
Commit Quality in Five High Performance
Computing Projects

Kapil Agrawal∗, Sadika Amreen∗, Audris Mockus∗
∗Department of Electrical Engineering and Computer Science

The University of Tennessee, Knoxville
Email: kagrawa1@vols.utk.edu, samreen@vols.utk.edu, audris@utk.edu

Abstract—High Performance Computing (HPC) has a long
history of software development but relatively little is known
about the approaches this community uses to create and maintain
software. To close this gap we study the practices of using
version control tools in five HPC production projects. We also
contrast these practices to practices used in three distinct non-
HPC open source projects. We first obtain version history of
the projects from SVN, Mercurial, and Git. We then clean and
process the data and use published material to construct three
measures of code commit quality: the fraction of unique commit
comments, their size, and the number of files per commit. Our
results indicate relatively high but declining commit quality, and
relatively large commits in HPC projects. We expect this work
to highlight the differences among different software engineering
domains and may lead to ideas suggesting good practices of using
software tools in these domains.

Index Terms—Version Control Practices, Software Develop-
ment, Software Repository Mining

I. INTRODUCTION

High-end computing faces several challenges: oversubscribed
resources, tight budgets, and projects of increasing complexity.
Many of HPC projects start as small one-shot research experi-
ment, but, if successful, may grow rapidly and become extremely
difficult to maintain.

In this paper we present our analysis on utilization of version
control systems for software development of High Performance
Computing projects. Our goal is to understand how HPC code
is developed in terms of various metrics such as commit size,
frequency of commits, commits per user etc. and, if possible,
suggest better practices of commits along with tools that utilizes
such data to help HPC software development.

To accomplish that we compare HPC and non-HPC projects
by investigating various measures of the development practices
derived from version control systems (VCS) of these projects. We
decided to retrieve our data from large software development
forges, such as, GitHub and BitBucket; however, we focus our
analysis on projects that we do know to be from the HPC
domain. While many HPC projects use these and other forges to
host their version control and issue trackers, classifying projects
on these forges as HPC or non-HPC is still a challenge based
on our investigation. Furthermore, forges, such as, GitHub and
BitBucket have huge numbers of repositories (commonly referred
as repos). At present GitHub has in excess of 20 million and
BitBucket in excess of 400 thousand repos1. Finally, we know
colleagues from the HPC projects we selected who can help us
interpret the findings as, for example, suggested in [1].

We conduct our analysis as an exploratory parallel case
study [2], a method suitable to investigate novel phenomena.

1While a single project may encompass several repos or the same repo
may be used in several projects, we use terms software project and repo
interchangeably in this paper.

Our hypothesis is that the software development practices, in
particular, the use of VCS, will differ between HPC and non-HPC
projects. For our case study we, therefore, selected a small sample
of HPC projects from the Innovative Computing Laboratory
(ICL) at the University of Tennessee, Knoxville, and non-HPC
log files from three projects hosted on BitBucket.

Based on various online documents on good VCS practices
we first construct several measures of code commit quality. In
particular, we consider the ratio of unique commits over total
numbers of commit log messages, quantiles of commit message
size, and quantiles of the number of files involved in a single
commit.

We then present trends of the quality of commits for these
projects over the time they were developed. We also investigate
numbers of contributors and numbers of commits to correlate the
commit quality with social, organizational, and project maturity
aspects.

Our main contributions include:
1) A case study comparing five HPC projects involving key

production frameworks with three highly diverse non-HPC
open source projects;

2) Introduction of code commit quality measures

II. RELATED WORK

Early HPC software is was, perhaps, the birthplace of software
engineering. The considerations of software portability and pro-
ductivity are clearly expressed in some of the the early work, see,
e.g., [3]. More recently, unique aspects of software engineering
for HPC were described in, for example, [4]. The work presented
there is a summary of a fairly significant body of literature. It,
however, focuses more on the one-shot research projects, and
not the production projects we are primarily considering in this
work. As most research projects tend to be smaller and shorter-
lived than the production projects, the use of software engineering
tools and practices may not be always as crucial. Perhaps because
of this, empirical measurement based on the traces from such
tools is not considered often in the HPC literature. We, therefore,
focus on the production projects that have significant experience
of using VCS tools and our findings should be interpreted only
within that context.

