
Role of change history in
empirical studies

of software

Audris Mockus
http://www.bell-labs.com/~audris

Outline

Motivation and goals
Why changes are made?

how to obtain the purpose

Why changes are hard?
how to obtain change effort

Implications

Motivation
Example

Real, 20 year old, huge switching product

large proportion of changes are enhancements

Advantages of change history data
ubiquitous - most products have it

massive - far larger than any survey

complete - all parts of software are recorded

unbiased - no Hawthorne effect

uniform over time

Goal

Design tools and methods that do
not compromise advantages of
change history data, i.e.,
1. Are uniformly applicable
2. Minimize human involvement
3. Use existing data
4. Complete - characterize all parts of

software

Great, but can it be done?

Change history contains
who changed, when and what was changed

But is it possible to obtain:
why?

how difficult?

Two studies on
purpose (with L. Votta)

effort (with T. Graves)

How Code Evolves
By adding and deleting line blocks
before: after:
// initialize

int i=0; int i=0;

while (i++)while (i++ < N)

 read (x);read(x);
one line deleted

two lines added

two lines unchanged

Any VCS Records:

Change - added and deleted lines

Who - login, organization

When - date and time

Description - line of text

Available data:
~100M lines, ~4M changes, ~5K logins, 30Gb

~30 products (select one)

Why code is changed?

Primary reasons for maintenance
activities
corrective: fix faults
adaptive: add features

How those reasons relate to:
interval, effort, quality
developer, size
location, time

How to obtain the purpose?

Look for bug/new field

may not be there, unreliable, only two values

Ask developers

too much overhead - small coverage

Read change abstracts

great idea - but 2M abstracts

Let computer read abstracts

but how?

Algorithm

Use change description line
extract frequent keywords
classify keywords (fix, new, add, etc.)

discover new types
• perfective - code cleanup
• inspection - code inspection suggestions

verify on sample abstracts

keyword -> purpose of the change
iterate

Example keywords

Adaptive:
add, new, create,
initial coding, modify,
update

Corrective:
fix, bug, error,
problem, incorrect,
must, needs

Perfective:
cleanup, remove,
clear, unneeded,
flex name

Inspection:
code review,
inspection, rework,
walkthrough

Proportions

Why:
add new functionality - 45%
fix faults (bug) - 34%
cleanup/restructure - 4%
code inspection - 5%
unclassified - 12%

Is it right?

Survey:
2+5 developers (>9 years experience)
20+150 changes (< 2 years old)

~ equal numbers for different types
 small percent of all changes developers did

Questions
Type: bug, new, cleanup, inspection
Difficulty: Easy, Medium, Hard

Results

Unclassified changes are mostly bug
fixes
Almost perfect match

Inspection changes are easiest to detect
Dev.\Auto Corrective Adaptive Perfective Inspection
Corrective 35 10 5 1
Adaptive 11 23 3 4
Perfective 10 8 27 9
Inspection 1 0 0 21

Change Interval

Days

P
ro

b
a

b
ili

ty

1 5 10 50 100

0
2

0
4

0
6

0
8

0

Corrective
Adaptive
Perfective
Inspection

Lines Added

number of lines

P
ro

b
a

b
ili

ty

1 5 10 50 100 500 1000 5000

0
2

0
6

0
1

0
0

Corrective
Adaptive
Perfective
Inspection

Lines Deleted

number of lines

P
ro

b
a

b
ili

ty

1 5 10 50 100 500 1000

0
2

0
6

0
1

0
0

Corrective
Adaptive
Perfective
Inspection

Will it work elsewhere?

Other Product
2 X size and five years older
different functionality
different organization

Tool
the same classification (no manual input)

Results
very similar purpose profiles

Change Interval

Days

P
ro

ba
bi

lit
y

1 5 10 50 100 500

0
20

60
10

0

Product 1, Corrective
Product 2, Corrective
Product 1,Adaptive
Product 2, Adaptive

Lines Added

number of lines

P
ro

ba
bi

lit
y

1 5 10 50 100 500 1000 5000

0
20

60
10

0

Product 1, Corrective
Product 2, Corrective
Product 1, Adaptive
Product 2, Adaptive

Lines Deleted

number of lines

P
ro

ba
bi

lit
y

1 5 10 50 100 500 1000

0
20

60
10

0

Product 1, Corrective
Product 2, Corrective
Product 1, Inspection
Product 2, Inspection

Effort Estimation

How difficult a change was?

What makes changes difficult?

Where difficult changes are?

Why change effort

detect key factors that affect effort
in a larger project change type, size,

and developer are aggregated over
many changes and their effects can
not be detected

How to get effort?

ask developers
small coverage, large effort

use developer reported monthly effort
divide among changes made that month

 simplification
developers report similar effort every

month
hence reported effort can be replaced by 1

Algorithm

Specify factors that might contribute
to effort
Use reported effort (unit monthly

effort if reported effort unavailable)
to estimate contributions from each
factor
Use cross-validation to determine

significance of each factor

Example

Choose factors that may affect effort
base factors: purpose, size, developer
test factors: e.g., complexity, decay, …

Result
the value and significance of each factor
e.g. effort for a similar change  20%/year

rsotherFactoFileTypeDecay

LoginSizePurposertChangeEffo

+++
++~

Example Factor Estimates

Factor Effect Significant

purpose bug change takes twice
more effort than new
change

yes

size effort is proportional to:
#delta, #files, #lines

yes

login effort to make a similar
change can vary 3
times across logins

no

decay making a similar
change takes 5-25%
more effort each year

yes

sdl versus c no effect no

11 developers from 5ESS OA

Applications

SoftChange system - prototype tool

Other applications
monitoring (where/when code decays)

expertise locator (who is the best match)

process/tool evaluation (is there any effect)
Version Editor and process capability studies

benchmarking - 4 projects

More results

Assessing code decay
Predicting fault potential
Complexity of parallel changes
How legacy organizations cope

with changing business
environment

Summary

Change history is invaluable
automatically it can be enhanced with

purpose
effort

Cost drivers can then be determined

Summary

Change history is invaluable

automatically it can be enhanced with
purpose

effort

Cost drivers can then be determined

Don’t forget change history in your next study!

SoftChange: highlights

ECMS/SABLIME + SCCS interface

Summarization (5ESS ~ 30Gb data)
developer, size, time, interval, #files, #delta

Financial Support System (FSS) interface
person, monthly effort

Reliable automatic MR classification
bug, new, code improvement

Change effort estimation

Architecture

