
Using Software Changes to Understand and
Improve Software Projects

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/

Outline

✦ Background

✧ Motivation

✧ Software project repositories

✧ How to use change data

✦ Software project issues

✧ Developer learning in offshoring and outsourcing

✧ Customer-perceived quality

✦ Discussion

2 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Motivation

✦ To quantify software production: make informed trade-offs

among schedule, quality, and cost

✧ Visibility: where/when effort is spent, defects introduced

✧ Predictability: what will be the impact of choosing technology,

processes, organization

✧ Controllability: trade-offs between time to market, features, quality,

and staffing

3 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Approach

✦ Observe development through digital traces it leaves in source

code changes, problem reporting/resolution, and recorded

communications

4 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Basics: software changes

✦ Developerscreatesoftware by changes

✦ All changesare recorded

Before:

int i = n;

while(i++)

prinf(” %d”, i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(” %d”, i−−);

✦ one line deleted

✦ two lines added

✦ two lines unchanged

✦ Many other attributes: date, developer, defect number, . . .
5 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Domain and method

✦ Science

✧ X is the study ofpast human events and activities

✧ Y is the study of humancultures through therecovery,

documentation and analysis of material remains

✧ Z is the study of developercultures andbehaviorsthrough the

recovery, documentation and analysis of digital remains

✦ Method

✧ Tomography is image reconstruction from multiple projections

✧ Software change tomography is the reconstruction of behavior of

developers from the digital traces they leave in the code and

elsewhere

6 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Basics: software quality

Software quality is the most:

✧ difficult

✧ expensive

✧ important

part of software development,

... even for Microsoft

7 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Practice: how to compare software releases?

“we tried to improve quality : get most experienced team members

to test, code inspections, root cause analysis, ...”

“Did it work? I.e., is this release better than previous one?”

Everyone usesdefect density(e.g.,customer reported defects per

1000 changes or lines of code), but “itdoes not reflectfeedback from

customers.”

Ok, then lets measure the probability thata customer will report a

software defect

8 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

A paradox: large telecom software

DL

DL

DL

DL

DL

DL

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity F1

F1

F1
F1

F1
F1

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
F1

DefPerKLOC/100
Probability 1m.

Up
Down

Down
Down

Down
Up

Up
Down

Up
Down

Does theincreasein defect density make customersmore satisfied
anddecrease less satisfied?

9 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Is the paradox unique for this product?

D

D

D

D

0.0
0.5

1.0
1.5

Qu
an

tity

F

F

F

F

R4.5 R5.0 R5.5 R6.0

D
F

DefPerKLOC
Probability 3m

A large product from another company:

Why does theincreasein defect density make customerssatisfied?

10 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Change Tomography: Projections

✦ Get access to the systems

✦ Extract raw data

✧ change table, developer table. (SCCS: prs, cleartool -lsh, cvs log, svn

log, git log, hg log), write/modify drivers for other

CM/VCS/Directory systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Do basic cleaning

✧ Eliminate administrative, automatic, post-preprocessorchanges

✧ Assess the quality of the available attributes (type, dates, logins)

✧ Eliminate un- or auto-populated attributes

✧ Eliminate remaining system generated artifacts

11 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Change Tomography: reconstructing the
image

✦ Predicting the quality of a patch [17]

✦ Globalization: move development where the resources are:

✧ What parts of the code can be independently maintained [18]

✧ Who are the experts to contact about any section of the code [13]

✧ Mentorship and learning [11, 21]

✦ Effort: estimate MR effort and benchmark process

✧ What makes some changes hard [7, 6, 10]

✧ What processes/tools work [1, 2, 4, 14]

✧ What are OSS/Commercial process differences [12]

✦ Project models

✧ Release schedule [8, 19, 5]

✧ Release quality/availability [3, 16, 9, 20]
12 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Why Change Tomography?
✧ The data collection is non-intrusive (using only existing data minimizes

overhead)

✧ Long history of past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.

✧ The information is fine grained: at MR/delta level

✧ The information is complete: everything under version control is

recorded

✧ The data are uniform over time

✧ Even small projects generate large volumes of changes: small effects are

detectable.