Methods to use VCS data in empirical work have been
embraced widely, see, e.g., [5], [1], [6]. For comparison of HPC
and non-HPC projects we focus on the metrics measuring the
quality of the most important attributes of the VCS: code
commits. Better quality of commits both, indicates a more mature
project, see e.g., [1], [6] and a more effective project, see, e.g., [7].
Quality of a variety of issue tracking and version control system
attributes is considered in, for example, [8] . The practitioner
community is eager to educate participants on what a good
commit messages, e.g., [9] and properties of a good bug report are
considered by [10]. One of the most important attributes of VCS
is code commit message (or log). GitHub, for example, provides



online warnings, if the commit log header exceeds 50 characters.
There are numerous suggestions of how to craft the commit log
message online. We use these recommendations to propose a
measure of code commit message quality in Section IV-B.

III. CONTEXT

HPC software engineering is the practice of enhancing soft-
ware to enable it to perform better on modern multi-core pro-
cessors, GPUs, HPC clusters and supercomputers. We investigate
analysis of some practices of Version Control System use in
these developments. The advantage of version control software is
that it keeps a track of the complete file history (why/who/what
changed), allows for shared development, and supports complex
workflows (multiple branches). The analysis on how well one has
utilized version controlling on HPC has not been fully studied.
Our goal is to find out measures and trends, of these developments
made over a period of time and do a comparative study of HPC
and popular non-HPC projects.

Our study includes a small sample of HPC projects from ICL
at University of Tennessee Knoxville, and non-HPC log files from
three projects hosted on BitBucket.

The projects included in the study are:
1) OpenMPI [11]: The Open MPI Project is an open source

Message Passing Interface implementation that is de-
veloped and maintained by a consortium of academic,
research, and industry partners.

2) OpenSHMEM [12]: OpenSHMEM is a Partitioned Global
Address Space (PGAS) library interface specification.
OpenSHMEM aims to provide a standard Application
Programming Interface (API) for SHMEM libraries to aid
portability across multiple vendors including SGI, Cray,
IBM, HP, Mellanox, and Intel.

3) PaRSEC [13]: PaRSEC is a generic framework for archi-
tecture aware scheduling and management of micro-tasks
on distributed many-core heterogeneous architectures.

4) PLASMA [14]: The Parallel Linear Algebra for Scalable
Multi-core Architectures (PLASMA) project aims to ad-
dress the critical and highly disruptive situation that is
facing the Linear Algebra and High Performance Com-
puting community due to the introduction of multi-core
architectures.

5) MAGMA [15]:The MAGMA project aims to develop a
dense linear algebra library similar to LAPACK but for
heterogeneous/hybrid architectures, starting with current
“Multicore+GPU” systems.

6) BitBucket Tutorial [16]: A documentation/training project
to help user of BitBucket understand and effectively use
various tools available (most forked).

7) Django-piston [17]: Piston is a relatively small Django
(JavaScript framework) application that lets you create
application programming interfaces (API) for your sites
(most watched).

8) Linux kernel [18]: A project involving installation and
documentation of how to work with Linux kernel.

IV. METHOD

We conduct exploratory multiple case study, using both literal
replication and a theoretical replication (see. e.g., [2]). The literal
replication was done for five highly similar HPC projects that
represent widely used frameworks for parallel computing. We
also carefully select three very different non-HPC projects to
help formulate hypotheses about what metrics (and why) may be
different among them.

For theoretical replication we selected three extreme non-HPC
projects from BitBucket: with most commits, most watchers, and
most forks. Each project was significantly different in at least

one important dimension. Linux kernel was very long-lived and
very large project where we expected to see exemplary commit
quality: it would be impossible to develop such a large and
complicated project with huge numbers of participants without
having rigorous commit practices.

BitBucket tutorial was, in contrast, not a software project
but a documentation/training project to help users of BitBucket
understand and use effectively various tools available at the forge.
It included a practice exercise for forking, where users were
instructed to fork the project in order to practice contributing
to it via pull requests. As a result, it was the most heavily forked
project in BitBucket. We expect it to have fairly low commit
quality because many of the commits are done by new users
training to use BitBucket.

