axis
represents the date the project was officially begun. Its
location on the vertical axis indicates how consistently the
release met the goal requirements included in Defect
Prevention and Tracking. Lowess [1] smoother line is
shown to illustrate the trends. Both trends are significant at
0.05 level using ordinary linear regression predicting
response using starting time of the project.

**

*
* ***** *

*** **

**

*
*

*

*

* *

*

* **
* *

*

*

* * *
*

* *

* *

94 95 96 97

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

years

pr
ev

en
tio

n
sc

or
e

**

*

* ***** *

*** **

**

* **
*

*
* *

*
* *

*

*

* * *

* **

*

* *

94 95 96 97

2
3

4
5

years

tra
ck

ing
 sc

or
e

Figure 1. Trends in Defect Prevention (left panel) and Tracking (right panel) over time, for ASCC releases.

4.4. Configuration Management System (CMS)
data
The organization used Sablime, an internally developed
configuration management tool, which evolved from
Extended Change Management System (ECMS) [9] change
control system, which in turn uses Source Code Control
System (SCCS) [13] for source code version control. There
were two levels of source code changes that were
distinguishable in the organization: delta, or atomic changes
to the source code files produced by SCCS whenever
individual file was submitted and Maintenance Requests
(MRs), or logical changes needed to perform a task like a
bug fix which may touch several files and generate
numerous delta. We used change summaries extracted by
the SoftChange system [10] that included time, developer,
size, file, and MR associated with each delta and interval,
developer, and purpose associated with each MR.

4.5 Project tracking data
The reported project information included size, staff
months, number of faults, and interval. Unfortunately, the
reported data was not measured consistently across projects
and sometimes was not consistent with change based-data;
therefore it was not used in the models. Some projects
measured size in function points (FP) and some in lines of
code (LOC). The reported function point and reported LOC
measures did not correlate well with the amount of code
developed (as obtained from change history data based on
all changes associated with a project) or with the reported
staff months. Furthermore, the reported interval did not
correlate with the duration of the coding phase measured by
time difference between the last and the first change. These
serious validity problems made the reported data unsuitable
for further analysis. ASCC example highlights some of the
pitfalls of using project tracking data for benchmarking.

5. Results
The following sections summarize our results in both the
areas of the organization's process orientation, and
operation as a software factory.

5.1. Process orientation
The Silver Bullet vision also called for ASCC to be
culturally distinct from Lucent (then AT&T). It was
recognized early on that having a culture with a process-
conscious mindset would be difficult to achieve with
veteran developers from existing AT&T organizations who
already know instinctively what needs to be done. Thus the
decision was made to hire mostly people fresh out of
college who could be trained to follow the process. (This
had the added benefit of lower salaries.) To emphasize
ASCC's separate culture, the organization was placed in a
separate geographical location as well. North Carolina was
chosen because of the resource pool, as well as
infrastructure and cost advantages. The result was a culture
that lived by the process.

Every person we interviewed, which includes a few who are
critical of many aspects of the organization's process
orientation, expressed the view that the emphasis on
process is good for the organization and its customers. We
heard many comments suggesting, for example, that the
consistently high level of product quality was directly
attributable to the emphasis on process. Many people
commented that the "atmosphere" of discipline and rigor
created by the process emphasis was probably the most
important result of focusing on process. Specifics of how
particular tasks are done, how processes are defined, and so
on, were thought to be much less important than the
expectation, shared essentially by everyone, that processes
form the foundation for the way work is done.

In spite of this broad endorsement of the process emphasis,
there were many difficulties in the execution. In the

remainder of this section, we focus on how ASCC brought
about this process orientation, things that worked well and
others that didn't, and lessons that can be drawn from this
wealth of experience.

5.1.1. Process specification separated from process
execution
In order to give adequate attention to the development and
maintenance of an effective, efficient process, the project
decided early on that process engineering should be a
distinct position, and should be separate from those whose
responsibility is to execute the process, i.e., to develop the
product. This explicit assignment of responsibility and
unambiguous allocation of resources was intended to ensure
that development processes received sufficient attention. In
addition to this stance on assignment of responsibility, the
organization decided to write a detailed process up front, so
that product development could ramp up quickly and be
executed in a disciplined way from the beginning.