✧ The version control system is used as a standard part of a project, so the

development project is unaffected by observer
13 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Pitfalls of Change Tomography

✦ Different process: how work is broken down into work items may

vary across projects

✦ Different tools: CVS, ClearCase, SCCS, svn, git, hg, bzr, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create change based models of key problems

in software engineering

14 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Change Tomography: Project Sample
✦ Languages: Java, C, SDL, C++, JavaScript, XML, ...Platforms: proprietary, unix’es,

Windows, VXWorks,Domains: embedded, high-availability, network, user interfaceSize:
from largest to small

Type Added KLines KDelta Years Developers Locations

Voice switching software 140,000 3,000 19 6,000 5

Enterprise voice switching 14,000 500 12 500 3

Multimedia call center 8,000 230 7 400 3

Wireless call processing 7,000 160 5 180 3

Web browser 6,000 300 3 100/400

OA&M system 6,000 100 5 350 3

Wireless call processing 5,000 140 3 340 5

Enterprise voice messaging 3,000 87 10 170 3

Enterprise call center 1,500 60 12 130 2

Optical network element 1,000 20 2 90 1

IP phone with WML browser 800 6 3 40 1

Web sever 200 15 3 15/300

15 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

How fast developers learn?

OFFSHORING/OUTSOURCING/RETIREMENT

CHURN

1

1
1

1

1

1

1
1

1
1 1

1
1

1
1

1

1
1

1

1 1
1

1

1
1

1
1

1
1 1

1 1 1 1
1

1

1 1

1

1

1

1

1

1998 2000 2002 2004 2006 2008
Years

3 3 3 3
3

3 3
3

3 3
3 3 3

3

3 3 3 3
3 3

3
3 3 3 3 3

3

3

3
3

3

3 3
3

3
3

3

3 3 3
3 3

3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fr
ac

tio
n

of
 d

ev
el

op
er

s

1
3

In project less than 1 year
In project less than 3 years

16 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

A plateau?

“developers reachfull productivity infew months.”
— a common response from managers and developers

0.
5

1.
0

1.
5

log Modifications ~ ID + log Tenure

Tenure (months)

M
od

ifi
ca

tio
ns

/M
on

th
 fo

r a
ve

ra
ge

 D
ev

lp
r

1 2 3 4 5 6 7 8 9 11 13 15 18 21 24 28 32

Modifications per month versus Tenure
17 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Fully productive, but...

“We do not assign important tasksfor developers that have been

less than three yearson a project.”

“We tried to do that aftertwo years, but itdid not work well.”

— Senior architect

18 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Tasks importance keeps increasing!

log Centrality ~ ID + log Tenure

Tenure (months)

lo
g

C
en

tra
lit

y
fo

r a
ve

ra
ge

 D
ev

lp
r

1
5

14
40

11
1

2 3 4 5 6 7 8 9 10 12 14 16 19 22 25 29 33

Average task centrality versus Tenure

19 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Back to the first paradox..

High defect density satisfies customers?

DL

DL

DL

DL

DL

DL

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity F1

F1

F1
F1

F1
F1

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
F1

DefPerKLOC/100
Probability 1m.

Up
Down

Down
Down

Down
Up

Up
Down

Up
Down

20 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

High defect density leads to satisfied
customers?

What does any organization strive for?

21 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

High defect density leads to satisfied
customers?

What does any living being strive for?

22 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Stability =⇒ Predictability!

Therate at which customer problems get to developers is

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

Nu
mb

ers
 of

 fie
ld i

ssu
es

0
50

10
0

15
0

almostconstant

but
23 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Variability =⇒ unpredictability!

The software deployment and failurerates

0
50

0
10

00
15

00

Months

De
plo

ye
d

sy
ste

m
s

vary a lot!
24 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Resolution: major vs minor

✦ Compare Defect Density and Customer Quality

✧ The numerators: approximately the same because

✧ Major releases are deployed more slowly to fewer customers

✧ Customers (correctly) do not expect a fault in minor releasesand

deploy more rapidly

✧ The denominator: diverges because

✧ Major releases have more code modified but fewer customers

✧ Minor releases have less code modified but more customers

25 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Customer Quality

1.1 1.3 2.0 2.1 2.2 3.0 3.1

0−1 months after inst.
0−3 months after inst.
0−6 months after inst.

Post inst. MR rates. Current Date

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

**

✦ Fraction of customers reporting software failures within months of installation

✦ Does not account for proximity to launch, platform mix

✦ Significant differences marked with “*”

✦ “We live or die by this measure.”
— executive for product quality

26 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

Change tomography =⇒ insights

✦ Methodology

✧ Changes provide traces of developer and organizational behavior

✧ Insights become an integral part of development practices —

continuous feedback on production changes/improvements

✦ Insights

✧ Development process view does not represent customer view

✧ Learning proceeds not just by increasing the number of tasks

performed, but mostly by their importance to the organization

27 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010

References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the impact of software tools: A case study of the

version editor.IEEE Transactions on Software Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost.Bell Labs Technical Journal, 5(2):7–18,
April–June 2000.

