
Chapter 1

Missing data in software engineering

The goal of this chapter is to increase the awareness of missing data techniques
among people performing studies in software engineering. Three primary reasons
for this presentation are:

1. the “quick-fix” techniques that drop the cases with missing values may yield
biased or inconclusive results. Such techniques are still widely (and often
implicitly) used in software engineering;

2. dealing with missing values is no longer a burden for a practitioner, because
easy to use statistical software is now available on popular platforms;

3. software represents a distinct data source with unique reasons and patterns
for missing data. For example, software studies tend not have the luxury
of large sample sizes requiring analysis methods that use all available data,
including incomplete cases. Many properties of software can not be mea-
sured directly, therefore investigators have to get the necessary information
from people who create and maintain a particular piece of software, leading
to frequent and complex patterns of missing data.

Section 1.1 discusses sources of software data. The next section introduces
an illustrative example evaluating how a software process influences development
time. Section 1.3 presents a general statistical perspective for dealing with missing
data with an illustrative example. Section 1.4 discusses non traditional missing
data problems specific to the field of software engineering. A summary is provided
in the last section.
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1.1 Sources of software data
Software engineering data come from several distinct sources. The three primary
sources are:

• data collected through experimental, observational, and retrospective stud-
ies;

• software metrics or reported project management data including effort, size,
and project milestone estimates;

• software artifacts including requirements, design, and inspection documents,
source code and its change history, fault tracking, and testing databases.

To narrow the scope of the presentation we did not include data sources pro-
duced directly by software with little or no human involvement, such as program
execution and performance logs or the output of program analysis tools. Such data
sources tend to produce tool specific patterns of missing data that are of limited
use in other domains.

Surveys in an industrial environment are usually small and expensive to con-
duct. The primary reasons are the lack of subjects with required knowledge and
the minimal availability of expert developers who, it appears, are always working
toward a likely-to-be-missed deadline. The small sample size limits the applica-
bility of deletion techniques that reduce the sample size even further. This may
lead to an inconclusive analysis, because the sample of complete cases may be
too small to detect statistically significant trends. If, on the other hand, the sam-
ple sizes are large and only a small percentage of data are missing, a deletion
technique (a technique that removes missing observations) may work quite well.

The values in survey data may be missing if a survey respondent declines to
fill the survey, ignores a question, or does not know the answer to some of the
questions.

Reported data on software metrics often contain the desired measurements
on quality and productivity. Unfortunately, the reported data are often not com-
parable across distinct projects (Herbsleb & Grinter 1998). The reasons include
numerous social and organizational factors related to intended use and potential
misuse of metrics, and serious difficulties involved in defining, measuring, and
interpreting a conceptual measure in different projects.

Reported data need extensive validation to confirm that it reflects the quantities
an analyst is interested in. Data collection is rarely a priority in software organi-
zations (Goldenson, Gopal & Mukhopadhyay 1999). The priority of validating



1.2. EXAMPLE DATA 3

collected data is even lower, often leading to unreliable and misleading software
measures. In addition, some software measures are difficult to obtain or have large
uncertainty. Examples of such measures include function point estimates or size
and effort estimates in the early stages of a project. Frequently data values are
missing because some metrics are not collected for the entire period of the study
or for a subset of projects.

Software artifacts are large, highly structured, and require substantial effort
to interpret. Measures derived from software artifacts tend to be more precise
and consistent over time than measures derived from surveys and reported data.
They measure the artifact itself, as opposed to the subjective perception of the
artifact captured by survey measures. Traditionally, software artifacts are mea-
sured based on the properties of source code. Such measures include source code
complexity (Halstead 1977, McCabe 1976), complexity of an object oriented de-
sign (Chidamber & Kemerer 1994), or functional size (Albrecht & GaffneyJr.
1983). Instead of measuring the source code, it is possible to measure the prop-
erties of changes to the code. This requires analysis of change history data, see,
for example, (Mockus 2007). Artifact data may be missing or difficult to access
for older software artifacts because of obsolete storage or backup media. Conse-
quently, software artifacts are usually available or missing in their entirety, reduc-
ing the need for the traditional missing data techniques that assume that data are
only partially missing. Measuring such artifacts might require substantial effort,
especially if they were maintained using obsolete tools.

1.2 Example Data
To illustrate the application of missing data methods we will use a case study of
process improvement in a software organization (Herbsleb, Krishnan, Mockus,
Siy & Tucker 2000). The study involved a medium-size, process-oriented soft-
ware organization performing contract work. One of the study goals was to de-
termine if the excessive detail of software process had increased the development
interval. In particular, the study investigated the relationship of development in-
terval and project tracking measures.