These principles were put into action by bringing in several
"process engineers," with considerable experience and
expertise in defining software processes. They were
commissioned to define the development process, and to
design a development environment in which that process
could be executed efficiently. The process engineers were
Lucent consultants, separated from the developers both
organizationally and geographically. They were brought in
to define the process before the organization actually
existed. At the peak of process definition activity, 7 or 8
process engineers were working on various aspects of the
work. The highly detailed defined process they created
included not only tasks to be executed (represented as data-
flow diagrams), but also training curriculum, measurement,
project management, tools, staff functions with required
skills, and platform (focusing on cataloging reusable
software).

The process was represented in a commercial tool that
required considerable time desk checking and auditing to
make sure it was consistent. Training was provided for the
developers, who were to execute this process.

There was some resistance to the external process engineers
from the beginning. Some developers felt that since they
were the ones doing the job, they best understood how it
should be defined. There was also a sense among some of
them that communication with the external process
engineers was too difficult since they were located
elsewhere. Further, the developers didn't feel a sense of
ownership of the processes, did not believe the processes
always reflected a good understanding of how the work
should be done.

Several developers also expressed the view that the process
engineers often seemed relatively unresponsive to the
developers' concerns. There was concern, very early on,
when the processes first were applied to actual projects, that
the numerous requests for changes seemed to be getting

lost. A system for tracking change requests was
implemented, and almost immediately over 180
modification requests were submitted, overwhelming the
process engineers.

The situation seemed to improve considerably when the
organization hired local process engineers. Several
developers remarked that it helps to have process engineers
who are immersed in the local culture, who "know how we
do things." As one developer put it, with local process
engineers, "It is like the people here own the process, and it
is part of [our] culture." There is also a widespread belief
that the local engineers are more responsive, and that
developers now have more confidence that the on-line
process descriptions reflect reality. The local process
engineers are also in a better position to champion process
issues, to "beat the drum to do process."

5.1.2. Pre-defined process and the need for
simplification
One of the primary threads of work in improving the
organization's process was to simplify it, to remove steps
and work products that did not add value. As mentioned
above, the process was written before development
capability of the organization actually existed. So even
though the process was designed by experienced, highly
regarded process engineers, it was written in the complete
absence of any experience with the specific development
organization in which it was to be executed.

Defining a process, particularly for a new organization, is a
very challenging undertaking. In a certain sense, it is very
like programming, and software processes can themselves
be thought of as software [11]. Recommendations for
defining a software process, on the other hand, seldom
advocate programming these new processes from scratch,
without first thoroughly understanding the existing process
[6]. While we are not aware of any published
recommendations that advocate skipping over this step, it is
often left out in practice. The feeling often is, "We know
the current process is no good, and we want to change to
the new process as quickly as possible. Let's go right to the
new one."

The ASCC experience is an excellent chance to evaluate the
risks of this strategy. The ASCC did not have the option of
writing down an existing process, since process definition
began before the organization existed. But they did make
the choice to try to define a complete, detailed process at
the outset, rather than starting with a bare-bones process
and iterating to evolve it as needed. Again, this was done in
order to ramp up as quickly as possible, to put a process
that would allow them to "hit the ground running."

Over time, as the ASCC process was applied to actual
software projects, many serious shortcomings became
apparent. There were many holes, i.e., things not addressed
adequately or at all. The process focused on the technical
tasks, such as writing requirements, doing the design,

inspecting, testing, and so on. Other essential tasks, in
particular, many of the front end and project management
tasks, were left out or dealt with only cursorily. It was not
clear, for example, how the organization committed to a
project, lined up resources, or what a project plan should
look like. In addition, there was no provision for
administering the code, including tasks like configuration
management.

