
Learning in offshore and legacy software projects: How product structure
shapes organization

Minghui Zhou1, Audris Mockus2, David Weiss2
 1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

2Avaya Labs Research, 233 Mt Airy Rd, Basking Ridge, NJ 07920, USA
zhmh@sei.pku.edu.cn, audris@avaya.com, weiss@avaya.com

Abstract
We investigate how an organizational structure and

culture are affected by legacy products and, in
particular, if an inverse Conway’s law holds:
“Developer culture for a legacy product mirrors the
culture of organizations that created and maintained
that product in the past.” We study three large
products that were offshored and the entire
development team has been replaced with an offshore
team, and a very large legacy product that faced the
large-scale departure of its core developers. Using
legitimate peripheral participation approach we
describe the learning process in these diverse
circumstances and find that a) The legacy product
structure involves not just modules and cross-cutting
concerns, but also information retrieval strategies and
other activity structure; b) Product structure has a
dramatic effect on the organization when the entire
team is reconstituted from scratch in another
location (learning reproduces organization through
product structure.) c) The accessibility of resources
provided by projects, and the access practices
implemented by developers, affect developers’
learning. d) Developers learn through practice and
over time, and in larger projects it takes longer to
reach productivity plateau. We expect our findings
could be used to improve developer project joining
process by describing the key activities that need to be
mastered by an offshore developer and problems that
are facing them. The findings also suggest that
software organizations maintaining legacy products
are less likely to be able to adjust to changing
competitive business environment and might need to
create a cultural firewall between parts of the
organization engaged in new and legacy products.

1. Introduction
According to Conway's law, the structure of

software reflects the communication structure of
people writing it [1]. Conway's law emphasizes the
effect on the artifacts induced by social activities, and
provides insights on how to look at software

development through the perspectives of
organizational science. We discuss and define software
and communication structures relevant to our study in
Section 4.

On the other hand, the prevalence of transferring
entire existing projects to offshore locations raises the
question of how much the legacy product structure
redefines the new organization in the offshore location.
Similarly, the natural renewal of core developers in
mature legacy products through, for example,
retirement, with the attendant influx of newcomers
raises the question of how the newcomers are
organized, particularly as they learn about the product.

Because the most important resource that
newcomers have to learn about the product is the
product itself (often the only resource, especially in the
offshoring cases), and because a large legacy system
cannot be easily changed, we propose that the system
may shape the communications pathways in the
organization, i.e. the inverse of Conway's law may
hold. More generally, we phrase the inverse Conway's
law as: An existing system shapes the communications
of people who maintain or enhance it. Inverse
Conway's law implies that the original design of a
legacy system may persist through multiple
generations of developers and affect the (optimal)
organization of work. An important consequence of
this implication is that to be effective, the new team
needs to organize itself to match the structure of the
legacy system. Note, too, the additional implication
that the new team needs to determine the structure of
the legacy system, often a difficult and slow task. As a
part of the work reported here we observed how such
an organization reconstituted itself and its practices
based on various artifacts associated with the legacy
system. It is not clear if this organization and these
practices have been optimized for a particular project
or could be improved by borrowing better practices
from other projects.

Furthermore, we propose that learning is the bridge
for the reproduction from inanimate product structure
to the animate communication structure. As always,

mailto:weiss@avaya.com
mailto:audris@avaya.com
mailto:zhmh@sei.pku.edu.cn

the key factor is human, in our case developers.
Developers learn through sociocultural practices, as
postulated, for example, in [2, 3]. The past culture
developed by past developers is frozen in the product,
which in turn affects the present culture through
developers’ learning activities (See [4] for examples of
this). In other words, developers learn from legacy
products which are imbued with the old organizational
culture, and form the new organization that mirrors
the old culture. Learning activities reproduce software
organization through product structure just as
organizations produce and reproduce themselves
through the developers’ learning.

From a practical perspective, each product is unique
in many ways, owing to different technologies used,
different application domains, different source code
bases, and different organizations of work. Even
experienced developers require significant time to
“learn” a new project because of these circumstances.
Therefore, we use research on learning as the
foundation to observe the newcomers to a project and
on new teams that form offshore. As in [5] , we use the
Legitimate Peripheral Participation (LPP) approach [3]
to describe how developers participate in a software
project starting from peripheral tasks and, as they
learn, move to more central tasks. Developers practice
through performing regular tasks, and form a
community of practice, as defined in LPP. They learn
through participating in this community of practice
over time. We would anticipate the tasks are
determined by product structure, and more central task
a developer is working on, more central she is in the
communication structure. The LPP approach postulates
that there are strong goals for learning, because
learners, as participants, want to get things done, and
become master practitioners in the organization.

As [7] pointed out, “identifying which experiences
aid (developers’) understanding would help educators
(and managers) develop approaches to increase the
likelihood that they occur”. We expect that by
identifying the types of information that developers
use, we might better understand what tools and
practices could help them more easily find critical

information, and, therefore, become more productive.
We assume that understanding and productivity are not
separable.