The collected data came from three sources: survey questions, reported project
metrics, and the source code change history. The development interval was the re-
sponse or dependent variable. We model (predict) it using several project tracking
measures described below that are used as independent, predictor, or explanatory
variables.
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1.2.1 Survey
A total of 68 surveys of 19 individuals evaluating three dimensions of project
tracking process for 42 projects were collected.

The three dimensions of project tracking were defined by the following ques-
tions.

1. Were the project’s actual results (e.g., schedule, size, and cost) compared
with estimates in the software plans?

2. Was corrective action taken when actual results deviated significantly from
the project’s software plans?

3. Were changes in the project’s plans agreed to by all affected groups and
individuals?

Subjects evaluated three dimensions of project tracking with ordinal ratings: (1)
— “Rarely if ever”, 2 — “Occasionally”, 3 — “About half of the time”, 4 —
“Frequently”, and 5 — “Almost always”. When the subject did not have enough
knowledge of the project to answer the question, they entered “don’t know”.

To exemplify missing data techniques we simplify the analysis by treating
each survey as an independent observation. In our example several individuals
evaluated most projects and several projects were evaluated by a single individual.
Therefore, multiple reports on one project (or done by a single person) are not
independent. Unfortunately, adjusting for that dependence would distract from
the presentation of missing data techniques.

1.2.2 Software change data
The project interval and size data were obtained from change history databases.
The project interval was measured in days from the start of the first change until
the completion of the last change. The project size was measured in number of
logical changes called Maintenance Requests (MRs).

1.2.3 Reported project data
The reported project data included size, staff months, number of faults, and in-
terval. Unfortunately, reported data were not consistent, therefore it was not used
in the models. While some projects measured size in function points (FP), other
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projects measured size in lines of code (LOC). The reported function point and
LOC measures did not correlate well with the amount of code developed (as ob-
tained from change history) or with the reported staff months of effort. Further-
more, the reported interval did not correlate with the duration of the development
phase measured by the time difference between the last and the first change. These
serious validity problems made the reported data unsuitable for further analysis.

1.2.4 Missing values
Change history databases for ten of the surveyed projects was moved off line and
unavailable for analysis. Because the response variable interval was missing for
those projects we excluded them from further consideration (other reasons are
given in the discussion of the types of missing data). Additional six cases were
dropped because all the project tracking questions were answered “don’t know”.
That left us with 52 cases (corresponding to 34 projects) for the analysis.

The list of data quality problems in this example may seem enormous, but in
our experience such data quality is not unusual in a software study.

We used multiple linear regression (see, for example, (Weisberg 1985)) to
model the project development interval. The project size and the three tracking
measures were independent variables. We included the project size as a predictor
because it affects the project interval.

Inspection of the variables showed increasing variances (a scatterplot with a
very large density of points at low values) for the interval and size. A square root
transformation was sufficient to stabilize the variance of the interval and size and
led to the following final model:
√

Interval = b0 + b1

√
Size + b2Tracking1 + b3Tracking2 + b4Tracking3 + Error.

(1.1)
The following section describes various techniques to fit such models in the pres-
ence of missing data.

1.3 A Statistical Perspective on Missing Data
In statistical analysis the phenomena of interest is commonly represented by a
rectangular (n × K) matrix Y = (yij) where rows represent a sample of n ob-
servations, cases, or subjects. The columns represent variables measured for each
case. Each variable may be continuous, such as size and interval, or categorical
like file or project.
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Some cells in such a matrix may be missing. It may happen if a measure is
not collected, or is not applicable, for example, if a respondent does not answer a
question on a survey form.

The mechanism by which some cells are not observed is important to select an
appropriate analysis technique. Denote the response indicator

Rij =

{
1, yij observed,
0, yij missing. (1.2)

Denote all the values of the observations that are missing as Ymis and the rest
as Yobs. Let P (R|Yobs, Ymis, θ) be the probability distribution function of R given
a statistical model specified by parameter θ and all the values of Y . The data are
missing at random (MAR) according to Little & Rubin (1987) if

P (R|Yobs, Ymis, θ) = P (R|Yobs, θ),

i.e., the distribution of the response indicator may depend on the observed values
but may not depend on the values that are missing. The data are missing com-
pletely at random (MCAR) if a stronger condition holds:

f(R|Yobs, Ymis, θ) = f(R|θ).