In other cases, even where a task was covered in detail by
the defined process, the definition was perceived not to be
adequate to give sufficient direction about how to carry out
various tasks. The original idea was to have a process that
was clear enough and detailed enough that someone right
out of school, with little or no experience, could begin
working productively with relatively little mentoring. This
goal was overly optimistic; even where the process was
quite detailed, it did not achieve this result. New people
needed considerably more mentoring that was expected, in
order to become productive. As one engineer put it, the
process "told them the flow, but it still didn’t tell them how
to do the actual work itself."

The immediate response to these shortcomings was to add
to the process. As one engineer said, "We tried to make our
process reflect every experience that our project had. … we
tried to over-engineer everything." Many of these
additions, however, proved to be project-specific, and did
not apply or did not work well in a new project. This "first
attempt," particularly after additions were made, seemed
uniformly to be too "big," too wordy, require the production
of too many documents, and was too difficult to change.

This process expansion began to be reversed when a
customer for one project insisted on incremental delivery of
features on a 12-week cycle. Rather than producing the full
set of features for the project at the end, the customer
required delivery of a subset of the features 4 times a year
until the project was complete. In order to meet this
challenge, a simplified, stripped-down version of the
process was created. Templates were scaled back only to
what was essential, many work products were identified that
only needed to be produced once for the entire project,
rather than for each delivery, other work products were
eliminated entirely. In describing this paring back of
processes, many developers used the famous quote from
Mies van der Rohe, "less is more." It was described as a
big step, a revelation.

Important lessons were learned from the "12-week
process," and were quickly applied on a larger scale. As
one developer said, "I think this was a really a good
stepping stone, and I think probably very important now for
the evolution of the processes." Process simplification was,
and continues to be, applied to the processes used by other
projects. In one case, the simplified 12-week process was
tailored to a different project in a matter of days, once the
process had been reviewed and feedback from its previous

instantiation provided. The simplification seems also to
have made it much easier to apply in new projects.

There is some quantitative evidence that the simplified
process increased the throughput. We tested this claim in
two different ways. First, we modeled the release interval,
correcting for size of the release and level of project
tracking, comparing the 12-week process to the process
used more generally within ASCC. Although the estimated
coefficient was negative, hinting at higher throughput for
the 12-week process, the standard deviation was large
enough (due to small sample size of releases with 12-week
process) to make the result inconclusive.

However, we then checked if the 12-week process
decreased the interval between the open and close of each
individual MR. We found that the 12-week process
significantly decreased the interval (p-value << 0.01) of
individual MRs. This is important because every release
consists of a large number of MRs. Reducing MR interval
keeps project on track and reduces change dependencies
that may happen when a large number of MRs are open at
the same time. This fact might be the principal cause of
satisfaction with the 12-week process. It also strongly
suggests that the simplified 12-week process increased
efficiency at the MR level, which could result either in
lower cost or shorter interval.

Our analysis of the effects of decreasing levels of tracking
is also relevant to the issue of simplification. Recall that
tracking was one of the measures that varied substantially
over releases. We found that lower scores on tracking, i.e.,
"less" tracking, was associated with shorter intervals, both
for the entire release and for individual MRs, even when we
adjusted for size (of MR, of release) in fitting the models.
While this may seem somewhat surprising, remember that
project tracking was performed consistently throughout all
releases in the sample, so we are not concluding that it is
better not to track projects. Rather, we think it likely that
there is some optimal level of tracking, and exceeding this
level may generate enough overhead to actually increase
interval.

5.1.3. Process improvement: responsibility and
accountability
Assigning responsibility for designing and implementing
process improvements has proven to be a difficult problem.
Originally, process improvement work was expected of
each team, including the process team, build team, delivery
team, and so on. This was less than satisfactory, because
people tended to do relatively trivial things, like a minor
update of a template, in order to demonstrate some process
work. But there were no focused efforts attacking problems
in coordinated ways.

The next stage was the creation of a process council that
was charged with the responsibility of orchestrating process
improvement. They posted process improvement
opportunities, and had a complicated scheme of allocating

credits for those undertaking the work. The council had the
responsibility of tracking who had done how much work.
This was probably an improvement in focusing the work,
but it was a major administrative headache. It also did not
resolve the fundamental problem of the conflict between
process and project work. There was another council,
composed of project team leaders, and the two councils
found themselves in contention for resources.