This paper seeks to observe what software
developer(s) who join a legacy project learn, how they
learn, and what factors affect their learning. We’ll try
to understand the process of organizational structure
reproduction through developers’ learning from
organizational culture embedded in a software product.
In particular, we qualitatively investigate what aspects
of software development require the most training and
socialization, and what factors affect the learning
process and productivity. We quantify how the
developers' learning and resulting behavior are shaped
by the product architecture and development activities,
including both software and system structures and the
structure of the activities used to develop the product.
The results give some support to the notion that an
organization's communication structure is reproduced
not simply by mentors but also by inanimate objects of
software code, information repositories, tasks,
customers: all representing and produced by a culture
of the past.
2. Context

We investigated four projects shown in Figure 1.
The three projects we investigated qualitatively were
developed in the United States and later transferred to
India, referred to as A, B, and C. They were originally
created in three different companies and had some
commercial success before being acquired by Avaya.
Therefore, they should represent three distinct
organizational cultures. The fourth project, referred to
as D, continues to be developed primarily in the United
States with some participation of offshore locations.
All projects belong to the telephony domain, with
projects A-C providing various functionalities of a call
center and project D of enterprise telephony switching
software. The development history is considered from
2004 to 2008. Figure1 shows the number of developers
per year and the number of changes per developer per
year. As shown in Figure 1, D and A are fairly large
and B and C are medium-size projects.

Figure 1. Projects Overview
3. Methodology

For our qualitative study we selected projects A, B
and C, which have been completely transferred
offshore to investigate the project transfer process (in
prior studies we have investigated projects where there
was no offshore transfer [7]). We interviewed
developers with a set of structured questions focusing
on the following issues:
• what they have to learn when joining,
• what help they can get,
• what resources are available to them,
• how they resolve the problems,
• how they get their work assignments, and
• whom they communicate with most often.

In order to get the most information from a limited
number of interviewees, we sampled people to
interview according to their communication structure.
In every project, we selected three developers who
communicated most often with others, through the
approach proposed in [8] to detect succession based on
the modifications to the same source code files.

At the start of the interview, we explained our
purpose of understanding the factors that enable
developers to be most effective when taking over large
and complex offshored projects, and assured the
subjects that their identity and answers would be kept
private. We conducted the interviews via tele-
conference, and, to minimize effort and to match
cultural norms of the off-shoring site (we were advised
by India colleagues that the interview of a single
individual may be perceived to be more stressful than a
group interview and that group interview would be less
likely to be perceived as a waste of time by
participants), we interviewed three developers at a time
from a single project.

In the quantitative study we relied on methods
described in [9] . The following steps were repeated
until data of sufficient quality was obtained:

1. Retrieve the raw data from the underlying
systems via access to the database used in the project

support tools. In our context, the tools include the
version control systems ClearCase and SCCS, and
problem tracking systems.

2. Clean and process the raw data to remove
artifacts introduced by the underlying systems. Verify
the completeness and validity of extracted attributes by
cross-matching information obtained from separate
systems. For example, we map the developers’ logins
in SCCS to their employee identities in the company
directory in order to detect multiple logins per
developer.

3. Determine the questions to be answered, based
on the goals of the study, and construct meaningful
measures to answer the questions, i.e., we used the
goal-question-metric approach to guide metrics
definition [10] .

4. Analyze data, present results, and collect
feedback for further validation.

In this paper, we rely on data that has passed
through the first two levels of the pipeline and focus
primarily on the elaboration of the remaining two
steps. Accordingly, we will omit discussion of the
retrieval and cleaning of the data.

To discover measures of learning behavior we
propose how product structure, developer roles and
developer learning are reflected in observable traces of
software changes.
4. Centrality, product, and communication

Before we proceed to observe if learning activities
reproduce communication structure through product
structure, we define several key concepts including
communication structure, product structure, and task
centrality in terms interpretable in our context.
Conways' law was formulated in the context of
multiple organizations (often representing independent
commercial entities) designing a very large system.
Roughly speaking, the communication structure was
represented by inability of these entities to
communicate directly at the low levels of the hierarchy
and the product structure was represented by often
independent pieces of hardware or software that need

to interoperate. We are considering primarily a single
commercial entity (except for the interactions with
customers) that, for the most part, does not have
explicitly defined organizational communication, or
product structure. Therefore, it is very important to
define clearly what these concepts mean in our case.
4.1 Centrality

First we start from the concept of task centrality or
importance inspired by centrality of individuals in an
organization considered in Van Manen [2]. To
operationalize centrality of tasks in software
engineering project that we considered, we use the
following three factors.

1. Customer dimension. Modules and activities
which are the most important to satisfy customer
requirements and thereby to sell the product are most
central in a commercial setting. In particular, resolving
high severity problems reported by important
customers is an example of such a central activity.

2. Long-term impact dimension, i.e., the strategic
decisions. For example, major changes to the system
architecture or changes affecting the ability to create
new features. Both determine how customers will be
able to use the system, and thus they are more central
in the customer dimension as well.

3. System-wide impact dimension, particularly the
number of modules involved and the extent to which
they are distributed over the modular structure. For
example, a large number of modules or a large number
of activities affected by the change would indicate a
more central decision.