[3] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, andJames D. Herbsleb. Software dependencies, the structure ofwork
dependencies and their impact on failures.IEEE Transactions on Software Engineering, 2009.

[4] Birgit Geppert, Audris Mockus, and Frank Rößler. Refactoring for changeability: A way to go? InMetrics 2005: 11th International
Symposium on Software Metrics, Como, September 2005. IEEE CS Press.

[5] J. D. Herbsleb and A. Mockus. An empirical study of speed and communication in globally-distributed software development.IEEE
Transactions on Software Engineering, 29(6):481–494, June 2003.

[6] James Herbsleb and Audris Mockus. Formulation and preliminary test of an empirical theory of coordination in software engineering.
In 2003 International Conference on Foundations of Software Engineering, Helsinki, Finland, October 2003. ACM Press.

[7] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, andRebecca E. Grinter. An empirical study of global software development:
Distance and speed. In23nd International Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[8] Audris Mockus. Analogy based prediction of work item flowin software projects: a case study. In2003 International Symposium on
Empirical Software Engineering, pages 110–119, Rome, Italy, October 2003. ACM Press.

[9] Audris Mockus. Empirical estimates of software availability of deployed systems. In2006 International Symposium on Empirical
Software Engineering, pages 222–231, Rio de Janeiro, Brazil, September 21-22 2006. ACM Press.

[10] Audris Mockus. Organizational volatility and developer productivity. InICSE Workshop on Socio-Technical Congruence, Vancouver,
Canada, May 19 2009.

[11] Audris Mockus. Succession: Measuring transfer of codeand developer productivity. In2009 International Conference on Software
Engineering, Vancouver, CA, May 12–22 2009. ACM Press.

[12] Audris Mockus, Roy T. Fielding, and James Herbsleb. Twocase studies of open source software development: Apache and mozilla.

ACM Transactions on Software Engineering and Methodology, 11(3):1–38, July 2002.

[13] Audris Mockus and James Herbsleb. Expertise browser: Aquantitative approach to identifying expertise. In2002 International

Conference on Software Engineering, pages 503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[14] Audris Mockus, Nachiappan Nagappan, and T Dinh-Trong,Trung. Test coverage and post-verification defects: A multiple case study.

In International Conference on Empirical Software Engineering and Measurement, Lake Buena Vista, Florida USA, October 2009.

ACM.

[15] Audris Mockus and Lawrence G. Votta. Identifying reasons for software change using historic databases. InInternational Conference

on Software Maintenance, pages 120–130, San Jose, California, October 11-14 2000.

[16] Audris Mockus and David Weiss. Interval quality: Relating customer-perceived quality to process quality. In2008 International

Conference on Software Engineering, pages 733–740, Leipzig, Germany, May 10–18 2008. ACM Press.

[17] Audris Mockus and David M. Weiss. Predicting risk of software changes.Bell Labs Technical Journal, 5(2):169–180, April–June

2000.

[18] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.IEEE Software, 18(2):30–37, March 2001.

[19] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in software projects. In2003 International

Conference on Software Engineering, pages 274–284, Portland, Oregon, May 3-10 2003. ACM Press.

[20] Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived software quality. InICSE 2005, pages 225–233, St Louis,

Missouri, May 2005. ACM Press.

[21] Minghui Zhou, Audris Mockus, and David Weiss. Learningin offshored and legacy software projects: How product structure shapes

organization. InICSE Workshop on Socio-Technical Congruence, Vancouver, Canada, May 19 2009.

Abstract
Software systems are created and maintained by making changes to their source code. Therefore,
understanding the nature and relationships among changes and their effects on the success of
software projects is essential to improve software engineering. The talk describes methods and tools
to retrieve, process, and model data from ubiquitous changemanagement systems and uses them to
understand common problems facing a software project. In particular, the approach is illustrated
using three industry applications. The quantification of the relationship between the test coverage
and customer reported defects shows that increases in test coverage are related to lower defect
density, but reaching high levels of coverage requires exponentially more effort. In another
application of the approach the transfer of code ownership substantially reduces developer
productivity, especially in cases of offshoring. Finally,the customer and developer views of
software quality diverge. The customer perception of software quality represented by the fraction of
customers that experience and report software defects, is not related to a simple-to-compute measure
of defect density commonly used to assess the quality of a software projects.

Bio

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in AppliedMathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Avaya Labs Research. Previously he

worked at Software Production Research Department of Bell Labs.

