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Motivation

✦ To quantify software production: make informed trade-offs

among schedule, quality, and cost

✧ Visibility: where/when effort is spent, defects introduced

✧ Predictability: what will be the impact of choosing technology,

processes, organization

✧ Controllability: trade-offs between time to market, features, quality,

and staffing
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Approach

✦ Observe development through digital traces it leaves in source

code changes, problem reporting/resolution, and recorded

communications
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Basics: software changes

✦ Developerscreatesoftware by changes

✦ All changesare recorded

Before:

int i = n;

while(i++)

prinf(” %d”, i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(” %d”, i−−);

✦ one line deleted

✦ two lines added

✦ two lines unchanged

✦ Many other attributes: date, developer, defect number, . . .
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Domain and method

✦ Science

✧ X is the study ofpast human events and activities

✧ Y is the study of humancultures through therecovery,

documentation and analysis of material remains

✧ Z is the study of developercultures andbehaviorsthrough the

recovery, documentation and analysis of digital remains

✦ Method

✧ Tomography is image reconstruction from multiple projections

✧ Software change tomography is the reconstruction of behavior of

developers from the digital traces they leave in the code and

elsewhere
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Basics: software quality

Software quality is the most:

✧ difficult

✧ expensive

✧ important

part of software development,

... even for Microsoft
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Practice: how to compare software releases?

“we tried to improve quality : get most experienced team members

to test, code inspections, root cause analysis, ...”

“Did it work? I.e., is this release better than previous one?”

Everyone usesdefect density(e.g.,customer reported defects per

1000 changes or lines of code), but “itdoes not reflectfeedback from

customers.”

Ok, then lets measure the probability thata customer will report a

software defect
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A paradox: large telecom software
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Does theincreasein defect density make customersmore satisfied
anddecrease less satisfied?
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Is the paradox unique for this product?
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Change Tomography: Projections

✦ Get access to the systems

✦ Extract raw data

✧ change table, developer table. (SCCS: prs, cleartool -lsh, cvs log, svn

log, git log, hg log), write/modify drivers for other

CM/VCS/Directory systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Do basic cleaning

✧ Eliminate administrative, automatic, post-preprocessorchanges

✧ Assess the quality of the available attributes (type, dates, logins)

✧ Eliminate un- or auto-populated attributes

✧ Eliminate remaining system generated artifacts
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Change Tomography: reconstructing the
image

✦ Predicting the quality of a patch [17]

✦ Globalization: move development where the resources are:

✧ What parts of the code can be independently maintained [18]

✧ Who are the experts to contact about any section of the code [13]

✧ Mentorship and learning [11, 21]

✦ Effort: estimate MR effort and benchmark process

✧ What makes some changes hard [7, 6, 10]

✧ What processes/tools work [1, 2, 4, 14]

✧ What are OSS/Commercial process differences [12]

✦ Project models

✧ Release schedule [8, 19, 5]

✧ Release quality/availability [3, 16, 9, 20]
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Why Change Tomography?
✧ The data collection is non-intrusive (using only existing data minimizes

overhead)

✧ Long history of past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.

✧ The information is fine grained: at MR/delta level

✧ The information is complete: everything under version control is

recorded

✧ The data are uniform over time

✧ Even small projects generate large volumes of changes: small effects are

detectable.

✧ The version control system is used as a standard part of a project, so the

development project is unaffected by observer
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Pitfalls of Change Tomography

✦ Different process: how work is broken down into work items may

vary across projects

✦ Different tools: CVS, ClearCase, SCCS, svn, git, hg, bzr, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create change based models of key problems

in software engineering
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Change Tomography: Project Sample
✦ Languages: Java, C, SDL, C++, JavaScript, XML, ...Platforms: proprietary, unix’es,

Windows, VXWorks,Domains: embedded, high-availability, network, user interfaceSize:
from largest to small

Type Added KLines KDelta Years Developers Locations

Voice switching software 140,000 3,000 19 6,000 5

Enterprise voice switching 14,000 500 12 500 3

Multimedia call center 8,000 230 7 400 3

Wireless call processing 7,000 160 5 180 3

Web browser 6,000 300 3 100/400

OA&M system 6,000 100 5 350 3

Wireless call processing 5,000 140 3 340 5

Enterprise voice messaging 3,000 87 10 170 3

Enterprise call center 1,500 60 12 130 2

Optical network element 1,000 20 2 90 1

IP phone with WML browser 800 6 3 40 1

Web sever 200 15 3 15/300
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How fast developers learn?
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A plateau?

“developers reachfull productivity infew months.”
— a common response from managers and developers
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Fully productive, but...

“We do not assign important tasksfor developers that have been

less than three yearson a project.”

“We tried to do that aftertwo years, but itdid not work well.”

— Senior architect

18 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010



Tasks importance keeps increasing!
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Back to the first paradox..

High defect density satisfies customers?

DL

DL

DL

DL

DL

DL

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity F1

F1

F1
F1

F1
F1

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
F1

DefPerKLOC/100
Probability 1m.

Up
Down

Down
Down

Down
Up

Up
Down

Up
Down

20 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010



High defect density leads to satisfied
customers?

What does any organization strive for?
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High defect density leads to satisfied
customers?

What does any living being strive for?
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Stability =⇒ Predictability!

Therate at which customer problems get to developers is
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Variability =⇒ unpredictability!

The software deployment and failurerates
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Resolution: major vs minor

✦ Compare Defect Density and Customer Quality

✧ The numerators: approximately the same because

✧ Major releases are deployed more slowly to fewer customers

✧ Customers (correctly) do not expect a fault in minor releasesand

deploy more rapidly

✧ The denominator: diverges because

✧ Major releases have more code modified but fewer customers

✧ Minor releases have less code modified but more customers

25 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010



Customer Quality
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26 Audris Mockus Using Software Changes to Understand Software Projects Kingston, 2010



Change tomography =⇒ insights

✦ Methodology

✧ Changes provide traces of developer and organizational behavior

✧ Insights become an integral part of development practices —

continuous feedback on production changes/improvements

✦ Insights

✧ Development process view does not represent customer view

✧ Learning proceeds not just by increasing the number of tasks

performed, but mostly by their importance to the organization
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Abstract
Software systems are created and maintained by making changes to their source code. Therefore,
understanding the nature and relationships among changes and their effects on the success of
software projects is essential to improve software engineering. The talk describes methods and tools
to retrieve, process, and model data from ubiquitous changemanagement systems and uses them to
understand common problems facing a software project. In particular, the approach is illustrated
using three industry applications. The quantification of the relationship between the test coverage
and customer reported defects shows that increases in test coverage are related to lower defect
density, but reaching high levels of coverage requires exponentially more effort. In another
application of the approach the transfer of code ownership substantially reduces developer
productivity, especially in cases of offshoring. Finally,the customer and developer views of
software quality diverge. The customer perception of software quality represented by the fraction of
customers that experience and report software defects, is not related to a simple-to-compute measure
of defect density commonly used to assess the quality of a software projects.
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