Peripheral tasks do not directly impact the
customers, are unlikely to break the structure of the
entire system, and are not likely to cause serious
problems in later releases. For example, testing and
fixing non-critical bugs or implementing modules that
are independent and non-critical to the functioning of
the remaining system represent peripheral tasks.

Developers performing more central tasks are
considered to be central, and, in turn, developers who
work on peripheral tasks are peripheral. In social
network analyses, the centrality is often defined in
terms of the topology of the communication graph:
nodes with many edges or nodes connecting subgraphs
are considered to be more “central.” Even though
developers who are more central according to our
definition may exhibit such properties in their
communication graphs, we feel that the definition of
centrality purely through graph properties does not
reflect the full spectrum of centrality for software
development tasks that are critical, of long-term
consequences, and with broad impact. Nevertheless,
there are profound differences between
communications of central and peripheral developers.

4.2 Communication structure
We define communication structure not based on

individual communications, but based on the set of
communications for a project participant. In our study,
we observed several types of communications:
communications related to organizational reporting
hierarchy or less formal mentoring relationship,
communication related to task assignment and
resolution, and a variety of more spontaneous
interactions. Several types of communication embody
the centrality of participant's position, which represents
the importance to the project of the decisions made by
a participant.

Reporting relationships define positions of
individuals in the management hierarchy of the
organization, as described in, for example, [11] .
Mangers can have long-term effects on a project (and,
therefore, higher centrality) by, for example, assigning
developers to work on specific tasks. We observed
managers providing new developers with information
“even in cases when I do not know how to solve a
problem, I can always point to someone who can.”
Mentors provided more technical information related,
for example, to inspecting code or explaining the
module is functioning also playing a central role

Activity relationships lead to developers' interaction
with each other and with related communities, for
example, with customer support teams and other
project teams, such as testing. They communicate to
exchange information, consult, define task
requirements, and participate in other activities needed,
for example, to build trust. The activities related to
solving critical customer problems are more centra and
we found that projects used their most experienced
developers in that role. More generally, we observed
numerous instances of how developers have more
impact on decision making with accumulated
experience and with wider social network. Centrality
here is embodied from two dimensions: how many
interactions the participant has with others, for
example, a developer who needs to interact with the
whole team would be more central than a developer
needs to interact only with her mentor, and how central
the tasks are, for example, a developer making
decisions about product architecture would be more
central than a developer tasked to fix minor defects
even if both had interactions with a similar number of
other developers.
4.3 Product structure

We have observed two aspects of product structure:
the architecture, which includes several structures, of
which we will primarily focus on the module structure,
and the development activity structure. Based on our
interviews and prior experience, developers’ tasks are
assigned based on these two types of structure. In our
study the module structure was organized according to

product package/subsystem and functionality
(functionality, such as internationalization, may cut
across the package/subsystem boundaries). The
activity structure followed common development
practices, such as building, installing, configuring, and
testing the product. It also included practices used to
fix and report problems and to design and develop new
features. Furthermore, underlying these generic
practices, there were substantial differences in
information seeking behavior needed to accomplish
these common tasks, for example, knowing when and
how to inspect the execution log or where to find
information about similar bugs that occurred in the
past, and variation in acceptable norms, such as how
many defects are acceptable, and what should be
tested, how it should be tested, and how extensively it
should be tested. Based on our observations, the way
each practice was implemented was carried over from
the original practice used to develop the products,
often with no individuals serving as conduits. For
example, when fixing defects Project A extensively
used their rich problem resolution repositories, while
project C used almost exclusively the logs of product
execution and project B focused on latest code
changes. In fact, given the nature of the products such
strategies make considerable sense. Project A was very
difficult to install and run and did not have well
defined states, making execution logs less valuable for
debugging. On the other hand, Product C could be
intuitively thought of as a state machine with well
defined states and transitions, suggesting that
execution logs represented a nearly optimal way to
understand the nature of a problem. Therefore, we
hypothesize that the activity structure is in fact a part
of the product structure that is either enforced by the
particular product domain and its architecture, or
encoded in the historic information repositories (code,
execution traces, and tracking systems) of how the
product was constructed and maintained in the past.
Our claim is not that the mere fact that the original
team and the new team perform testing implies some
learning from the product structure (we expect that
most software developers know about testing from
their undergraduate studies). Rather, the similarity
between the ways testing was done in the original and
the new team indicates that the product itself has some
effect on learning and that product structure
incorporates development activity structure.

We propose that developers learn through
performing regular project tasks under the constraints
(“guidance”) of the product structure, and,
accordingly, change their positions in the
project/organization. The centrality of a task, embodies
the centrality of the modules or activities the task is
related to, and reflects the centrality of the position the
developer has in the organizational communication.

