Role of change history in
empirical studies

of software

Audris Mockus

http://www.bell-labs.com/~audris

Outline

Motivation and goals

Why changes are made?
now to obtain the purpose

Why changes are hard?
now to obtain change effort

Implications

Motivation

Example
Real, 20 year old, huge switching product
large proportion of changes are enhancements

Advantages of change history data
ubiquitous - most products have it
massive - far larger than any survey
complete - all parts of software are recorded
unbiased - no Hawthorne effect
uniform over time

Goal

Design tools and methods that do
not compromise advantages of
change history data, I.e.,

1. Are uniformly applicable

2. Minimize human involvement

3. Use existing data

4. Complete - characterize all parts of
software

Great, but can it be done?

Change history contains

who changed, when and what was changed
But is it possible to obtain:

why?

how difficult?
Two studies on

purpose (with L. Votta)
effort (with T. Graves)

How Code Evolves

By adding and deleting line blocks
before: after:

int i=0; int i1=0;
while (i++)
read (x); read(x):;
one line deleted

two lines unchanged

Any VCS Records:

Change - added and deleted lines
Who - login, organization

When - date and time

Description - line of text

Available data:
~100M lines, ~4M changes, ~5K logins, 30Gb
~30 products (select one)

Why code is changed?

Primary reasons for maintenance
activities

corrective: fix faults

adaptive: add features

How those reasons relate to:
interval, effort, quality
developer, size
location, time

How to obtain the purpose?

Look for bug/new field

may not be there, unreliable, only two values
Ask developers

too much overhead - small coverage
Read change abstracts

great idea - but 2M abstracts

Let computer read abstracts
but how?

Algorithm

Use change description line
extract frequent keywords

classify keywords (fix, new, add, etc.)

discover new types
perfective - code cleanup
Inspection - code inspection suggestions

verify on sample abstracts
keyword -> purpose of the change
iterate

Example keywords

Adaptive: Corrective:

add, new, create, fix, bug, error,

initial coding, modify, |problem, incorrect,
update must, needs
Perfective: Inspection:
cleanup, remove, code review,

clear, unneeded, inspection, rework,
flex name walkthrough

Proportions

Why:
add new functionality - 45%
fix faults (bug) - 34%
cleanup/restructure - 4%
code inspection - 5%

unclassified -12%

Is it right?

Survey:
2+5 developers (>9 years experience)

20+150 changes (< 2 years old)
~ equal numbers for different types
small percent of all changes developers did

Questions
Type: bug, new, cleanup, inspection
Difficulty: Easy, Medium, Hard

Results

Unclassified changes are mostly bug

fixes
Almost perfect match

Inspection changes are easiest to detect

Dev.\Auto |Corrective | Adaptive Perfective Inspection
Corrective 35 10 5 1
Adaptive 11 23 3 4
Perfective 10 8 27 o
Inspection 1 o (0] 21

Probability

Probability

Probability

0 20 40 60 80

60 100

20

60 100

20

10

10

Change Interval

Corrective
e Adaptive
'miml - Perfective
=== |hspection

10 50 100

Days

Lines Added

= Corrective
i Adaptive
'miml Pegrfective

50 100 500 1000 5000

number of lines

Lines Deleted

== Corrective
et Adaptive
'miml - Perfective

50 100 500 1000

number of lines

Will it work elsewhere?

Other Product

2 X size and five years older
different functionality
different organization

Tool
the same classification (no manual input)

Results
very similar purpose profiles

Probability

20

Probability

20

Probability

20

100

60

100

60

100

60

Change Interval

== Product 1, Corrective
tr Product 2, Corrective
'mimi - Product 1,Adaptive

- 50 100 500

Days

Lines Added

Product 1, Corrective
It Product 2, Corrective
'miml Product 1, Adaptive
o = AWS PSS =
50 100 500 1000 5000

number of lines

Lines Deleted

Product 1, Corrective
it Product 2, Corrective
'miml Product 1, Inspection

" - o 500 1000

Effort Estimation

How difficult a change was?
What makes changes difficult?
Where difficult changes are?

Why change effort

detect key factors that affect effort

iIn a larger project change type, size,
and developer are aggregated over

many changes and their effects can

not be detected

How to get effort?

ask developers
small coverage, large effort

use developer reported monthly effort
divide among changes made that month
simplification

developers report similar effort every
month

hence reported effort can be replaced by 1

Algorithm

Specify factors that might contribute
to effort

Use reported effort (unit monthly
effort if reported effort unavailable)
to estimate contributions from each
factor

Use cross-validation to determine
significance of each factor

Example

ChangeEffort ~ Purpose + Size + Login
+ Decay + FileType + otherFactors

Choose factors that may affect effort
base factors: purpose, size, developer
test factors: e.qg., complexity, decay, ...

Result

the value and significance of each factor
e.g. effort for a similar change t 20%/year

Example Factor Estimates

11 developers from SESS OA

Factor Effect Significant

purpose bug change takes twice |yes
more effort than new
change

Size effort is proportional to: |yes
#delta, #files, #lines

login effort to make a similar | no

change can vary 3
times across logins
decay making a similar ves
change takes 5-25%
more effort each year
sdl versus c |no effect no

Applications

SoftChange system - prototype tool

Other applications
monitoring (where/when code decays)
expertise locator (who is the best match)

process/tool evaluation (is there any effect)
Version Editor and process capability studies

benchmarking - 4 projects

More results

Assessing code decay
Predicting fault potential
Complexity of parallel changes

How legacy organizations cope
with changing business
environment

Summary

Change history is invaluable

automatically it can be enhanced with
purpose
effort

Cost drivers can then be determined

Summary

Change history is invaluable

automatically it can be enhanced with
purpose
effort

Cost drivers can then be determined
Don’t forget change history in your next study!

SoftChange: highlights

ECMS/SABLIME + SCCS interface

Summarization (5ESS ~ 30Gb data)
developer, size, time, interval, #files, #delta

Financial Support System (FSS) interface
person, monthly effort

Reliable automatic MR classification
bug, new, code improvement

Change effort estimation

Architecture

Access Engines

Summary
Engine

User

Analysis

Interface Engines

"

A~ElL