The MAR assumption allows the probability that a datum is missing to depend on
the datum itself indirectly through quantities that are observed. For example, in
the described data, the interviewees might remember less about smaller project,
resulting in higher likelihood that some of the survey’s values are missing. The
MAR assumption would apply, because the predictor “project size” explains the
likelihood that the value will be missing. MCAR assumption would not apply,
because the probability that a value is missing depends on project’s size. However,
if we do not have a measure of project’s size or simply do not include project’s
size in our estimation model, then even the MAR assumption is not satisfied. Such
case is referred to as data not missing at random (NMAR). The NMAR data can
be made to satisfy the MAR assumption if variables that characterize situations
when a value is missing are added. Therefore, it is important to add variables that
might predict the missing value mechanism to the dataset.

Personal income obtained via survey represents a typical example where the
MAR assumption is not satisfied. It is well known that extreme values of personal
income are less likely to be reported. Consequently, the MAR assumption is vi-
olated, unless the survey can reliably measure variables that are strongly related
to income. When extreme values are more likely to be missing, the probability
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that a value is missing depends on the the value itself and, unless other predictors
can fully account for that change in the probability of being missing, the MAR
assumption is no longer satisfied.

It is worth pointing out that it is impossible to test the MAR hypothesis based
on the dataset itself, since that would require knowing the values for missing ob-
servations. It could be tested by gathering additional information, for example,
by conducting a repeat survey for the missing cases. However, when the data are
missing beyond the control of the investigator one can never be sure whether the
MAR assumption holds. It is possible to test the MCAR assumption, (see, e.g.
Little 1988, Kim & Curry 1977). However, the MCAR assumption rarely needs
to be tested, because the MCAR assumption rarely holds in practice and because
many easy-to-use MAR methods are available.

Situations where even the MAR assumption does not hold may require an ex-
plicit model for the missing data mechanism. Such methods tend to be problem
specific and require substantial statistical and domain expertise. A concept re-
lated to NMAR data (even though it is treated separately in literature) involves
censoring in longitudinal studies where some outcome may not be known at the
time the study has ended. For example, in software reliability we want to know
the distribution of time until a software outage occurs. However, at any particular
moment in time there may be many software systems that have not experienced
an outage. Thus, we only know that the time until the first outage is larger than
the current system runtime for these systems, but we do not know its value. A
common approach to deal with censored data is to estimate a survival curve us-
ing Kaplan-Meier Estimate (Kaplan & Meyer 1958, Fleming & Harrington 1984).
The survival curve is a graph showing the percentage of systems surviving (with
no outage) versus system runtime. It has been applied to measure software relia-
bility in, for example, (Mockus 2006).

Little & Hyonggin (2003) discuss ways to handle undesirable NMAR data
and recommend calculating bounds by using all possible values of missing vari-
ables (an approach particularly suitable in case of binary values), conducting a
sensitivity analysis by considering several models of how the data are missing,
or conducting a Bayesian analysis with a prior distribution for missing values. In
most practical situations we recommend attempting to measure variables that cap-
ture differences between missing and complete cases in order for the missing-data
mechanism to satisfy the MAR assumption. Methods that can handle MAR data
can then be applied.

In our example, the “don’t know” answers in survey questions reflect the lack
of knowledge by the subject and have no obvious relationship to the unobserved
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value. One may argue that even the MCAR assumption might be reasonable in this
case. On the other hand, the ten cases for projects without change history present
a completely different missing data mechanism. Because the projects are older,
they are likely to be different from newer projects in the analyzed sample. Data are
missing because these projects are old (and presumably different) and, therefore,
the MAR assumption does not apply. Consequently, the conclusions drawn from
the analysis of the relationship between project tracking and project interval may
not apply to old projects. We removed these projects from further consideration
and narrowed conclusions to explicitly exclude them. For simplicity, we also
excluded six observations where all tracking measures are missing. One can argue
against such a decision, because these observations can still be used to make a
more precise regression relationship between project size and project interval.

Many statistical packages deal with missing data by simply dropping the cases
that have at least one value missing. Besides being inefficient (fewer observations
are used for inference), such a technique may be biased unless the observations
are MCAR. The MCAR assumption is rarely a reasonable assumption in practice.

Model based techniques where a statistical model is postulated for complete
data provide transparency of assumptions, but other techniques are often simpler
to apply in practice. Given that statistical software provides tools to deal with
missing data using model based techniques (Schafer 1999, R Development Core
Team 2005) we would recommend using them instead of the remaining techniques
that have limited theoretical justification or require unrealistic assumptions. For
completeness, we briefly describe most of traditional techniques as well. The goal
of traditional techniques is to produce the sample mean or the covariance matrix
to be used for regression, analysis of variance, or simply to calculate correlations.
All traditional methods produce correct results under the MCAR assumption.