The next stage attempted to solve the contentious council
issue by merging the two, creating the project and process
council, which had both responsibilities. This council was
charged with achieving center-wide objectives, cast in
objective terms of interval, quality, and cost. Each team was
required to contribute some significant process. This
seemed to work better, because everyone had the same
objectives, and what had been two groups had to work
together toward these objectives.

The final stage created a quality council, rather than the
project and process council, and began to rely primarily on
root cause analysis to identify process work that needed to
be done. They are following a common approach to quality
with four steps: identify a problem, identify root causes,
take corrective action, and verify that the problem has been
corrected. It is too early to say how successful this
approach will be, but it clearly has strengths and
weaknesses. The strength is that now responsibility is
clearly vested in the council, so it is hoped that this will
help motivate effective action. On the other hand, the
sentiment was often voiced that people now do not regard
process improvement as everyone's responsibility. Many
developers now appear to see it as the "Council's problem,"
and they no longer have as strong a sense of ownership and
responsibility for the process.

There seem to be issues that recur, and are extremely
difficult to resolve. One is that process work and project
work generally experience a resource conflict in practice.
Many interviewees argued that in the big picture this should
not be so, since the process work defines what one does in a
project. So process work ultimately contributes in a very
fundamental way, to project success. Yet in practice, this
conflict is difficult to resolve. Process work represents an
investment for the future, and the short-term payoff of
project work (product out the door sooner) will always be
higher when resources are scarce. Focus on the longer term
view is difficult to sustain.

The other recurrent issue we noted is the question of how
widely to distribute responsibility for process improvement.
Resources are less likely to be pulled from process work if
there is staff dedicated to these efforts. On the other hand,
this approach can leave everyone else feeling as if they
have no responsibility at all for improvement. This can be
unfortunate, since those executing the process have the best
sense of what will actually work, and must in any event
cooperate with improvements or they are unlikely to make
their way into actual practice. Distribution of responsibility

more broadly can result in the feeling that since everyone is
"responsible," no one is really responsible. It is very hard
for anyone to resist project pressures, or to plan
improvement efforts so coordinated action can be taken.

5.2. Software factory arrangements
ASCC was effectively an internal software subcontractor,
created to provide software development services to other
Lucent product organizations who have software needs but
cannot afford to develop it themselves. The motivation was
that ASCC could build their software more cheaply and
deliver at more predictable schedules. This "software
factory" arrangement had several implications in terms of
product ownership, dealing with organizations with
different process requirements, and forming domain
expertise.

5.2.1. "Software Only" Contracts and Product
Ownership Issues
The model for ASCC's process seemed simple enough since
it did not deal with customers directly, but relied on
whatever requirements was passed to it by the product
owners. Also, most of the software it built was transitioned
to the product owner upon completion. Based on these
assumptions, the process engineers created a process that
focused on the technical activities, as mentioned above.
They had serious difficulties, however, with some of the
non-technical activities, which include writing proposals,
acquiring projects and negotiating requirements. The
missing processes can be classified in two categories: front-
end and integration.

Front End Management
One problem that came up at the front end was sorting out
project requirements. Oftentimes, ASCC works in
collaboration with several other development organizations.
In early projects, the work distribution was not clear, e.g.,
either the requirements specification was unclear or
incomplete, or there was miscommunication about group
assignments. This resulted in a lot of rework effort. Later
projects mitigated these issues by assigning dedicated
people to work with systems engineers early on. This made
the development smoother. The problem that has to be
managed, of course, is the intimate relation between
software and other activities, such as systems engineering,
and other parts of the product, such as hardware. Interfaces
need to be clear, handoff points well defined, and there
must be some effective mechanism for the inevitable
negotiations about changes.

