If Software Could Talk...

.. wWhy changes are made.

Audris Mockus
audris@research.bell-labs.com
http://www.bell-labs.com/~audris

Motivation

Software databases
always there
large
uniform over time
Empirically based understanding - lacking
GQM experiments - difficult
not usable as project tracking tools
can not be widely deployed

Approach

Any project has VCS data
Derive/augment data to:

explain variability in quality, effort, interval
Validate

survey, other products

Apply the results for
process understanding (org., decay, infrast.)
problem localization and tracking

Outline

Switching software change data

Classification of changes
automatic algorithm
experimental verification

Size and difficulty of changes

Other applications

org. theory, code decay, expertise localization, effort
estimation

Software projects

two decades of development

distributed/real-time software

(] ?SxErlr)\ore complex than application software

scale:
= 100 million lines of code
= 100 thousand pages documentation
= 20 supported versions

sophisticated development process
thousands of software engineers

How Code Evolves

By adding and deleting line blocks
before: after:

int i=0; int i1=0;
while (i++)
read (x); read(x):;
one line deleted

two lines unchanged

Why study changes

Reflect relationships between
requirements and design
technology and implementation
personnel (organization)
time (evolution of the system)

Practical
always documented by VCS
results have wide applicability

Any VCS Records:

Change - added and deleted lines
Who - login, organization

When - date and time

Description - line of text

Available data:
~100M lines, ~3M changes, ~5K logins, 20Gb
~30 products (select one)

No VCS Records for:

Why
fix, new, improve, ...
How difficult
effort, interval, complexity

Will it cause fault in the future
estimate fault potential

Why Change?

Primary reasons for maintenance
activities

corrective: fix faults

adaptive: add features

How those reasons relate to:
interval, effort, quality
developer, size
location, time

How to extract

Use change description line
extract frequent keywords

classify keywords (fix, new, add, etc.)

discover new types
perfective - code cleanup
Inspection - code inspection suggestions

verify on sample abstracts
keyword -> purpose of the change
iterate

Keywords

Adaptive: Corrective:

add, new, create, fix, bug, error,

initial coding, modify, |problem, incorrect,
update must, needs
Perfective: Inspection:
cleanup, remove, code review,

clear, unneeded, inspection, rework,
flex name walkthrough

Proportions

Why:
add new functionality - 45%
fix faults (bug) - 34%
cleanup/restructure - 4%
code inspection - 5%

unclassified -12%

Is it right?

Survey:
2+5 developers (>9 years experience)

20+150 changes (< 2 years old)
~ equal numbers for different types
small percent of all changes developers did

Questions
Type: bug, new, cleanup, inspection
Difficulty: Easy, Medium, Hard

Results

Unclassified changes are mostly bug

fixes
Almost perfect match

Inspection changes are easiest to detect

Dev.\Auto |Corrective | Adaptive Perfective Inspection
Corrective 35 10 5 1
Adaptive 11 23 3 4
Perfective 10 8 27 o
Inspection 1 o (0] 21

Probability

Probability

Probability

0 20 40 60 80

60 100

20

60 100

20

10

10

Change Interval

Corrective
e Adaptive
'miml - Perfective
=== |hspection

10 50 100

Days

Lines Added

= Corrective
i Adaptive
'miml Pegrfective

50 100 500 1000 5000

number of lines

Lines Deleted

== Corrective
et Adaptive
'miml - Perfective

50 100 500 1000

number of lines

Will it work?

Other Product

2 X size and five years older
different functionality
different organization

Tool
the same classification (no manual input)

Results
very similar purpose profiles

Probability

20

Probability

20

Probability

20

100

60

100

60

100

60

Change Interval

== Product 1, Corrective
tr Product 2, Corrective
'mimi - Product 1,Adaptive

- 50 100 500

Days

Lines Added

Product 1, Corrective
It Product 2, Corrective
'miml Product 1, Adaptive
o = AWS PSS =
50 100 500 1000 5000

number of lines

Lines Deleted

Product 1, Corrective
it Product 2, Corrective
'miml Product 1, Inspection

" - o 500 1000

Why changes are difficult?

Difficulty ~ Fix + Developer + Size + log(Interval)

Fixes are hard - no matter size
Interval barely important adjusted for size

Type and size are more important than
developer

Factor DF SS p-val effect
Fix 1 12 O -+
Size 1 re O -+
Developer 6 10 [0)
log(interval) 1 1.4 027 -+
Cleanup g -6 =12 -+
Residuals 159 a45

Is change difficult?

Difficult

more than 2 files touched, many delta,
fault fix

Frequently repeated, predominant
more 100 times, at least 30% of the time

Are different parts equally difficult?
Are changes becoming harder over time?
Where to reengineer the code?

http://www-spr.research.bell-labs.com/~audris/decay/classes.html
http://www-spr.research.bell-labs.com/~audris/decay/classes.html

Summary

Algorithm to extract purpose
automatic
validated by survey, on other product

4 types of changes discovered
different size, interval profiles
Relationships
difficult - type
size, interval type

Summary

Can VCS be used to find out:
why change is made
why change is difficult

Obtain essential properties of changes
Data source available for all SW projects
Non-intrusive data collection
Methodology to describe software projects

Potential to predict the impact of:
organizational (team size)
process (code inspections)
technology (compilers, computer languages)

Future & Current Work

Refine classification

detalil - type of fix - overflow, deadlock,...

domain - HW/SW, phase

Utilize other databases
financial support system - effort
customer tracking - serious faults

VCS enhancement tools
problem localization, project status

Fault Potential

Do past changes predict future faults

predict proportion of faults
In a two year period
for 88 modules

numbers, sizes, age of changes
Best predictor:
past number of faults
but NOT: complexity, connectivity, #authors

Can developers know:

nich subsystems/modules are hard?
nat types of changes are frequent?
no writes the most code?

S ==

Access platform goals:
standard Netscape interface
no software/data to install
point and click

Link: Developer activity

0o _jol1 joz |03 |0

U B
=%

[t l I e TRl et —I.-I-II-I— =
=

---5 -~ sg-- -5 I.—I I.-I— =

. - Al iconzg (dewelopers) are ordered according to
H'deHEd'IHome |DverT'm|GIDbal |Sqrt lStar login and[:then laged i)utin atl upsidc-dom%:ext

flow order (from left to right and then one row
up, etc). Some of the icons are rmch smaller
than others. Thoss icons represent loging that
did not make many changes. For each icon to

take full space use "Local Scaling™ local |1 .
The numbers of changes are squars rooted
before display. To coose a different

transformation use:

For clozer inspection the view can be panned
{drag left mouse button) and zoomed (shift-drag
left monse button). Icon sizes can be adjusted
using scrollbar on the left. The style of iconic

representation can be one of the following atyles:

. Cheice "3tars” is similar to the
current choice "Rays". Choice "Parallel” would
show the changes as a fime series.

http://www-spr/~audris/decay/developer.html

Table view

1z 1o 20 [21 [a2 |23

e e

12

—
—

10

e e e

el
-]

—t
Lel
~=-.1
L |

cry
Led
L |

kjs
CUEYD
brary
senior

ol =

o] O

LAy,
%
=] =
| 3%
] X

-]

[3

(LN]

el L]]

A =
O O o D

sTanza

rosson
mrs
tuch
kjs28
scooby
fenn
shp
dipietro

[|
Bl (e
L W
Lr.) N
[]
o
10

P] LA
ey =) B
Ledf Ledf

E-

‘i
—
|
—
L |
o
Lrd

2
0
]
2
2

