
The Chunking Pattern

David M. Weiss
Iowa State University

Ames, IA, USA
weiss@iastate.edu

Audris Mockus

Avaya Labs Research
Basking Ridge, NJ, USA

audris@avaya,com

Abstract—Chunks are sets of code that have the property that a
change that touches a chunk touches only that chunk. The
pattern described in this paper defines chunks, indicates their
usefulness, and provides an algorithm for calculating them.

Index Terms—chunk, modification request, mining software
repositories, modularization

I. PATTERN NAME: CHUNKING
This pattern defines chunks, discusses their utility and shows
how to identify them.

II. PROBLEM
How to identify uncoupled pieces of software (chunks) that
each represent a module on which an individual or a small team
can work independently. A key principle of software design is
information hiding, which provides a method for organizing
software into independently changeable modules. The modular
structure of a well-designed system should be stable over the
set of anticipated changes during the lifetime of the system.
Accordingly, it would be of great interest to be able to identify
the modules in the source code that form the system and
observe how well they maintain their independence over the
lifetime of the system, as changes are applied to the code.

We define a chunk to be a set of code that has the property
that a change that touches that set of code touches only that set
of code. A module designed to be independently changeable
should manifest itself as a chunk over the lifetime of the
system. If a chunk remains stable over time, we may think of it
as the representation of an information hiding module. Note
that chunks that grow over time, or perhaps split into separate
chunks over time, that is, that are unstable over time, are likely
an indication that the code may need to be remodularized. A
system in which the chunks remain stable may be considered to
have a model modular structure that is worth studying and
reusing. Note that whether the chunks are identified manually
or by an algorithm, it is important to quantify how isolated and
how stable over time the chunk is.

We propose to measure the isolation of a chunk by counting
software changes that cross the chunk boundary, i.e., changes
that modify code both inside and outside the chunk. Changes in
the code are accomplished by commits to the repository in
which the code is kept. A commit that is done for a single task
would not cross a boundary of a module that is truly
independent of the rest of the system. Thus, unlike call graphs,
or data flow graphs, such commits would be the most direct

empirical measure of interdependence among parts of the
system.

Several difficulties hinder the identification of chunks.
First, one must have available information about the set of
changes that have been made to the software over time,
minimally including which lines of code or files were touched
by which change, the reason for making the change, and when
the change was made.

Second, changes in system functionality are sometimes
distributed over a set of modules, with the changes to each
independent of the changes to others, but all contributing to the
addition of new functionality. Bug fixes, however, are much
more likely to be localized, and conducting an analysis of
where bug fixes have been made may help reveal the modular
structure more easily.

Third, it is unlikely that chunks will be perfect, i.e.,
demanding that all changes that touch the chunk be confined
only to that chunk is likely to lead to the conclusion that the
system is composed of just one or a very few chunks.

This pattern shows how to conduct an analysis of the set of
changes made to a software system over time so as to be able to
identify chunks. We may think of the chunks as empirical
information hiding modules.

III. SOLUTION
1. Collect the set of modification requests (MRs) that each

represent a change made to the software. Validate the MRs
in two ways:
(a) that each MR represents a change made for a single
purpose and
(b) that each MR minimally and accurately includes
• what files the change touched,
• when the change was made,
• a description of the change that allows it to be

classified as adding new functionality, fixing a bug, or
enhancing system structure or properties that do not
add functionality but may add to maintainability,
performance, or other non-functional system
attributes.

MRs are generally used in conjunction with version control
systems (VCSs), such as SVN or GIT, so each may be mapped
to a (set of) commit(s) to the VCS. Modern VCS’s also allow
grouping changes into a single commit, and the purpose of the
commit may be inferrable from the commit message.
2. Each MR may be related to multiple files. As such, an

978-1-4673-6296-2/13 c© 2013 IEEE DAPSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

