
Measurement in software projects: taking
advantage of version control repositories

Audris Mockus

Avaya Labs Research

Basking Ridge, NJ 07920, USA

http://www.research.avayalabs.com/user/audris

1 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Outline

• Background

- Motivation and challenges

- Software project repositories

• Advantages of using project repositories

• Pitfalls of using project repositories

• Models for common SE problems

• Process for using project data

• Discussion

2 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Motivation and Challenges

• Needs

- Understand and improve software practice

- Need for quantitative estimates to understand limitations and to

make informed tradeoffs between schedule, quality, cost.

- Visibility: where effort is spent, where defects are introduced

- Actions: the impact of technologies/processes/organization

• Key issue - lack of trust in software measurement

- Low priority except in emergencies

- Need for immediate results (short time horizon)

- Lack of resources for measurement/improvement

- Multiple stakeholders (developer/support/product management)

- Accelerated turnover rate (“just in time employment”)

3 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Background

• Software is created by making changes to it

- A delta is a single checkin (ci/commit/edput) representing an atomic

modification of a single file with following attributes

- File, Date, Developer, Comment

- Other attributes that often can be derived:

- Size (number of lines added,deleted)

- Lead time (interval from start to completion)

- Purpose (Fix/New)

• Approach

- Use project’s repositories of change data to model phenomena in

software projects

4 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Advantages of project repositories

- The data collection is non-intrusive (using only existing data minimizes

overhead)

- Long history on past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.

- The information is fine grained, at the MR/delta level

- The information is complete, everything under version control is

recorded

- The data are uniform over time

- Even small projects generate large volumes of changes making it

possible to detect even small effects statistically.

- The version control system is used as a standard part of the project, so

the development project is unaffected by experimenter intrusion
5 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Pitfalls of using project repositories

• Different process: how work is broken down into work items

• Different tools: CVS, ClearCase, SCCS, ...

• Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

• The main challenge: create models of key problems in software

engineering based change data

6 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Models of software changes

• Quality: how to keep customers happy with minimal resources [6]

• Globalization: move development where the resources are:

- What parts of the code can be independently maintained [7]

- Who are the experts to contact about any section of the code [5]

• Effort: estimate interval and benchmark process

- What makes some changes hard and long [3]

- What processes/tools work and why [1, 2]

- How do you create a hybrid OSS/Commercial process [4]

• Estimation: predict project repair effort from planned new
features

- Plan for field problem repair after the release

- Release readiness criteria
7 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Project Data: Extraction

• Access the systems

• Extract raw data

- change table, developer table. (SCCS: prs, ClearCase: cleartool -lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

- Interview the tool support person (especially for home-grown tools)

• Do basic cleaning

- Eliminate administrative and automatic changes

- Eliminate post-preprocessor changes

8 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Project Data: Validation

• Learn the real process

- Interview key people: architect, developer, tester, field support,

project manager

- Go over recent change(s) the person was involved with

- to illustrate the actual process (What is the nature of this work

item, why/where it come to you, who (if any) reviewed it, ...)

- to understand what the various field values mean: (When was

the work done in relation to recorded fields, ...)

- to ask additional questions: effort spent, information exchange

with other project participants, ...

- to add experimental questions

- Apply relevant models

- Validate and clean recorded and modeled data

- Iterate
9 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



How to foster experimentation in industry

• Volunteer help to projects in trouble

• Help with the top problem the project is faced, but collect

information for the the future problems (the empirical work)

• Provide value for all parties involved (services vs development vs

product vs CIO)

• Be sensitive about the privacy at individual and team level.

• Show something significant and unexpected about the project

early on

– Demonstrate immediate results

– Gain credibility

• Get commitments for other studies
10 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



Discussion

• A vast amount of untapped resources for empirical work

• The usage of VCS/CM is rapidly increasing over time (startups

than do not use them are rapidly disappearing)

• Immediate simple applications in project management: MR

inflow/outflow

• It is already being used in more advanced projects

• Remaining challenges

- Build and validate models to address all problems of

practical/theoretical significance

- What information developers would easily and accurately enter?

- What is the “sufficient statistic” for a software change?

11 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan



.References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the impact

of software tools: A case study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost. Bell
Labs Technical Journal, 5(2):7–18, April–June 2000.

[3] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An empirical
study of global software development: Distance and speed. In 23nd International Conference
on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[4] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[5] Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to identifying
expertise. In 2002 International Conference on Software Engineering, pages 503–512,
Orlando, Florida, May 19-25 2002. ACM Press.

[6] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, April–June 2000.

[7] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.
IEEE Software, 18(2):30–37, March 2001.

12 Audris Mockus Measurement in software projects ISERN’2002, Nara, Japan