The last project we picked was highly popular but recent
project related to Django framework (in JavaScript). This was
in contrast to a highly mature Linux kernel written in C and
BitBucket tutorial. We expect the quality of commits to be much
lower than for Linux kernel. The high popularity (in terms of
watchers) can be partially explained by the extremely rapid
evolution of JavaScript frameworks and watching the repository
may be the only way to keep up-to-date with the rapidly evolving
state of the project. We expect the quality of commits to fall in
between the BitBucket tutorial and Linux kernel, because unlike
the former it is a real software development project and unlike
latter it is not very mature.

To operationalize commit quality metrics we study voluminous
literature related to this topic available online. A search for “good
commit logs” yielded more than 57 million results. We used the
top five links [9], [19], [20], [21], [22]. The specific measures
and the rationale behind them are described in more detail in
Section IV-B.

The measures of project size (in terms of the number of
commiters) are borrowed from earlier research, e.g., [5].

A. Retrieval of metadata
We started with a little study exploring the prevalence of HPC

projects on BitBucket. We selected HPC repos from BitBucket
using most popular keywords that were used by HPC community.
Keywords were divided into three categories namely:

1) Libraries: Includes various libraries such as numerical,
Fast Fourier Transforms (fftw), Distributed memory Dense
Linear Algebra etc.

2) Software Packages: HPC software packages like molec-
ular dynamics (NAMD, CHARMM), Commercial Finite
Element Package (ABAQUS, ANSYS) etc.

3) Generic Keywords: Keywords like quantum chemistry,
Parallel Molecular Dynamics.

We looked at the description tag and repositories names to
match against these keywords. BitBucket has around 400,000
repositories, though our search for HPC repos ended up raking
around 80 repos. As the results from the look-up did not suggest
that we were able to have a representative sample of HPC
projects, we focused on a case study of comparing five HPC
projects involving key production projects with highly diverse
non-HPC open source projects.

These projects (HPC/non-HPC) were implemented using dif-
ferent version control. For HPC we had to work with Git,
Mercurial (hg) and SVN and for non-HPC we had Git and
Mercurial.

B. Measures
The following statistics were measured from the data we

obtained from the HPC projects.
1) Total number of commits. This measure is used to obtain

the context for the project, in particular, how much



Repos Authors Time Cmts / Unique
Cmts

VCS

openMPI 116 2003- 20,540 / 20,016 GH
openSHMEM 20 2010- 1,010 / 999 GH

PARSEC 33 2009- 7830 / 7392 BB-hg
PLASMA 20 2008- 3,999 / 3,805 SVN
MAGMA 21 2013- 4,149 / 3,844 SVN

Table I
OVERVIEW OF HPC PROJECTS SELECTED FOR OUR ANALYSIS

Repos Authors Period Cmnts /
Unique Cmts

VCS

eniliolopez/linux 15K 2005- 446K / 442K BB-git
tutorials.bitbucket 2.6K 2012- 6K / 5.5K BB-hg

django-piston 33 2009-2012 254 / 252 BB-hg
Table II

OVERVIEW OF NON-HPC PROJECTS SELECTED FOR OUR ANALYSIS. THE
FIRST PROJECT HAS THE MAXIMUM UNIQUE COMMENTS, THE SECOND

PROJECT HAS BEEN MOST FORKED, THE THIRD MOST WATCHED.

effort [23] went into creating and maintaining the project.
We also use it as a normalizing factor in commit quality
measures.

2) Number of authors in a project. This is an important char-
acteristic of a project. For example, commercial projects
tend have fewer contributors but more equal contributions
among them, see, e.g., [5]. We observe it together with the
commit quality to interpret the evolution of projects.

3) Number of unique commit messages. Based on good com-
mit practices each commit message should be tailored to a
specific commit. For example, generic commit messages
such as ”fix” or ”fixed bug,” or ”initial commit” are
strongly discouraged. For the mature projects we expect
the number of unique commit messages to be very close to
or equal to the number of commits.

4) The size of commit comments. Good commit practices
suggest a specific format and detail related to commit
messages. Having very small commit messages may indicate
the lack of maturity, as they may not explain all aspects
of the commit that are needed for others to effectively
maintain the codebase. We expect more mature projects to
have larger commit messages.