For more in-depth understanding of the statistical approaches Little & Rubin
(1987) summarize statistical models for missing data and Schafer (1997) describes
more recent results. Rubin (1987) investigates sampling survey issues. Little
& Rubin (1989) and Schafer & Olsen (1998) provide examples with advice for
practitioners. Roth (1994) provides a broad review of missing data technique
application in many fields.

Various missing data techniques have been evaluated in the software engineer-
ing context of cost estimation. Strike, Emam & Madhavji (2001) evaluate listwise
deletion, mean imputation, and eight different types of hot-deck imputation and
find them to have small biases and high precision. This suggests that the simplest
technique, listwise deletion, is a reasonable choice. However, it did not have the
minimal bias and highest precision obtained by hot-deck imputation. Myrtveit,
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Stensrud & Olsson’s (2001) evaluate listwise deletion, mean imputation, similar
response pattern imputation, and full information maximum likelihood (FIML)
missing data techniques in the context of software cost modeling. They found bias
for non-MCAR data in all but FIML technique and found that listwise deletion
performed comparably to the remaining two techniques except in cases where list-
wise deletion data set was too small to fit a meaningful model. k-Nearest Neighbor
Imputation is evaluated by simulating missing data in (Jönsson & Wohlin 2004).
Authors’s find the method to be adequate and recommend to use k equal to the
square root of the number of complete cases. More recently, Twala, Cartwright
& Shepperd (2006) compare seven missing data techniques using eight datasets
and find listwise deletion to be the least efficient and multiple imputation to be the
most accurate.

In the following sections we consider several broad classes of missing data
techniques. Section 1.3.1 considers methods that remove cases with missing val-
ues. Ways to fill in missing values are considered in Section 1.3.2. Section 1.3.3
describes techniques that generate multiple complete datasets, each to be ana-
lyzed using traditional complete data methods. Results from these analyses are
then combined using special rules. We exemplify some of these methods in Sec-
tion 1.3.4

1.3.1 Deletion techniques
Deletion techniques remove some of the cases in order to compute the mean vector
and the covariance matrix. Casewise deletion, complete case, or listwise deletion
method is the simplest technique where all cases missing at least one observation
are removed. This approach is applicable only when a small fraction of observa-
tions is discarded. If deleted cases do not represent a random sample from the
entire population, the inference will be biased. Also, fewer cases result in less
efficient inference.

In our example the complete case method loses 18 cases (around 34 percent of
the 52 cases that we consider). Table 1.1 shows output from the multiple regres-
sion model in Equation (1.1).

Multiple regression shows that the project size is an important predictor of
the interval but none of the process coefficients are significant at the ten percent
level (although a five percent level is more commonly used, we chose to use a ten
percent level that is more suitable for the small sample size of our example and,
more importantly, to illustrate the differences among missing data methods). It is
not too surprising, since more than a third of the observations were removed from
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Table 1.1: Multiple regression for the complete case analysis.

Variable Value Std. Error t value Pr(> |t|)
Intercept 3.1060 5.2150 0.5956 0.5561
sqrt(size) 0.4189 0.1429 2.9315 0.0065

Tracking1 0.9025 0.9885 0.9130 0.3688
Tracking2 0.5363 1.2332 0.4349 0.6669
Tracking3 0.7186 1.1033 0.6513 0.5200

the analysis.
Pairwise deletion or available case method retains all non missing cases for

each pair of variables. We need at least three variables for this approach to be dif-
ferent from listwise deletion. For example, consider the simplest example where
the first of three variable is missing in the first case and the remaining cases are
complete. Then, the sample covariance matrix would use all cases for the subma-
trix representing sample covariances of the second and third variables. The entry
representing the sample variance of the first variable and sample covariances be-
tween the first and the remaining variables would use only complete cases. More
generally, the sample covariance matrix is:

sjk =

∑
jk RikRij(yj − yk

j )(yk − yj
k)∑

i RijRik − 1
,

where yk
j =

∑
i RijRikyij/

∑
i RijRik and Rij and Rik are indicators of missing

values as defined in Equation 1.2. Although such method uses more observations,
it may lead to a covariance matrix that is not positive-definite (positive-definite
matrix has positive eigenvalues) and unsuitable for further analysis, i.e., multiple
regression.