5. Inverse Conway’s law
Given the preceding definitions of communication

structure, product structure, and task centrality, we
investigate how developers' learning trajectory, access
to resources, and basic principles of learning are
influenced by product structure. We suggest that the
structure of the system affects the way a new
generation of developers communicates, which is
represented by developers’ positions in the reporting
hierarchy and by their activities that both define their
interactions with others. To find support for the inverse
Conway's law we analyze how the structure of the
product directs developers’ learning trajectories, makes
certain directions more promising through accessibility
of resources, and slows the learning process in large
and complex systems.
5.1 Trajectory of project participation

LPP proposes that learning, i.e., the learners’
participation of practice, is at first legitimately
peripheral but increases gradually in engagement and
complexity. In software projects, we consider practice
as performing regular project tasks. As, for example,
observed by von Krogh [1 2] , the newcomers went
through different types of activities to join an open
source developer community. We therefore would
expect:

Proposition 1: Developers learn by moving from
peripheral tasks towards more central tasks as
determined by the product structure, corresponding to
their changing positions in the communication
structure.

To test the proposition we use both qualitative and
quantitative data. Table 1 describes the tasks done by
novices and seniors classified by two aspects: (1)
software architecture (embodied via modular structure)
and development activity structure and (2) the three
dimensions of centrality described in Section 4. In
particular, it shows that novices are engaged in more
peripheral activities than experts, such as testing and
(simple) bug fixing. According to the module structure
the novices are assigned peripheral tasks as well. For
example, “web client” is well-specified, self-contained,
and not interdependent with the rest of the system,
therefore the developer who is working on it needs few
interactions with other developers. The more senior
participants not only work on the more central
modules, for example, on the telephony module in
project C, but they also mentor newcomers (a task with
a long term consequences). Also, as experts they make
key design and other decisions with long-term and
system-wide impact. We can also observe that the
seniors have higher positions in the reporting structure
of the organization, for example, “a technical leader”
of project C. This describes the progression of
newcomers from peripheral to central tasks, and
supports the inverse Conway law: the product structure

expressed through the aforementioned modules and
activities affects communication structure expressed
through activities and hierarchy. Work on peripheral
modules and activities requires different
communication than work on more central modules
and tasks. In particular, we observed that developers in
the offshore location spent less time on new
development because they had less opportunity to do it
given the less central roles developers have in the
offshore site. For example, one interviewee said, “We

would be happy if we get new, interesting features to
develop.”

To test Proposition 1 quantitatively we fitted a
regression model in which the response represents the
centrality of the task and the predictor represents the
learning experience. As developers gain experience,
we expect to see them move from peripheral to central
tasks and, therefore, change their communication
patterns.

Table 1: Tasks done by novices and seniors classified through centrality and product structure
Centrality/
Product structure

Customer dimension Long-term impact
dimension

System-wide impact dimension

Module structure

“I have worked in
almost all areas of C,
and am now a technical
leader, and responsible
for telephony
modules”(senior)

“The module changes are
reviewed by the
experts(seniors) in case
they affect the design”

“When I joined I had web client”;
“Integration test is given (to novices)”;
“Adding printouts to logs” (novice)
“I work on voice/XML (browser). I have
worked on many modules, because the
browser interacts with many modules”
(senior)

Activity structure

“I am the contact
person for sales demo
and data base
administration tasks”
(senior)

“We would be happy if
we get new, interesting
features to develop”
(offshore)

“Some simple MRs are given” (to
novices)

We measure the learning experiences using two
dimensions. First is the time spent on the project from
the developer’s joining day until the day she made a
particular change, which we call tenure. The second
dimension we call practice; it represents the amount of
practice the developer had, measured by the
cumulative number of prior changes the developer has
made. According to our observations there are two
primary types of learning for newcomers, one through
pedagogical activities, e.g., collective courses, the
other through the practice of regular project tasks. We
observed that project organizations provide
pedagogical activity opportunities and that these
opportunities are distributed over time, based on the
interviews of developers in several companies,
including Avaya, Google China, Microsoft China and
Schlumberger China (conducted by the first author).
Therefore, the more time spent on the project, not just
the practice of performing regular tasks, the more
training is likely to have occurred. Because our
investigation concerns newcomers to the project, we
consider developers for their first 12 months (18 for
project D) after their joining date.

We measure the task centrality (defined through
customer impact, long-term impact, and system-wide
impact) from several perspectives. In our study every
observation is a task-related change (Modification
Request or MR), and every change affects at least one
module, and is made by a developer. The modules with
a long history have been in the system from the
beginning and modules with more changes are likely

to be changed in the future, both indications of long-
term impact and, therefore centrality to the system's
architecture. A module changed by many developers is
likely to be important from multiple perspectives and,
therefore, is more central to the system's adaptation to
the changing environment reflecting the centrality of
the module. The next three measures look at the
properties of changes: MRs included in multiple
releases of the product are more likely to be central
than MRs that are included in only one release;
customer reported MRs are also more likely to be
central given that delays or improper fixes are likely to
have significant negative consequences; We also
observed that bug fixing for non-customer-reported
defects is generally considered to be a peripheral
activity, but new feature development is considered to
be a central activity. Perhaps, this reflects the long-
term consequences of adding new features to a system
and a more localized (less wide) impact of defect fixes.