5) Number of delta - the total number of files modified or
added in a single commit. Good commit practices strongly
discourage completing several tasks in a single commit,
even though it is often the most convenient approach for
an individual developer to submit all their work at the
same time. Such multiple-task commits are more likely to
involve multiple files. We, therefore, expect commits with
more delta to be associated with less mature projects.

6) The ratio of total number of unique commit comment
strings over the total number of commits. A high ratio
reflects a high quality of commit meaning that the commit
comments were tailored to each commit. Lower ratio
indicates that same comments were reused for new commits
or were generic, which indicates that changes in the commit
are not precisely and accurately documented.

The size of commit comments, the number of delta, and the
fraction of unique messages are all measures of the quality of
the commit.

These factors help us predict, among other things, the overall
quality of commits in repositories of HPC code. For instance,
fewer delta per commit indicates that changes in code are com-
mitted frequently and reflects incremental build or modification

of the project. More delta per commit suggests that the commit
may have involved several tasks: not a recommended practice.

Tables I and II show an overview of the projects selected for
our analysis.

V. RESULTS

A. Fraction of Unique Commit Comments
Figure 1 shows the first measure of commit comment quality

defined by the ratio of number to unique commits (nUC) to
the total number of commits (nTC) for each of the five projects
under consideration in our study. The sudden hike in number
of commits shows that, as expected, many files are committed at
the start of the project and then the rate of commits gradually
drops as the projects mature. A close look at the nTC and
nUC lines which are the number of total commit comments and
the number of unique commit comments show that they almost
overlap yielding a very high nUC/nTC ratio within a range of
0.9 - 1.0. This indicates that the authors have made an effort to
document the changes almost every time the code was committed
to the version control system. However, Open-MPI had a fairly
low fraction in the beginning of the project, which also happened
ten years ago, suggesting that the practice may not have been
as rigorously observed ten years ago. The plots show that the
average life of the remaining project is about five years and the
nUC/nTC ratios for all projects are above 0.9 for the entire time
frame showing a sturdy sign of ’health’ for the projects.

To compare the statistics we derived from the HPC projects,
we selected 3 non-HPC projects from BitBucket having maximum
user commits (Linux project), most forked (tutorials.BitBucket
project) and finally most watched (Django-piston project). Fig-
ure 2 shows the commit comment quality for the stated projects.
One of the obvious differences of the Linux project from the HPC
projects is that there are no sharp peaks in the graph. nTC and
nUC both rise gradually over time showing that this project has
been incrementally built and documented. The nUC/nTC ratio
(quality of commit comments) for non-HPC projects are not as
consistent as the HPC projects. While the Linux project has a
fairly high quality of commit comments the other two projects
show deterioration over time.

B. Number of Delta and Comment Length
We describe commit comment size as the number of characters

in each commit comment. The plots shown for the HPC and non-
HPC projects show that the size of commit comments in the HPC
projects vary between 200-1300 (figure 3) compared to 50-150
(figure 4) for the non-HPC projects. The average size of comments
for HPC projects are therefore significantly larger than non-HPC
projects. This reflects that more effort is put into documenting
how the code is being built within the HPC community compared
to the non-HPC community. However, good commit commenting
practices require including the name of each changed file in
the commit with an explanation of the nature of the change
for groups of files. With more files involved in a change we
expect their names (and explanations) to increase the length of
the comment. As such, the increased size of the comment may be
simply a result of more files per commit. Further investigation
is needed to determine that.

We describe delta as the number of files changed in a single
commit. The plots in figure 3 and 4 show us that HPC projects
have a higher delta compared to non-HPC projects respectively.
For example, delta has an average of 5-6 for HPC projects and is
as high as 16 for one of the projects called PLASMA. The average
number of files changed in non-HPC projects is approximately 2.
This difference may be interpreted as a good practice by the non-
HPC community where small incremental builds are committed
or it maybe due to less dependencies between files, i.e. changes in



Figure 1. The trend in commit quality of HPC projects.