Integration Problems
ASCC's early projects experienced a host of integration
problems not unlike other organizations involved in
geographically distributed software development projects
[5]. One problem was the need to do integration remotely,
at another site outside of ASCC. In many cases, integration
had to be done at the owners' site because the size of the
integrated product was beyond the capacity of ASCC to

handle. This physical separation slowed down the
integration testing, debugging, and fault fixing cycle. Aside
from this, product owners typically subcontract only a part
of their product development to ASCC. Once finished, the
ASCC portion is then integrated at the owner's site. This led
to problems in testing for feature interaction and assigning
responsibility for particular faults.

Several countermeasures were set up to fix the integration
problems. The importance of intergroup coordination was
emphasized, especially after the first software process
assessment. (Our survey data indicate high scores for
intergroup coordination, especially, keeping track of issues
across multisite teams.) ASCC also realized the importance
of the Operations, Administration, and Maintenance
(OA&M) subsystem as a platform for incremental
integration, in which product features are added to a
skeletal system and tested piecemeal. The result was that
few of the latter projects mentioned integration being a
serious problem.

We should note here that working closely together across
major organizational boundaries is not necessarily
addressed well by Intergroup Coordination, as conceived in
the CMM. Intergroup coordination extends only to groups
within the same organization, e.g., software and hardware
design, and does not apply as well to the complex
relationships with external organizations. Software
factories, generally set up as specialty contract shops with
customers external to the organization, suffer from the more
complicated "virtual enterprise" type problems, where the
groups do not necessarily have a common management
chain, culture, and so on. This is an increasingly important
area not addressed well by the CMM.

5.2.2. Adjusting to the product owner’s environment
In many instances, ASCC worked with organizations that
have different software processes and tool environments.
For the most part, adjustment to the product owner’s
environment did not cause big problems. In some cases, the
product owner’s processes were defined at a coarser level
of granularity, which allowed ASCC to use their own
processes. In other cases, ASCC had to follow the product
owner’s existing processes, which means, at a given time,
different development groups within ASCC would be
following different processes. Eventually, ASCC
developed a simple, lightweight process model which can
be easily customized to work with different customer
processes.

With respect to working in different tool environments, the
biggest impact occurred when the product owners used
different configuration management systems. Since its
inception, ASCC has been using Sablime for configuration
management. Because of this, many of their process tools
are also tied in with Sablime. However, several recent
projects are using other configuration management systems
like ClearCase [8] and ECMS. In addition to costs of
retraining development teams to be familiar with these

systems, these have severely limited the usability of their
process tools, some of which have been hardcoded to
extract data from the Sablime database. This is an example
of the important point that it is not wise to tightly couple
processes and tools -- it makes both harder to change.

5.2.3. Leveraging the software factory advantage
ASCC tried several business strategies to leverage its core
software competence. At its inception, ASCC worked with
one or two product owners. This carried a high risk for
ASCC as there would be a major funding problem if one of
them were to pull out. They quickly modified their strategy
by going after several small projects from different product
owners. This approach enabled them to obtain a
constituency among several business units within Lucent.
However, this prevented them from gaining expertise in a
particular application domain. (Some of the past projects
included expert systems, information systems, operating
systems, graphical interfaces, database managers,
broadband applications, etc.) In the past couple of years
there was a trend toward settling down into a few niches.
Now ASCC has gone back to working with a few large
projects.

It has been pointed out previously, e.g., [2] that one of the
primary advantages of a software factory derives from
planned economies of scope, i.e., "cost reductions or
productivity gains that come from developing a series of
products within one firm (or facility) more efficiently than
building each product from scratch in a separate project. (p.
8)" Reaping the benefits requires some control over the
work that is accepted, however. There are obvious
economies of scope for successive releases of the same
product. Accumulated domain expertise, as well as
acquiring specialized tools and know-how in a domain, is
also likely to produce a substantial advantage. However,
economies of scope are lost when the contracting
organization does not, or can not, build on past experience
in some substantial way, but rather ramps up one novel
effort after another.

5.3. Organizational learning for continuous
improvement
Learning from experience is an important element of
continuous improvement. In order to learn effectively,
ASCC has instituted some formal mechanisms. In addition,
informal means of learning is also encouraged.