Below we present the regression model with the
experience predictor being the cumulative changes a
developer made in the past in project D (136
developers, 18192 changes), and the response being
the number of logins who modified a module. We
expect the developers who have more experience to
work on more central modules. The results in Table 2
show that all coefficients are significantly different
from zero, supporting Proposition 1. The categorical
predictor (id) identifying each developer explained
approximately 58 percent of the variance. The other

http://www.slb.com/

regression models using other responses and predictors
described above, yielded similar results.

log(# of logins+1) ~ id + log(practice+1)

Table 2: Developers’ trajectory from the periphery to
the center

Estimate
Std. Er-

ror t value Pr(> |t|)

(Intercept) 5.63 0.23 24.14 0.00
log(practice+1) 0.05 0.01 9.13 0.00

Developers = 136, Observations=18192
R2= 0.59

5.2 Accessibility of resources
According to LPP, the most important factor for

learners is what they can access to learn and how they
access it. Structuring resources shape the process and
content of learning possibilities and learners’ changing
perspectives on what is known and done. Structuring
resources comes from a variety of sources. From the
interviews, we were able to identify five primary kinds
of resources provided by projects, namely, training
courses, information repositories, code/documentation,
available experts, and tools. An information repository
represents a combination of a tool and
code/documentation that records historic information.
For example, the ClearCase version control system, an
internal document management system known as
Compas, and the QQ problem tracking systems in
project A were extensively used to understand the
product and to resolve problems. Table 3 gives the
resource classification and lists what they were in the
three projects.

LPP considers the transparency as an important
problem that affects learners’ access to resources.
Knowledge is encoded in artifacts in ways that can be
more or less revealing. Transparency is a way of
organizing activities that makes their meaning visible.
In our context, transparency is a serious problem,
because in the offshore projects and in the large legacy
projects where the most important learning resources
are represented by artifacts, including source code,
information repositories, and tools listed in Table 3.
How to reproduce the knowledge from these artifacts
is the key question for a new organization taking over
the project or for a new participant joining the project.
Any means that can help developers to understand the
product are likely to simplify and speed up the learning
process. We would therefore expect:

Proposition 2: The accessibility of resources
provided by projects, and the access practices
implemented by developers, affects developers’
learning.

Table 3 shows the possible resources which are
provided by the projects and are accessed by the

developers. Table 4 lists ways developers use these
resources, i.e., the implementation of access practices,
to achieve the skills they need in the projects. Below
we list the practices reported by interviewees that were
used for their self learning process.

Project A: “If we are stuck on a problem, we check
out the code to see who changed the code along with
the descriptions.” “We look through Compas for
design documents to understand the component
architecture.” “If the person is still in the company we
ask if they can provide any insights. If not we look at
every relevant document in Compass.” “If we see
more issues we go through QQ to look for similar
issues.” “We make guesses on keywords to search.”

Project B: “In order to locate the bug, we go
through all the files; and go through the code to figure
out how it works.”

Project C: “We worked on MRs, added logs,
analyzed call traces to educate ourselves.”

From the above evidence, we can see how the past
development community culture is embodied in the
resources (especially the historic information
repositories), and accessed by the current developers,
and then reconstructed in their activities. The projects
differed substantially in ways they provided resources,
and ways that developers achieved their skills and
implemented common software tasks, despite
developers having a similar education background and
being located at the same site. Such differences are
probably caused by the different origins of each
project supporting inverse Conway’s law as well: old
culture affects product, product in turn affects present
culture.

We also observed a somewhat paradoxical situation
illustrating the importance of product structure in
learning. Without anyone to ask or any documentation
provided for learning, people had to struggle with the
task by themselves, but they appeared to get familiar
with that task in more depth:

“I was asked to increase sizes of the 8 partitions in
our customized Linux. The only person who knew how
to do this was laid off. I went through all the files to
learn how to do this. “

This provides evidence that access practices
implemented by individuals affect their learning. In
particular, the developer’s motivation stimulates their
learning. When no other resources can be relied upon,
developers have no other way but to figure out the
resolution from the product itself. This is consistent
with [6] which examined computer science students'
understanding of the subject. Students’ understanding
of several fundamental concepts were transformed
after facing a level of complexity where their normal
problem solving practices no longer were effective.
Then the discovered practice improves developers’
learning capability, and, in turn, improves their
practice capability. This also agrees with [1 3] , learning

gets faster with practice. A similar attempt to learn
without outside help is reported in Begel [1 4] and was
considered to be an inefficient way of addressing the
problem. While certainly less efficient in the short
term, such product-focused learning appears to have
significant longer-term benefits of first-hand
understanding of the product rather than procedural
(“resolve it this way”) understanding that is likely to
be provided by expert peers.

However, our data is not sufficient to establish the
extent to which the resources affect developers’
learning. It’s also not completely clear why developers
chose and implement their access practices differently,
but it appears that to a large extent the differences were
caused by the differences in the product structure. And
it remains to be seen if these practices have been
optimized for a particular project or could be improved
by borrowing best practices from other projects.