35

MR induced relationship is a hypergraph with each edge
connecting multiple nodes (files). It is unlike, for
example, a call flow-induced graph, where each function
call is a regular edge that connects only two nodes (files).
As a consequence, there exists no distance function
defined between two nodes that reflects the number of
MRs crossing the chunk boundary. Existing techniques,
e.g., clustering, require such a function. We, therefore
need another algorithm to identify chunks1:
a. Randomly select a set of files to be the current

candidate chunk, and identify the MRs (or commits)
associated with those files, i.e., the MRs that resulted
in a modification to those files. Also, decide upon the
smallest and the largest size of the chunk you would
like to consider, for example by assigning
maintenance effort to each file. The simplest
approach would be to use lines of code or past
changes as a proxy of maintenance effort. Then
iterate:
1) Randomly pick a file F.
2) Randomly choose step 2a or 2b:

a. If F is not in the set of the candidate chunk,
add it; if inside, remove it from that set, unless
the effort assigned to the candidate either
exceeds or is below the bounds set above. If
these bounds are breached, revert to the earlier
state and go to step 1)
b. If F is outside the chunk, randomly pick a file
G inside, if F is inside, then randomly pick a file
G outside, then switch F with G. In other words,
if F is inside, remove it and add G to the
candidate set. As in step 2a, verify that effort
constraints are satisfied, if not abort the change
and go to step 1).

3. Calculate the coupling of the candidate to the rest
of the system by calculating the number of MRs (or
commits) that cross the candidate’s boundary. If the
coupling measure improves upon the previous best
record, save the value of the measure and the set of
files in the chunk as the current solution.
4. If the coupling measure improves then proceed to
step 1). If not, then revert to the candidate set before
step 2) with some probability greater than zero (and
lower than 1).
5.Stop iterations after a large number of steps.

Enforcing bounds to chunk size makes sure that trivial
solutions, such as the entire system or an individual file, are not
provided as optimal. This is particularly useful in situations
where one is seeking to distribute the work of sustaining a
system across a number of different sites, some of which may
be widely separated. See [1] for an example.

1 This algorithm is a variation of the algorithm described in Mockus and Weiss
[1].

IV. CONSEQUENCE
The solution identifies independently changeable pieces of

software, and may provide the anticipated amount of work
needed to maintain each. It may provide pointers to unstable
chunks if the algorithm is applied to increasing time intervals
over the lifetime of the system, i.e., tracing the evolution of the
chunks over time to see if they remain stable or not.

V. DISCUSSION
The best way to identify chunks may depend on the particular
development practices of a project. It is advisable to use only
MRs or commits that represent a single task and are changing
tightly interdependent parts of the system. For example, fixes
to a single bug or an implementation of a single feature may
be considered a single task. For some candidate chunks the
number of MRs touching the candidate may be so small that
they are not worth considering as chunks. This becomes
particularly relevant as the system ages; chunk identification is
most useful for parts of the system where there is considerable
churn, since it is in precisely those parts of the system where it
must be easiest to make changes in order to sustain the system,
and, for commercial systems, to produce revenue from making
changes.

Not all MRs should be considered in calculating candidate
chunks. MRs that represent global changes, such as changes to
header files, may touch so many files that it is not useful to
include them in the chunk calculations. MRs that represent a
trivial effort to make a change may also not be useful as they
contribute little to the change effort. It is important to ascertain
that project practices are ether compatible with MRs
representing individual tasks, or, if not, find a way to separate a
subset of MRs that do represent individual tasks.

VI. EXAMPLES
Mockus and Weiss [1] give an example of the application of
chunking to identify chunks that were good candidates for
globalization. Herbsleb and Mockus [2] measured the cycle
time for a module of 257 files identified using this technique
in an industrial system. The module had about four percent of
the MRs crossing its boundary and, after adjusting for the
number of files an MR touched, the number of releases
affected, and whether or not the MR was created by the
developer implementing the change, MRs crossing module
boundaries took 50% longer to complete. Practical
recommendations for the context of globally distributed
development are in [3] and the code for the algorithm are in
[4].

ACKNOWLEDGMENT
We thank those who have been working on providing
additional examples of the application of the pattern, including
Rachana Koneru and Jeff St. Clair.

REFERENCES
[1] Mockus, Audris; Weiss, David; Globalization by Chunking: A

Quantitative Approach, IEEE Software, March/April 2001

36

[2] James Herbsleb and Audris Mockus. Formulation and
preliminary test of an empirical theory of coordination in
software engineering. In 2003 International Conference on
Foundations of Software Engineering, Helsinki, Finland,
October 2003. ACM Press.

[3] Audris Mockus and David Weiss. Software chunks and
distributed development. In Christof Ebert, editor, Global
Software and IT: a Guide to Distributed Development, Projects,
and Outsourcing, pages 69-82. Willey, 2011.

[4] http://mockus.org/chunking

37