5.3.1. Formal learning
Formal learning efforts were carried out in two ways:
postmortems were conducted to learn how to improve the
process and defect root cause analyses were conducted to
learn from past software faults. The quantitative evidence
available to us fails to indicate any positive effect of
prevention activities on software quality, as measured by
the number of bug fix MRs after the release date, or
measured by the total number of bug fix MRs (the models
adjusted for size of the release). In this section, we look at

the ways in which ASCC strove to learn from their
experience, and the difficulties these efforts encountered.

Postmortems. The postmortem process was designed to
support the process of process improvement. It focuses on
identifying gaps between expectation of what the ideal
process ought to have dealt with a particular situation and
the reality of how the situation had been handled. After the
gap is identified, countermeasures are specified. Usually,
countermeasures simply document the gap as a process MR.
If the gap requires a larger, concerted effort, then a task
team may be formed to propose a solution.

Postmortems generated a mixed response from the
developers and managers we interviewed. Some were very
positive about the benefits of postmortems. Others see
postmortems as a lot of effort with little return. Our
conclusion was that developers who have worked across a
variety of projects seem to find postmortems to be
ineffective while developers who stayed with the same
project seem to find postmortems effective. Therefore
postmortems appear to be effective in carrying over key
learnings to succeeding releases of the same project but are
not effective in carrying these over to other projects. There
are several reasons cited for this. What worked on one
project may not make sense when applied to another
project. Many of the issues that come up in the post mortem
are very specific and only apply to a certain domain. In
addition, the same persons who learned from the
postmortem frequently move on to other projects where the
results may not be applicable or leave the company
altogether, thus putting away the postmortem results
without taking further action.

Root Cause Analysis. Root cause analysis on software
faults is conducted in order to prevent recurring software
faults from happening again. Causal analysis of faults have
been done in other companies, identifying the cause of the
fault, steps for preventing the fault and removing similar
faults that may exist in the system. These recommendations
ideally result in more effective testing and inspection
processes. In other cases, statistical analysis of faults leads
to identification of fault-prone modules that are then
rewritten.

In ASCC, root cause analysis is relatively new. Hence there
hasn't been much of an impact in terms of improving
existing QA processes. Root cause analysis data is entered
into a field in the change/defect tracking database but
nobody knows what to do with it once it is there.
Occasionally, root cause analysis has led to the
identification of problematic files that have been rewritten.

5.3.2. Informal learning
In the course of doing certain things repeatedly over several
projects, opportunities arise which encourage a more
informal means of learning. One of the biggest
breakthroughs was being able to quickly ramp up new
projects and ramp down old ones. Key to this was the

Operations Administration and Maintenance (OA&M)
subsystem. The OA&M subsystem is the foundation on
which the rest of a software product is built. It provides the
framework for process execution and interprocess
communication, error handling, and installation of the
system. It is often added as an afterthought after the rest of
the major functionalities have been planned and
implemented. ASCC developers found themselves
repeatedly building this framework for every new project.
They discovered that, if the OA&M subsystem is created in
advance, then it can provide scaffolding for early unit
testing without waiting for the whole system to be put
together. It also provides a platform for incremental
integration so that not all pieces have to be there at once.
Because of ASCC's success in doing OA&M, it became one
of their domains of expertise and other business
organizations had ASCC do their OA&M.

5.4. Lessons Learned
Separating the function of process engineer from developer
can be a successful tactic for ensuring that process
definition and maintenance receives the attention it needs.
But the people who fill those roles should not be too
separate in the sense that the process engineer should be
available, steeped in the local culture and environment, and
considered "one of us" by the developers, who thereby
share a sense of ownership of the process. At a minimum, it
seems that process engineers should be co-located with the
developers, and should be within the development
organization rather than an external group. Job rotation
between process engineering and product development,
although not observed in this case study, may be an
effective way of maintaining this vital link.

Maintaining and improving the process should be treated
much like maintaining and improving physical facilities, or
the computing infrastructure. While an out-of-date process
is less visible than, say, a leaking roof, pulling resources
from either one to take care of short-term needs will simply
allow the problem to grow worse, and probably more
expensive to fix.