Table 3: What resources the projects provide for learning
Project/
Resources

A B C

Training
courses

AvayaU course;
Bootcamp

“The most important item for
knowledge transfer was AvayaU”;
Bootcamp;
“Practice code reviews to under-
stand the code”.

Bootcamp

Information
repositories

“The central repository is on a re-
stricted share point”;
“Code is on ClearCase, including
the traces showing who changed the
code along with the descriptions”;
“Compass is convenient to search
for design documents to understand
the component architecture”;
“The defect database is used to look
for similar issues”.

“There is a repository where all
(customer) problems are report-
ed;
“On ClearCase we check what
was changed and who changed
it and what files were included
in the change”;
“Logs tell which problem area
to look at. Each log statement
has the module name of the
originator”.

Code/code
comments,
documents

“Bootcamp presentations are the
best”;
“Design documents are useful.
Some documents are better written
than others”;
“Found code where there are not
notes written, and this makes it hard
to work on”.

“Documents from US team told
how the code and builds were
structured, which are the second
most important for knowledge
transfer”;
“There are documents on coding
style and how to write the code,
which help most in the work”;
“Code comments helped”.

“Presentations are available on
share point, from each module
owner, explaining what it does
and what it interacts with”.

Available ex-
perts

“Every new hire is assigned a men-
tor who knows about the module
that the new person is assigned to”;
“When we need a local expert we
go to X who has worked on the
product for 7 years”;
“We have a couple of other domain
experts, who have a good under-
standing of how the product
works”.

“Calls and mail support from US
team are the 3rd most important for
understanding”;
“If had questions I first went to the
Pune staff (50-70%), and if needed
I sent queries to the US team(1%)”
“There is a specific person for each
specific region of the product”;
“For the code base knowledge
comes from seniors here”.

“Assigned a mentor on a
module”;
“We make ourselves available
for questions”.

Tools Netmeeting;
Special discussion group (mail list).

Table 4: What skills developers learn in projects and how
Project/
Skill

A B C

What a
product is

“In the Bootcamps there is an
overview of all the products by the
product heads. We learn what
domain the product falls into.”

“The most important item was
Avaya University(AvayaU)
training”;

Bootcamps;
“New employee is given an
assignment to install a system
to understand what it is.”

“Component owners give knowledge
transfer and demos to new
employees”.

How
customer
uses it

presentations in Bootcamps
“AvayaU course shows how
customers use our products”. “Test – make a call”.

Module
structure

presentations in Bootcamps

“The original knowledge
transfer from US showed how
the product was constructed;
Seniors help understanding“.

“Integration test is given,
which requires touching every
module and covers the main
features of the product”;
“Presentations are available
for every module.”

Detail of
assigned
module

“Every new hire is assigned a mentor
who knows about the modules that
the new person is assigned to,
Mentors explain the component”

“The code comments helped”;
“We practice code reviews to
understand the code”;
 “For the code base knowledge
comes from senior colleagues
here”.

“The first thing is to make a
call. I made a call, and
dropped it, and looked at
traces and logs, to understand
what my module did. I
gradually added more
complexity to scenarios. So I
tried to follow code flow.”
“Now each module owner has
to prepare a presentation about
their module.”

How build
works, where
the code is

“There is a document on thin client
setup for Websphere and I used this –
very useful. In ClearCase find the
file, where to edit, and how to build –
these are covered in the
presentations”;

“On builds I shared my
experiences through hands on”.

“Documents and calls from
US team told how the code
and builds were structured”.

“We had help for about a year
on how builds worked, and
where the code was from US;
Now Everyone knows about
the basic build process”.

Expertise
Social
Network

 “The understanding of who is expert
on what is local, informal
knowledge”.

“There is a specific person for
each specific region of the
product. For domain queries
we went to the US team.”

In Bootcamp “novices are
introduced to the seniors and
who is expert in what is
explained”.

5.3 Learning through practice and over time
Finally, we expect a very basic premise to be true:
Proposition 3: Developers learn through practice

and over time, and in larger projects, it takes longer to
reach a productivity plateau.

If such a fundamental assumption were not true, the
whole concept of learning would be problematic.
While testing this assumption we also wanted to
quantify the speed of learning and to find a method
that would let us determine factors that may affect the
learning speed. In particular, if the product structure
affects the speed of learning, it must affect the
dynamic aspects of organization's communication by
increasing or decreasing the speed by which
developers become more central and thus supporting
inverse Conway's law.

To test Proposition 3, we fit a regression model, in
which the response is the productivity of developers
and the predictor is the learning experience.

We chose both tenure and practice as predictors
measuring the learning experience and considered
developers for the first 12 months for projects A, B,
and C and for the first 18 months for project D. We
also considered several alternative metrics reflecting
the amount of practice: the cumulative number of MRs
and the cumulative number of modules touched by a
developer since joining the project.

Conceptually, the productivity of a developer is the
number of product units (output) produced over some
unit of effort (input) [8] . In order to show the learning
effect, we chose several distinct metrics to measure
productivity. The first metric uses the number of
changes per staff-month as in, e.g., [8] . The second
metric is the number of MRs per staff-month. The third
metric is the number of modules per staff-month the
developer changed.