1.3.2 Imputation techniques
The substitution or imputation techniques fill (impute) the values that are missing.
Any standard analysis may then be done on the complete dataset. Many such
techniques would typically provide underestimated standard errors.

The simplest substitution technique fills in the average value over available
cases (mean substitution). This underestimates variances and covariances in MCAR
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case and is likely to introduce bias otherwise. Smaller variances may reduce
p-values and, therefore, may provide false impressions about the importance of
some predictors. Table 1.2 shows results using mean substitution. Table shows
that the project size is an important predictor of the interval and that the third
dimension of tracking measure (level of agreement by all affected parties to the
changes in the software commitments) might increase the interval. The coefficient
is significant at 10 percent level.

Table 1.2: Results for the mean substitution analysis.

Variable Value Std. Error t value Pr(> |t|)
Intercept 3.1611 2.8054 1.1268 0.2656
sqrt(size) 0.3904 0.1134 3.4437 0.0012

Tracking1 -0.0871 0.5903 -0.1475 0.8834
Tracking2 0.8557 0.7339 1.1660 0.2495
Tracking3 1.4568 0.7678 1.8975 0.0639

Regression substitution uses multiple linear regression to impute missing val-
ues. The regression is done on complete cases. The resulting prediction equation
is used for each missing case. Regression substitution underestimates the vari-
ances less than mean substitution. A stochastic variation of regression substitu-
tion replaces a missing value by the value predicted by regression plus a regression
residual from a randomly chosen complete case.

Table 1.3 shows results based on a basic liner regression substitution. For our
example the results are similar to mean substitution.

Table 1.3: Results for the regression substitution analysis.

Variable Value Std. Error t value Pr(> |t|)
Intercept 3.5627 3.3068 1.0774 0.2868

sqrt(Size) 0.3889 0.1242 3.1321 0.0030
Tracking1 0.0339 0.8811 0.0385 0.9695
Tracking2 0.6011 1.0760 0.5586 0.5791
Tracking3 1.5250 0.8518 1.7904 0.0798
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Other substitution methods include group mean substitution that calculates
means over groups of cases known to have homogeneous values within the group.
A variation of group mean substitution when the group size is one is called hot-
deck imputation. In hot-deck imputation for each case that has a missing value,
a similar case is chosen at random. The missing value is then substituted using
the value obtained from that case. Similarity may be measured using a Euclidean
distance function for numeric variables that are most correlated with the variable
that has a missing value.

The following two reasons prevent us from recommending simple deletion and
imputation methods when a substantial proportion of cases (more than 10 percent)
are missing:

1. it is not clear when they do not work;

2. they give incorrect precision estimates making them unsuitable for interval
estimation and hypothesis testing.

As the percentage of missing data increases to higher levels, the assumptions and
techniques have a more significant impact on results. Consequently, it becomes
very important to use a model based technique with a carefully chosen model.

While there is no consensus among all experts about what techniques should
be recommended, a fairly detailed set of recommendations is presented in (Roth
1994, Little & Hyonggin 2003), where factors such as proportion of missing
data and the type of missing data (MCAR, MAR, NMAR) are considered. Roth
(1994) recommends using the simplest techniques, such as pairwise deletion, in
the MCAR case and model based techniques when the MAR assumption does
not hold or when the percent of missing data exceeds 15 percent. Because we
doubt the validity of the MCAR assumption in most practical cases we do not
recommend using techniques that rely on it unless the percent of missing data is
small.

1.3.3 Multiple imputation
Multiple imputation (MI) is a model based technique where a statistical model
is postulated for complete data. A multivariate normal model is typically used
for continuous data and a log-linear model is used for categorical data. In MI
each missing value is replaced (imputed) by m > 1 plausible values drawn from
their predictive distribution. Consequently, instead of one data table with missing
values we get m complete tables. After doing identical analyses on each of the
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tables the results are combined using simple rules to produce the estimates and
standard errors that reflect uncertainty introduced by the missing data.

The possibility of doing an arbitrary statistical analysis for each complete data
set and then combining estimates, standard deviations, and p-values allows the
analyst to use a complete data technique that is the most appropriate for their
problem. In our example we chose to use multiple linear regression.

The attractiveness of the MI technique lies in the ability to use any stan-
dard statistical package on the imputed datasets. Only a few (3-5) imputations
are needed to produce quite accurate results (Schafer & Olsen 1998). Software
to produce the imputed tables is available from several sources, most notably
from (Schafer 1999, R Development Core Team 2005). We do not describe the
technical details on how the imputations are performed because it is beyond the
scope of this presentation and the analyst can use any MI package to perform this
step.