Process improvement must be everyone's responsibility, but
there must be a small core of people with process as their
primary responsibility, to lead and plan process efforts.
These leaders should work to find slack resources, e.g., just
after a major release, when others are experiencing less
project pressure, and may be more willing and able to spend
time on process work.

Economies of scope are easiest to obtain across multiple
releases of a product, an advantage that presumably extends
to product lines. There are likely to be substantial
advantages for development of different products within a
domain. When new projects continue to crop up in new
domains, however, the organization is continually suffering
from sparse domain knowledge, and benefits little from its
previous experience. It is very difficult to carry learning
across domains. There must be some control over the work

that is accepted in order to take advantage of economies of
scope.

Even a contract shop cannot ignore the need to have
processes for non-technical activities as well as technical
activities. Work with systems engineers up front to agree on
requirements. Invest time in automating repetitive tasks.

Continuous intergroup discussion and incremental
integration can offset problems of widely distributed
software development.

Invest time and effort in developing a portable toolset and a
simplified common process that can be easily customized.
Keep processes and tools as separate as possible. A tight
coupling will make it much more difficult to evolve or
customize either one.

Starting an organizational culture from scratch is a feasible
alternative to attempting to engineer a culture shift within
an existing organization.

Postmortems are effective in carrying over key learnings
from one release to the next within the same project.
Additional mechanisms would be required to transfer
learning across projects.

The principles of the software factory and process
improvement do not automatically lead to a successful
development organization. One must, for example, take into
account the goals and circumstances of the particular
organization in order to

• achieve a useful level of detail in process definition,

• define separate but not disconnected roles of process
engineering and development, and

• strike the correct balance between collective and
individual responsibility for process improvement.

References
[1] W.S. Cleveland, "Robust Locally Weighted Regression
and Smoothing Scatterplots," Journal of the American
Statistical Association, Vol. 74, No. 1979, pp. 829-836.

[2] M.A. Cusumano, Japan's Software Factories, Oxford
University Press, New York, 1991.

[3] S. Gelman, "Silver Bullet: An Iterative Model for
Process Definition and Improvement," AT&T Technical
Journal, Vol. July/August, No. 1994, pp. 35-45.

[4] S.J. Gelman, F.M. Lax and J.F. Maranzano,
"Competing in Large-Scale Software Development,"
AT&T Technical Journal, Vol. November/December, No.
1992, pp. 2-10.

[5] J.D. Herbsleb and R.E. Grinter, "Splitting the
Organization and Integrating the Code: Conway's Law
Revisited," Proc. International Conference on Software
Engineering, 1999, pp. 85-95.

[6] M.I. Kellner, L. Briand and J.W. Over, "A Method for
Defining and Evolving Software Processes," Proc.
International Conference on the Software Process, 1996,
pp. 37-48.

[7] M.S. Krishnan and M.I. Kellner, "Measuring Process
Consistency: Implications for Reducing Software Defects,"
IEEE Transactions on Software Engineering, Vol. 25 No.
6, 1999, pp. 800-815.

[8] D.B. Leblang, "The CM Challenge: Configuration
Management That Works," Configuration Management,
W.F. Tichy ed., John Wiley & Sons, 1994.

[9] A.K. Midha, "Software Configuration Management for
the 21st Century," Bell Labs Technical Journal, Vol. 2, No.
Winter, 1997, pp. 154-165.

[10] A. Mockus, T. Graves, A. Karr and S.G. Eick, "On
Measurement and Analysis of Software Changes,"
Technical report, Bell Laboratories, 1999.

[11] L. Osterweil, "Software Processes Are Software,
Too," Proc. International Conference on Software
Engineering, 1987, pp. 2-13.

[12] M. Paulk, B. Curtis, M. Chrissis and C. Weber,
Capability Maturity Model for Software (Version 1.1),
Technical Report, CMU/SEI-93-TR-024, Pittsburgh,
Software Engineering Institute, Carnegie Mellon
University, February, 1993.

[13] M.J. Rochkind, "The Source Code Control System,"
IEEE Transactions on Software Engineering, Vol. 1, No. 4,
1975, pp. 364-370.

