
DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

Two Case Studies of Open Source Software 
Development: Apache and Mozilla 
AUDRIS MOCKUS 
Avaya Labs Research∗   
 
ROY T FIELDING  
eBuilt+ 
 
JAMES HERBSLEB 
Bell Labs± 
 
_______________________________________________________________________ 
According to its proponents, open source style software development has the capacity to compete successfully, 
and perhaps in many cases displace, traditional commercial development methods.  In order to begin 
investigating such claims, we examine data from two major open source projects, the Apache web server and 
the Mozilla browser. By using email archives of source code change history and problem reports we quantify 
aspects of developer participation, core team size, code ownership, productivity, defect density, and problem 
resolution intervals for these OSS projects. We develop several hypotheses by comparing the Apache project 
with several commercial projects.  We then test and refine several of these hypotheses, based on an analysis of 
Mozilla data.  We conclude with thoughts about the prospects for high-performance commercial/open source 
process hybrids. 
 
Categories and Subject Descriptors: D.2.9 [Manegement]: Life cycle, Productivity, Programming teams, 
Software process models, Software Quality assurance, Time estimation; D.2.8 [Metrics]:Process metrics, 
Product metrics; K.6.3 [Software Management]: Software development, Software maintenence, Software 
process 
 
General Terms: Manegement, Experimentation, Measurement, Human Factors 
Additional Key Words and Phrases: Open source software, defect density, repair interval, code ownership, 
Apache, Mozilla 
________________________________________________________________________ 

 
 
1. INTRODUCTION  

The open source software "movement" has received enormous attention in the last several 

years.  It is often characterized as a fundamentally new way to develop software [8, 28] 

that poses a serious challenge [30] to the commercial software businesses that dominate 

most software markets today.  The challenge is not the sort posed by a new competitor 

that operates according to the same rules but threatens to do it faster, better, cheaper.  The 

OSS challenge is often described as much more fundamental, and goes to the basic 

motivations, economics, market structure, and philosophy of the institutions that develop, 

market, and use software. 

The basic tenets of OSS development are clear enough, although the details can 

certainly be difficult to pin down precisely (see [27]).  OSS, most people would agree, 
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has as its underpinning certain legal and pragmatic arrangements that ensure that the 

source code for an OSS development will be generally available. Open source 

developments typically have a central person or body that selects some subset of the 

developed code for the "official" releases and makes them widely available for 

distribution.  

These basic arrangements to ensure freely available source code have led to a 

development process that is radically different, according to OSS proponents, from the 

usual, industrial style of development.  The main differences usually mentioned are 

• OSS systems are built by potentially large numbers (i.e., hundreds or even 

thousands) of volunteers. It is worth noting, however, that currently a number of 

OSS projects are supported by companies and some participants are not 

volunteers. 

• Work is not assigned; people undertake the work they choose to undertake. 

• There is no explicit system-level design, or even detailed design [30]. 

• There is no project plan, schedule, or list of deliverables.  

Taken together, these differences suggest an extreme case of geographically 

distributed development, where developers work in arbitrary locations, rarely or never 

meet face to face, and coordinate their activity almost exclusively by means of email and 

bulletin boards.  What is perhaps most surprising about the process is that it lacks many 

of the traditional mechanisms used to coordinate software development, such as plans, 

system-level design, schedules, and defined processes.  These "coordination 

mechanisms" are generally considered to be even more important for geographically 

distributed development than for co-located development [14], yet here is an extreme 

case of distributed development that appears to eschew them all.   

Despite the very substantial weakening of traditional ways of coordinating work, the 

results from OSS development are often claimed to be equivalent, or even superior to 

software developed more traditionally.  It is claimed, for example, that defects are found 

and fixed very quickly because there are "many eyeballs" looking for the problems (Eric 

Raymond calls this "Linus's Law" [28]).  Code is written with more care and creativity, 

because developers are working only on things for which they have a real passion [28]. 

It can no longer be doubted that OSS development has produced software of high 

quality and functionality.  The Linux operating system has recently enjoyed major 

commercial success, and is regarded by many as a serious competitor to commercial 

                                                                                                                                                
± 2701 Lucent Lane, Lisle, IL 60532 USA. jherbsleb@lucent.com 



DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

operating systems such as Windows [16].  Much of the software for the infrastructure of 

the internet, including the well known bind, Apache, and sendmail programs, were also 

developed in this fashion.  

The Apache server (the OSS software under consideration in this case study) is, 

according to the Netcraft survey [24] the most widely deployed web server at the time of 

this writing.  It accounts for over half of the 7 million or so web sites queried in the 

Netcraft data collection.  In fact, the Apache server has grown in "market share" each 

year since it first appeared in the survey in 1996.  By any standard, Apache is very 

successful. 

