

If Software Could Talk...

Audris Mockus
audris@research.bell-labs.com
http://www.bell-labs.com/~audris

… why changes are made.

Motivation

Software databases
always there

large

uniform over time

Empirically based understanding - lacking
GQM experiments - difficult

not usable as project tracking tools

can not be widely deployed

Approach

Any project has VCS data

Derive/augment data to:
explain variability in quality, effort, interval

Validate
survey, other products

Apply the results for
process understanding (org., decay, infrast.)

problem localization and tracking

Outline

Switching software change data

Classification of changes
automatic algorithm

experimental verification

Size and difficulty of changes

Other applications
org. theory, code decay, expertise localization, effort

estimation

Software projects
 two decades of development
 distributed/real-time software

 8x more complex than application software
(SEI)

 scale:
100 million lines of code
100 thousand pages documentation
20 supported versions

 sophisticated development process
 thousands of software engineers

How Code Evolves
By adding and deleting line blocks
before: after:
// initialize

int i=0; int i=0;

while (i++)while (i++ < N)

 read (x);read(x);
one line deleted

two lines added

two lines unchanged

Why study changes

Reflect relationships between
requirements and design
technology and implementation
personnel (organization)
time (evolution of the system)

Practical
always documented by VCS
results have wide applicability

Any VCS Records:

Change - added and deleted lines

Who - login, organization

When - date and time

Description - line of text

Available data:
~100M lines, ~3M changes, ~5K logins, 20Gb

~30 products (select one)

No VCS Records for:

Why
fix, new, improve, ...

How difficult
effort, interval, complexity

Will it cause fault in the future
estimate fault potential

Why Change?

Primary reasons for maintenance
activities
corrective: fix faults
adaptive: add features

How those reasons relate to:
interval, effort, quality
developer, size
location, time

How to extract

Use change description line
extract frequent keywords
classify keywords (fix, new, add, etc.)

discover new types
• perfective - code cleanup
• inspection - code inspection suggestions

verify on sample abstracts

keyword -> purpose of the change
iterate

Keywords

Adaptive:
add, new, create,
initial coding, modify,
update

Corrective:
fix, bug, error,
problem, incorrect,
must, needs

Perfective:
cleanup, remove,
clear, unneeded,
flex name

Inspection:
code review,
inspection, rework,
walkthrough

Proportions

Why:
add new functionality - 45%
fix faults (bug) - 34%
cleanup/restructure - 4%
code inspection - 5%
unclassified - 12%

Is it right?

Survey:
2+5 developers (>9 years experience)
20+150 changes (< 2 years old)

~ equal numbers for different types
 small percent of all changes developers did

Questions
Type: bug, new, cleanup, inspection
Difficulty: Easy, Medium, Hard

Results

Unclassified changes are mostly bug
fixes
Almost perfect match

Inspection changes are easiest to detect
Dev.\Auto Corrective Adaptive Perfective Inspection
Corrective 35 10 5 1
Adaptive 11 23 3 4
Perfective 10 8 27 9
Inspection 1 0 0 21

Change Interval

Days

P
ro

b
a

b
ili

ty

1 5 10 50 100

0
2

0
4

0
6

0
8

0

Corrective
Adaptive
Perfective
Inspection

Lines Added

number of lines

P
ro

b
a

b
ili

ty

1 5 10 50 100 500 1000 5000

0
2

0
6

0
1

0
0

Corrective
Adaptive
Perfective
Inspection

Lines Deleted

number of lines

P
ro

b
a

b
ili

ty

1 5 10 50 100 500 1000

0
2

0
6

0
1

0
0

Corrective
Adaptive
Perfective
Inspection

Will it work?

Other Product
2 X size and five years older
different functionality
different organization

Tool
the same classification (no manual input)

Results
very similar purpose profiles

Change Interval

Days

P
ro

ba
bi

lit
y

1 5 10 50 100 500

0
20

60
10

0

Product 1, Corrective
Product 2, Corrective
Product 1,Adaptive
Product 2, Adaptive

Lines Added

number of lines

P
ro

ba
bi

lit
y

1 5 10 50 100 500 1000 5000

0
20

60
10

0

Product 1, Corrective
Product 2, Corrective
Product 1, Adaptive
Product 2, Adaptive

Lines Deleted

number of lines

P
ro

ba
bi

lit
y

1 5 10 50 100 500 1000

0
20

60
10

0

Product 1, Corrective
Product 2, Corrective
Product 1, Inspection
Product 2, Inspection

Why changes are difficult?

Fixes are hard - no matter size

Interval barely important adjusted for size

Type and size are more important than
developer

)log(~ IntervalSizeDeveloperFixDifficulty +++

Factor DF SS p-val effect
Fix 1 12 0 +
Size 1 7 0 +
Developer 6 10 0
log(interval) 1 1.4 .027 +
Cleanup 1 .6 .12 +
Residuals 159 45

Is change difficult?
Difficult

more than 2 files touched, many delta,
fault fix

Frequently repeated, predominant
more 100 times, at least 30% of the time

Are different parts equally difficult?
Are changes becoming harder over time?
Where to reengineer the code?

http://www-spr.research.bell-labs.com/~audris/decay/classes.html
http://www-spr.research.bell-labs.com/~audris/decay/classes.html

Summary

Algorithm to extract purpose
automatic

validated by survey, on other product

4 types of changes discovered
different size, interval profiles

Relationships
difficult - type

size, interval type

 Summary
 Can VCS be used to find out:

 why change is made

why change is difficult

 Obtain essential properties of changes
Data source available for all SW projects

Non-intrusive data collection

Methodology to describe software projects

Potential to predict the impact of:
organizational (team size)

process (code inspections)

technology (compilers, computer languages)

Future & Current Work

Refine classification
detail - type of fix - overflow, deadlock,…
domain - HW/SW, phase

Utilize other databases
financial support system - effort
customer tracking - serious faults

VCS enhancement tools
problem localization, project status

Fault Potential

Do past changes predict future faults
predict proportion of faults

in a two year period
for 88 modules

numbers, sizes, age of changes

Best predictor:
past number of faults
but NOT: complexity, connectivity, #authors

Can developers know:

Which subsystems/modules are hard?
What types of changes are frequent?
Who writes the most code?

Access platform goals:
standard Netscape interface
no software/data to install
point and click

Link: Developer activity

http://www-spr/~audris/decay/developer.html

Table view