Below we present the regression model with the
predictor being the learning experience and the
response being the number of changes per staff-month.

 Figure 2 illustrates the coefficients and their
standard errors for months in projects A-D. Circles
represent estimates for project D and X'es for projects
A-C. Whiskers represent intervals representing two
standard deviations of the estimated coefficients. From
the coefficients fitted for each month we can see that a
developer who makes more changes and spends more
time on the project would be more productive, and

gradually reaches a plateau of productivity. In
particular, it takes 6-7 months for developers to reach
plateau in projects A, B and C, and it takes more than a
year in project D. This agrees with a study in [1 5]
supporting Proposition 3. The other regression models
fitted with alternative choices for responses and
predictors described above, all show similar results.

Figure 2. Learning term comparison between project A-C and D
Next we use qualitative data as evidence that

“larger projects take longer to master”. From Table 3
and 4, we can see that project C provides the most
formal resources and procedures for novices to learn.
Table 5 summarizes the comparison with rank one
meaning the best practice. We could not compare the
quality of code and documents among projects, but we
list two other factors that influence learning. This rank
was confirmed by the relevant managers.

From our investigation we learned that, according
to the perception of managers and project participants,
project C was more successful than project B, and
project B was better than project A (see “Product
quality” in Table 5). From the comparisons of
resources, we see that A is better than B according to
all criteria except for simplicity where product B was
simpler than product A. Given that B is better than A
in product quality it appears that the product
complexity may be the most important feature that
influences software production.

One possibility why larger projects take more time
to master is that their product structures are more
complex, i.e., the relations among modules and
activities are more tangled, and, in turn, this
complexity requires developers to spend more time to
become central in the decision and communication
structure. This suggests that product complexity may
slow down developer progress and thus affect their

communication structure, thus supporting inverse
Conway’s law.

Table 5: Factors comparison among projects
Factors/Rank 1 2 3
Training course C A B
Information repository C A B
Available Experts C A B
Background and
Experience of developers

C A B

Product simplicity C B A
Product quality C B A

6. Related work
A substantial amount of recent work looks at

software development through ideas introduced from
other disciplines, e.g., organizational science, social
science, and psychology. One such approaches
considers how social organization affects software
development. In particular, Cataldo et al. considered
congruence between the structure of technical and
work dependencies and their impact on developer
productivity [16] . A large body of work observed
software development and organizations from a
learning perspective. For example, Ko et al. followed
developers and recorded in detail their daily activities
and found that communication activities constitute the
lion's share of developers' time [17] . G. von Krogh et
al. looked at the strategies and processes by which

newcomers join the existing Open Source Software
(OSS) community, and how they initially contribute
code [12] . Yunwen Ye et al. analyzed how OSS
members change their roles with gradual participation,
and argued that learning is one of the major
motivational forces that attract software developers
and users to participate in OSS development [5] .
Begel and Simon [1 4] observed eight Microsoft
newcomers (within their first six months on the job)
for 6 to 11 hours, over two 2-week periods separated
by one month, to discover the types of tasks such
novices engage in. They found that communication
and product knowledge pose serious challenges
because the newcomers have not been trained for such
tasks through their formal education. Communication
was a problem for novices even in cases when experts
were available (unlike in the offshoring situation
where experts are no longer available). The authors
also found that learning system-specific tools,
configuring the system, reaching out to other groups to
get submit approvals, and organizing and
understanding various sources presented a serious
challenge. Unlike our study, [1 4] investigates tasks at
a finer granularity, and does not involve offshoring
scenarios, where the newcomers are often not novices
and all or most experts are no longer available.

However, none of these studies explicitly
investigated the structure of the product or of the
organization or quantitative measurements of
developer activities from change logs. More generally,
no qualitative or quantitative results are reported on
how legacy products affect communication structure
through developers’ learning, especially in commercial
projects.
7. Conclusion

We have reported on a study of how learning
reproduces communication structure from product
structure. We use the LPP framework to propose how
learning happens in software projects and, in
particular, how newcomers move from peripheral to
more central tasks guided by product structure, with
concomitant changing positions in the communication
structure.

We looked at what developers learn and how they
learn, through qualitative and quantitative data in three
projects that were completely transferred offshore and
one that was partially offshored. We described what
learning resources were provided by the project, such
as group courses and information repositories, and
what resource access practices were implemented by
the developers, such as motivation stimulating deep
understanding. We also considered how resources and
access practices affect the learning process.
Furthermore, we proposed several ways to measure the
nature of peripheral and central tasks in commercial
software development, and observed and quantified

how newcomers move from peripheral to more central
tasks. We discovered that the centrality of the tasks is,
to a large extent, defined by the product structure, thus
suggesting that in legacy software development an
inverse of Conway's law holds.