Figure 2. The trend in commit quality of non-HPC projects.

a certain file do not influence codes in other files. For example,
delta for BitBucket tutorial is almost constant at 1 - this seems
intuitively correct because we can expect not too many files to
change since its inception. A higher delta can be interpreted
in a negative sense because it might mean that large changes
are committed in a single commit involve multiple tasks. This
makes it difficult for developers to disentangle what changes to
the code were done to, for example, fix a specific bug, from other
activities that a developer may have been engaged at the time
prior to commit.

C. Hypotheses

As described in Section IV, we expect the particular set of HPC
projects to have commit quality higher than most open source
projects, but, at the same time, lower than the very large and
mature projects like Linux kernel. Based on the observations
from our case study, in particular, on the fraction of unique
commit messages and their size, we propose

Hypothesis 5.1: HPC production projects will have commit
quality in terms of fraction of unique commit messages and
message size to be above that of most open source projects.



Figure 3. Size of commit comments projects for HPC projects.

Figure 4. Size of commit comments projects for non-HPC projects.

We expect that HPC projects, by virtue of being funded from
government grants or corporate funds, are likely to be more like
commercial projects [5].

Commercial projects tend to have larger number delta per
commit as documented in, for example, [5]. Our results appear
to support these earlier findings. We, therefore, propose:

Hypothesis 5.2: HPC production projects will have more
complex commits measured by the number of files modified in a
commit than most open source projects.

VI. LIMITATIONS

There are many limitations associated with empirical studies
in general [24], and case studies [2] in particular. These include
construct validity, internal validity, external validity and reliabil-
ity. Furthermore, the use of operational data [6] adds additional
complexities to validate issues related to the lack of context,
missing information, or inaccurate records. Construct validity
concerns how well variables reflect the constructs that they are
supposed to operationalize, and how accurately the values of the
variables are measured. We have consulted a variety of sources
(to triangulate) to construct our measures as described above.



While they represent only a preliminary attempt to quantify
such complex aspect as commit quality, they are fairly simple to
obtain. Internal validity in case studies demonstrates that there
is a chain of evidence from data collection to results. We have
tried to carefully describe the steps that were taken to obtain
the results. External validity establishes the domain to which a
study’s findings can be generalized. We have carefully selected
HPC production projects and we expect that the findings would
extend beyond the five analyzed projects, but, for example, the
findings may not apply to other types of HPC projects. Reliability
of a study relates to how much error is inherent in measuring
outcomes and covariates. To assess that error we look at the
outcome and predictor trends over time.

VII. CONCLUSIONS AND FUTURE WORK

While the HPC community was one of the earliest to embrace
code sharing, see, e.g., [25], the public sharing of version control
tools and issue trackers that define open source development
has lagged. Many of the HPC projects are using such tools at
present, including the projects we study here. An open question
is if the typical VCS and issue trackers are most suitable for HPC
development practices and , if not, what modifications are needed
to make HPC development most productive. We hope that our
initial findings would help pose more precise questions in this
area and the methods used would help answer such questions in
the future.

Our case study goal was to investigate the difference between
the development traces in HPC and other projects. The results
of the study suggest the specific hypotheses that we plan to
investigate on a more comprehensive set of projects. Inspired
by reviewers comment we also plan to investigate how the
”one-shot” research applications written with no maintenance
in mind could benefit from the practices used in production
codes. To accomplish that, we plan to obtain a sample of such
research codes containing both, projects that have experienced a
subsequent maintenance and projects that were abandoned after
completion.

ACKNOWLEDGMENT

We would like to thank Chunyan Tang for her contributions
to the early stages of this work during our course work. We
are also very grateful to Geroge Bosilca, Stanimire Tomov, and
Piotr Luszczek from Innovative Computing Laboratory (ICL)
at the University of Tennessee, Knoxville who gave us access
to BitBucket repos and commit comments history for the HPC
projects we took investigate in our work and provided expert
insights on development practices of production HPC codes.

REFERENCES

[1] A. Mockus, “Software support tools and experimental work,” in
Empirical Software Engineering Issues: Critical Assessments and
Future Directions, V. Basili and et al, Eds. Springer, 2007, vol.
LNCS 4336, pp. 91–99. [Online]. Available: papers/SSTaEW.pdf

[2] R. K. Yin, Case study research: Design and methods. Sage
publications, 2014.