After the m MI tables are produced, each table may be analyzed by any sta-
tistical package. To combine the results of m analyses the following rules are
used (Rubin 1987). Denote the quantities of interest produced by the analyses as
P1, . . . , Pm and their estimated variances as S1, . . . , Sm.

• The overall estimate for P is an average value of Pi’s: P̂ =
∑

i Pi/m;

• The overall estimate for S is Ŝ =
∑

i Si/m + m+1
m(m−1)

∑
i(P̂ − Pi)

2;

A rough confidence interval for P is P̂ ± 2
√

Ŝ. This inference is based on a t
distribution and is derived under the assumption that complete data have an infinite
number of degrees of freedom. A refinement of the rules for small datasets is
presented in (Barnard & Rubin 1999). There P̂ has a t distribution with variance
Ŝ and degrees of freedom given by a fairly involved formula:(

1

ν
+

1

ν̂

)−1

,

where ν = (m − 1)/γ2, ν̂ = nn+1
n+3

(1 − γ), n represents degrees of freedom for
complete data, and

γ =
1

k(m−1)
∑

i
Si

(m+1)
∑

i
(P̂−Pi)2

+ k

Sometimes the inference is performed on multiple quantities simultaneously,
for example, if we want to compare two nested multiple regression models, where
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the more general model has one or more extra parameters that are equal to zero
in the simpler model. The rules for combining MI results in such a case are
quite complicated, (see, e.g., pp. 112–118 Schafer 1997), however, the MI soft-
ware (Schafer 1999) implements required calculations.

1.3.4 Example
We used the norm package (Schafer 1999) (also available as packages (Novo
2002) for R system (R Development Core Team 2005)) for Windows 95/98/NT
platform to generate 5 imputations and ran multiple linear regression on each
imputed data table. The estimates and standard errors from the regression were
combined using multiple imputation rules. The norm package does not perform
multiple regression, but it provides the functionality to combine the results from
multiple regression analyses. We used this feature and the result is presented in
Table 1.4. The coefficients are not much different from the regression imputation,
although the third tracking dimension is now barely significant at the ten percent
level.

Table 1.4: results of multiple imputation analysis.

Variable Value Std. Error t value Pr(> |t|)
Intercept 3.75 3.686 1.02 0.31

sqrt(Size) 0.39 0.126 3.12 0.002
Tracking1 0.01 0.787 0.02 0.985
Tracking2 0.56 1.114 0.51 0.614
Tracking3 1.51 0.917 1.65 0.099

In most practical situations with a medium percentage of missing data there
will be relatively small difference between the results obtained using different
missing data methods (except for the complete case method), as happens to be the
case in our example. However, in many examples (like this one), where the con-
clusions are based on p-values that are close to the chosen significance level, the
use of MI is essential. In particular, the mean substitution method was significant
at 0.07 level, but the MI method was not. If we, hypothetically, assume a world
where results are judged to be significant at 0.07 significance level (instead of our
own world, where the 0.05 significance level is most common), we would have
reached different conclusions using different methods.
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The example reiterates the fact that the standard deviation is underestimated in
imputation methods and, therefore, the significance values are inflated. Although
this example does not show large biases introduced by non MI methods, in general
it may be a serious issue. The example also illustrates the lack of efficiency of the
complete case method in line with the studies mentioned above.

1.4 Other types of unavailable data

Software engineering has its own domain-specific types of missing data that are
not present in the general statistical treatment. Here we briefly present specific
cases of missing data in software artifacts. The first example deals with miss-
ing information on software change purpose, and the second example deals with
missing information on software change effort.

1.4.1 Determining change purpose

Three primary driving forces in the evolution of software are: adaptive changes
introduce new functionality, corrective changes eliminate faults, and perfective
changes restructure code in order to improve understanding and simplify future
changes (Swanson 1976, An, Gustafson & Melton 1987). Models of software
evolution must take into account the significant differences in purpose and imple-
mentation of the three types of changes (Graves, Karr, Marron & Siy 2000, Atkins,
Ball, Graves & Mockus 1999). However, few change history databases record
such information directly. Even if a record exists, it is rarely consistent over time
or across organizations. Fortunately, change history databases usually record a
short description of the purpose for the change at the maintenance request (MR)
or lower level. Such description or abstract is provided by developers who imple-
ment the change.