We expect that the learning resources we identified
can help us to understand better what tools and
practices could help developers more easily find and
use these resources, and, therefore, become more
productive. Our findings indicate that different projects
use substantially different practices. It remains to be
seen if these practices have been optimized for a
particular project or could be improved by borrowing
best practices from other projects. We observed that
the new team appears to organize itself to match the
structure of the legacy system. In particular, the central
functionalities or activities, which are more important
to customers, with the long-term impact on the project,
or critical to the function of the entire system, are
assigned to central developers. We expect an
experienced project manager or a senior developer to
have good enough intuition (tacit knowledge) to pick
appropriate tasks for a new developer. However, our
purpose is to abstract and externalize that knowledge.
The reproduction of developer practices in a
completely new team suggests that software
organizations maintaining legacy products are less
likely to be able to adjust to changing competitive
business environment and might need to create a
cultural firewall between parts of the organization
engaged in new and legacy products.
8. References
[1] Conway, M.E, “How Do Committees Invent?”
Datamation, Vol.14, No. 4, Apr. 1968, pp. 28-31.
[2] J. Van Maanen and E. Schein, “Towards a theory of
organizational socialization”, In B. Staw, editor, Research in
organizational behavior, volume 1, pp. 209–264. JAI Press,
Greenwich, CT, 1979.
[3] Lave, J., Wenger, E. “Situated Learning. Legitimate
Peripheral Participation”, Cambridge University Press.
Cambridge. 1991.
[4] Weinberg, Gerald, “The Psychology of Computer
Programming”, Van Nostrand Reinhold Co. New York, NY,
USA. 1988.
[5] Yunwen Ye, Kouichi Kishida, “Toward an understanding
of the motivation Open Source Software developers”,
Proceedings of the 25th International Conference on
Software Engineering, Portland, Oregon, May 03-10, 2003,
pp .
[6] Mostrm, J. E., Boustedt, J., Eckerdal, A., McCartney, R.,
Sanders, K., Thomas, L., and Zander, C. 2008. “Concrete
examples of abstraction as manifested in students'
transformative experiences”. In Proceeding of the Fourth
international Workshop on Computing Education Research
(Sydney, Australia, September 06 - 07, 2008). ICER '08.
ACM, New York, NY, 125-136.
[7] A. Mockus and D. Weiss. “Interval quality: Relating
customer-perceived quality to process quality”. In 2008

International Conference on Software Engineering, pages
733–740, Leipzig, Germany, May 10–18 2008. ACM Press.
[8] Audris Mockus. ”Succession: Measuring Transfer of
Code and Developer Productivity”. In 2009 International
Conference on Software Engineering, to appear.
[9] A. Mockus. Software support tools and experimental
work. In V. Basili and et al, editors, Empirical Software
Engineering Issues: Critical Assessments and Future
Directions, volume LNCS 4336, pages 91–99. Springer,
2007.
[10] R. Basili, D. M. Weiss, "A Methodology for Collecting
Valid Software Engineering Data," IEEE Transactions on
Software Engineering, vol. SE-10, no.6, November 1984, pp.
728-738.
[11] Ikujiro Nonaka, “A dynamic theory of organizational
knowledge creation”, Organization Science 5 (1), 1994: 14-
37.
[12] G. von Krogh, S. Spaeth, and K. R. Lakhani,
"Community, Joining, and Specialization in Open Source
Software Innovation: A Case Study", Research Policy 32(7),
July 2003, pp. 1217-1241.
[13] Ritter, F. E., & Schooler, L. J. “The learning curve”. In
International Encyclopedia of the Social and Behavioral
Sciences (2002), 8602-8605. Amsterdam: Pergamon
[14] Andrew Begel and Beth Simon. Novice Software
Developers, All Over Again. In the International Computing
Education Research Workshop, September 2008. Sydney,
Australia.
[15] A. Mockus and D. M. Weiss. Globalization by
chunking: a quantitative approach. IEEE Software, 18(2):30–
37, March 2001.
[16] Cataldo, M., Herbsleb, J.D., Carley, K. “Socio-
Technical Congruence: A Framework for Assessing the
Impact of Technical and Work Dependencies on Software
Development Productivity”, 2nd Symposium of Empirical
Software Engineering and Measurement, Kaiserslautern,
Germany, 2008.
[17] AJ Ko, R DeLine, G Venolia, "Information Needs in
Collocated Software Development Teams", 29th
International Conference on Software Engineering, 2007.
ICSE 2007, 20-26 May 2007, pp.344-353
[18] Perry, D. E., N. A. Staudenmayer, and L. G. Votta.
People, Organizations, and Process Improvement. IEEE
Software. 11, 4, 1994, 36-45.
[19] Herbsleb, J.D. & Mockus, A. “Formulation and
Preliminary Test of an Empirical Theory of Coordination in
Software Engineering”, In proceedings, ACM Symposium on
the Foundations of Software Engineering (FSE), Helsinki,
Finland, 2003, pp. 112-121.

http://en.wikipedia.org/wiki/International_Encyclopedia_of_the_Social_and_Behavioral_Sciences
http://en.wikipedia.org/wiki/International_Encyclopedia_of_the_Social_and_Behavioral_Sciences
http://ritter.ist.psu.edu/papers/ritterS01.pdf