[3] R. J. Hanson, F. T. Krogh, and C. L. Lawson, “Improving the
efficiency of portable software for linear algebra,” ACM SIGNUM
Newsletter, vol. 8, no. 4, pp. 16–16, 1973.

[4] V. Basili, J. Carver, D. Cruzes, L. Hochstein, J. Hollingsworth,
F. Shull, and M. Zelkowitz, “Understanding the high performance
computing community: A software engineer’s perspective,” IEEE
Software, vol. 25, no. 4, pp. 29–36, July/August 2008.

[5] A. Mockus, R. F. Fielding, and J. Herbsleb, “A case study
of open source development: The Apache server,” in 22nd
International Conference on Software Engineering, Limerick,
Ireland, June 4-11 2000, pp. 263–272. [Online]. Available:
http://dl.acm.org/authorize?2580

[6] A. Mockus, “Engineering big data solutions,” in ICSE’14 FOSE,
2014. [Online]. Available: papers/BigData.pdf

[7] J. Xie, M. Zhou, and A. Mockus, “Impact of triage: a study
of Mozilla and Gnome,” in ESEM ’13, 2013. [Online]. Available:
papers/triage.pdf

[8] J. Xie, Q. Zhengand, M. Zhou, and A. Mockus, “Product
assignment recommender,” in ICSE’14 Demonstrations, 2014.
[Online]. Available: http://dl.acm.org/authorize?6913517

[9] C. Thompson. (2014) 5 useful tips for a better commit message.
[Online]. Available: http://robots.thoughtbot.com/5-useful-tips-for-
a-better-commit-message

[10] S. Davies and M. Roper, “What’s in a bug report?” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’14. New
York, NY, USA: ACM, 2014, pp. 26:1–26:10. [Online]. Available:
http://doi.acm.org/10.1145/2652524.2652541

[11] OpenMPI. Openmpi project. [Online]. Available:
http://icl.cs.utk.edu/open-mpi/

[12] OpenSHMEM. Openshmem project. [Online]. Available:
http://icl.cs.utk.edu/graphics/posters/files/SC14-OpenSHMEM-
UCCS.pdf

[13] PaRSEC. Parsec project. [Online]. Available:
http://icl.cs.utk.edu/parsec/

[14] PLASMA. Plasma project. [Online]. Available:
http://icl.cs.utk.edu/plasma/

[15] MAGMA. Magma project. [Online]. Available:
http://icl.cs.utk.edu/magma/

[16] B. Tutorial. Bitbucket tutorial project. [Online]. Available:
https://bitbucket.org/tutorials/tutorials.bitbucket.org

[17] Django-piston. Django-piston project. [Online]. Available:
https://bitbucket.org/jespern/django-piston/wiki/Home

[18] L. Kernel. Linux kernel project. [Online]. Available:
https://bitbucket.org/emiliolopez/linux

[19] T. Pope. A note about git commit messages. [Online].
Available: http://tbaggery.com/2008/04/19/a-note-about-git-commit-
messages.html

[20] B.-E. Dahlberg. Writing good commit messages. [Online]. Available:
https://github.com/erlang/otp/wiki/Writing-good-commit-messages

[21] StackOverflow. Standard to follow when writ-
ing git commit messages. [Online]. Avail-
able: http://stackoverflow.com/questions/15324900/standard-to-
follow-when-writing-git-commit-messages

[22] C. Beams. How to write a git commit message. [Online]. Available:
http://chris.beams.io/posts/git-commit/

[23] T. L. Graves and A. Mockus, “Inferring change effort from
configuration management data,” in Metrics 98: Fifth International
Symposium on Software Metrics, Bethesda, Maryland, November
1998, pp. 267–273. [Online]. Available: papers/effort

[24] M. Jahoda, M. Deutsch, and S. W. Cook, “Research methods in
social relations with special reference to prejudice. vol. 1, basic
processes. vol. 2, selected techniques.” 1951.

[25] S. Browne, J. Dongarra, E. Grosse, and T. Rowan, “The netlib
mathematical software repository,” D-Lib Magazine, Sep, 1995.