Work in (Mockus & Votta 1997) used textual analysis of MR abstracts to im-
pute adaptive, corrective, or perfective labels to the changes. It classified MRs as
adaptive, corrective, or perfective depending on which key words appear in these
change abstracts. The classification scheme was able to tag around 85% of all
MRs.
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1.4.2 Estimating change effort

A particularly important quantity related to software is the cost of making changes.
Therefore, it is of great interest to understand which factors have historically had
strong effects on this cost, which could be approximated by the amount of time
developers spend working on the change.

When performing historical studies of cost necessary to make a change, it is
important to study changes at a fine level (MRs as opposed to releases). Studying
larger units of change, such as releases, may make it impossible to separate the
effects of important factors. For example, software releases typically contain a
mixture of several types of changes, including new code and bug fixes. Conse-
quently, the relative effort for the different types of changes can not be estimated
at the release level. Also, larger change units may involve multiple developers and
distinct parts of the code, making it difficult to estimate developer effects.

Measurements of change effort are not recorded in a typical software produc-
tion environment. Graves & Mockus (1998) describe an iterative imputation al-
gorithm that, in effect, divides a developer’s monthly effort across all changes
worked on in that month. The algorithm uses several measurements on each
change including the size and type of a change. Both measures are related to the
amount of effort required to make the change. The effort estimation tools provide
valuable cost driver data that could be used in planning and in making decisions
on how to reduce expenses in software development.

1.5 Summary

It should be noted that the quality of collected data will have more influence on
the analysis results and the success of a study than a choice of method to deal with
missing values. In particular, a successful data collection might result in few or
no missing values.

In many realistic scenarios the data quality is low, and some values are miss-
ing. In such cases, the first step should be to determine the mechanism by which
the data are missing and add observations that may explain why the values are
missing. This would make the MAR assumption more plausible. For MAR (and
MCAR) data, multiple imputation mitigates the effects of missing values. Other
research and our case study have shown not only the importance of applying a
missing data technique such as imputation, but also the importance of carrying
out multiple imputation. In our case study we find that different conclusions may
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be reached depending on the particular method chosen to handle missing data.
This demonstrates that the selection of a proper method to handle missing data
is not simply a formal exercise, but it may, in certain circumstances, affect the
outcome of an empirical study.



18 CHAPTER 1. MISSING DATA IN SOFTWARE ENGINEERING



Bibliography

Albrecht, A. J. & GaffneyJr., J. E. (1983), ‘Software function, source lines of
code, and development effort prediction: a software science validation’,
IEEE Trans. Software Eng. 9(6), 639–648.

An, K. H., Gustafson, D. A. & Melton, A. C. (1987), A model for software mainte-
nance, in ‘Proceedings of the Conference in Software Maintenance’, Austin,
Texas, pp. 57–62.

Atkins, D., Ball, T., Graves, T. & Mockus, A. (1999), Using version control data
to evaluate the effectiveness of software tools, in ‘1999 International Con-
ference on Software Engineering’, ACM Press, pp. 324–333.

Barnard, J. & Rubin, D. B. (1999), ‘Small sample degrees of freedom with multi-
ple imputation’, Biometrika 86(4).

Chidamber, S. R. & Kemerer, C. F. (1994), ‘A metrics suite for object oriented
design’, IEEE Trans. Software Eng. 20(6), 476–493.

Fleming, T. H. & Harrington, D. (1984), ‘Nonparametric estimation of the survival
distribution in censored data’, Comm. in Statistics 13, 2469–86.

Goldenson, D. R., Gopal, A. & Mukhopadhyay, T. (1999), Determinants of suc-
cess in software measurement programs, in ‘Sixth International Symopo-
sium on Software Metrics’, IEEE Computer Society, pp. 10–21.

Graves, T. L., Karr, A. F., Marron, J. S. & Siy, H. P. (2000), ‘Predicting fault
incidence using software change history’, IEEE Transactions on Software
Engineering 26(7), 653–661.

Graves, T. L. & Mockus, A. (1998), Inferring change effort from configuration
management databases, in ‘Metrics 98: Fifth International Symposium on
Software Metrics’, Bethesda, Maryland, pp. 267–273.

19



20 BIBLIOGRAPHY

Halstead, M. H. (1977), Elements of Software Science, Elsevier North-Holland.

Herbsleb, J. D. & Grinter, R. (1998), Conceptual simplicity meets organiza-
tional complexity: Case study of a corporate metrics program, in ‘20th In-
ternational Conference on Software Engineering’, IEEE Computer Society,
pp. 271–280.

Herbsleb, J. D., Krishnan, M., Mockus, A., Siy, H. P. & Tucker, G. T. (2000),
Lessons from ten years of software factory experience, Technical report, Bell
Laboratories.

Jönsson, P. & Wohlin, C. (2004), An evaluation of k-nearest neighbour imputa-
tion using likert data, in ‘Proc. of the 10th Int. Symp. on Software Metrics’,
pp. 108–118.

Kaplan, E. & Meyer, P. (1958), ‘Non-paramentric estimation from incomplete
observations’, J Am Stat Assoc pp. 457–481.

Kim, J. & Curry, J. (1977), ‘The treatment of missing data in multivariate analy-
sis’, Social Methods and Research 6, 215–240.

Little, R. & Hyonggin, A. (2003), Robust likelihood-based analysis of multivariate
data with missing values, Technical Report Working Paper 5, The University
of Michigan Department of Biostatistics Working Paper Series.
http://www.bepress.com/umichbiostat/paper5

Little, R. J. A. (1988), ‘A test of missing completely at random for multivariate
data with missing values’, Journal of the American Statistical Association
83(404), 1198–1202.

Little, R. J. A. & Rubin, D. B. (1987), Statistical Analysis with Missing Data, Wil-
ley Series in Probability and Mathematical Statistics, John Willey & Sons.

Little, R. J. A. & Rubin, D. B. (1989), ‘The analysis of social science data with
missing values’, Sociological Methods and Research 18(2), 292–326.

McCabe, T. (1976), ‘A complexity measure’, IEEE Transactions on Software En-
gineering 2(4), 308–320.

Mockus, A. (2006), Empirical estimates of software availability of deployed sys-
tems, in ‘2006 International Symposium on Empirical Software Engineer-
ing’, ACM Press, Rio de Janeiro, Brazil, pp. 222–231.

http://www.bepress.com/umichbiostat/paper5


BIBLIOGRAPHY 21

Mockus, A. (2007), Software support tools and experimental work, in V. Basili &
et al, eds, ‘Empirical Software Engineering Issues: LNCS 4336:’, Springer,
p. to appear.

Mockus, A. & Votta, L. G. (1997), Identifying reasons for software changes using
historic databases, Technical Report BL0113590-980410-04, Bell Laborato-
ries.

Myrtveit, I., Stensrud, E. & Olsson, U. (2001), ‘Analyzing data sets with missing
data: An empirical evaluation of imputation methods and likelihood-based
methods’, IEEE Transactions on Software Engineering 27(11), 1999–1013.

Novo, A. (2002), ‘Analysis of multivariate normal datasets with missing values’.
Ported to R by Alvaro A. Novo. Original by J.L. Schafer.

R Development Core Team (2005), R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0.
http://www.R-project.org

Roth, P. L. (1994), ‘Missing data: A conceptual review for applied psychologist’,
Personel Psychology 47, 537–560.

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, John Willey
& Sons.

Schafer, J. L. (1997), Analysis of Incomplete Data, Monograph on Statistics ans
Applied Probability, Chapman & Hall.

Schafer, J. L. & Olsen, M. K. (1998), ‘Multiple imputation for multivariate miss-
ing data problems’, Multivariate Behavioural Research 33(4), 545–571.

Schafer, J. S. (1999), ‘Software for multiple imputation’.
http://www.stat.psu.edu/˜jls/misoftwa.html

Strike, K., Emam, K. E. & Madhavji, N. (2001), ‘Software cost estimation with
incomplete data’, IEEE Transactions on Software Engineering 27(10), 890–
908.

Swanson, E. B. (1976), The dimensions of maintenance, in ‘Proc. 2nd Conf. on
Software Engineering’, San Francisco, pp. 492–497.

http://www.R-project.org
http://www.stat.psu.edu/~jls/misoftwa.html


22 BIBLIOGRAPHY

Twala, B., Cartwright, M. & Shepperd, M. (2006), Ensemble of missing data
techniques to improve software prediction accuracy, in ‘ICSE’06’, ACM,
Shanghai, China, pp. 909–912.

Weisberg, S. (1985), Applied Linear Regression, 2nd Edition, John Wiley & Sons,
USA.


	Missing data in software engineering
	Sources of software data
	Example Data
	Survey
	Software change data
	Reported project data
	Missing values

	A Statistical Perspective on Missing Data
	Deletion techniques
	Imputation techniques
	Multiple imputation
	Example

	Other types of unavailable data
	Determining change purpose
	Estimating change effort

	Summary