While this existence proof means that OSS processes can, beyond a doubt, produce 

high quality and widely deployed software, the exact means by which this has happened, 

and the prospects for repeating OSS successes, are frequently debated (see, e.g., [5, 17]).  

Proponents claim that OSS software stacks up well against commercially developed 

software both in quality and in the level of support that users receive, although we are not 

aware of any convincing empirical studies that bear on such claims.  If OSS really does 

pose a major challenge to the economics and the methods of commercial development, it 

is vital to understand it and to evaluate it.   

This paper presents two case studies of the development and maintenance of major 

OSS projects, i.e., the Apache server and Mozilla.  We address key questions about their 

development processes, and about the software that is the result of those processes.  We 

first studied the Apache project, and based on our results, framed a number of hypotheses 

that we conjectured would be true generally of open source developments.  In our second 

study, which we began after the analyses and hypothesis formation were completed, we 

examine comparable data from the Mozilla project.  The data provide support for several 

of our original hypotheses.  

In the remainder of this section, we present our specific research questions.  In 

Section 2, we describe our research methodology, both for the Apache and Mozilla 

projects.  This is followed in Section 3 by the results of Study 1, the Apache project, and 

hypotheses derived from those results.  Section 4 presents our results from Study 2, the 

Mozilla projects, and a discussion of those results in light of our previous hypotheses.  

We conclude the paper in Section 5.  

1.1 Research Questions  

Our questions focus on two key sets of properties of OSS development.  It is remarkable 

that large numbers of people manage to work together successfully to create high quality, 
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widely used products.  Our first set of questions (Q1-Q4) are aimed at understanding 

basic parameters of the process by which Apache came to exist. 

Q1: What was the process used to develop Apache? 

In answer to this question, we construct a brief qualitative description of Apache 

development.   

Q2: How many people wrote code for new Apache functionality?  How many people 

reported problems?  How many people repaired defects?  

We want to see how large the Apache development community is, and identify how 

many people actually occupied each of these traditional development and support roles. 

Q3: Were these functions carried out by distinct groups of people, i.e., did people 

primarily assume a single role?  Did large numbers of people participate somewhat 

equally in these activities, or did a small number of people do most of the work? 

Within the Apache development community, what division of labor resulted from the 

OSS "people choose the work they do" policy?  We want to construct a profile of 

participation in the ongoing work. 

Q4: Where did the code contributors work in the code?   Was strict code ownership 

enforced on a file or module level? 

One worry of the "chaotic" OSS style of development is that people will make 

uncoordinated changes, particularly to the same file or module, that interfere with one 

another.  How does the development community avoid this?   

Our second set of questions (Q5-Q6) concern the outcomes of this Apache process.  

We examine the software from a customer's point of view, with respect to the defect 

density of the released code, and the time to repair defects, especially those likely to 

significantly affect many customers. 

Q5: What is the defect density of Apache code?    

We compute defects per thousand lines of code, and defects per delta in order to compare 

different operationalizations of defect density measure. 

Q6: How long did it take to resolve problems?  Were higher priority problems resolved 

faster than low priority problems?  Has resolution interval decreased over time? 

We measured this interval because it is very important from a customer perspective to 

have problems resolved quickly. 

2. METHODOLOGY AND DATA SOURCES 

In order to produce an accurate description of the open source development processes, we 

wrote a draft of description of each process, then had it reviewed by members of the core 

OSS development teams.  For the Apache project, one of the authors (RTF), who has 
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been a member of the core development team from the beginning of the Apache project, 

wrote the draft description. We then circulated it among all other core members and 

incorporated the comments of one member who provided feedback.  For Mozilla, we 

wrote a draft based on many published accounts of the Mozilla process [1, 3, 9, 13, 15, 

20-22, 25, 26, 31-33].  We sent this draft to the Chief Lizard Wrangler who checked the 

draft for accuracy and provided comments. The descriptions in the next section are the 

final product of this process.   The commercial development process is well known to two 

of the authors [AM, JDH] from years of experience in the organization, in addition to 

scores of interviews with developers.   We present a brief description of the commercial 

process at the end of this section. 

In order to address our quantitative research questions, we obtained key measures of 

project evolution from several sources of archival data that had been preserved 

throughout the history of the Apache project. The development and testing teams in OSS 

projects consist of individuals who rarely if ever meet face to face, or even via transitory 

media such as the telephone. One consequence of this is that virtually all information on 

the OSS project is recorded in electronic form.  Many other OSS projects archive similar 

data, so the techniques used here can be replicated on any such project. (To facilitate 

future studies scripts used to extract the data are available for download at 

http://mockus.org/oss.) 

2.1 Apache data sources 

Developer email list (EMAIL).  Anyone with an interest in working on Apache 

development can join the developer mailing list, which was archived monthly.  It 

contains many different sorts of messages, including technical discussions, proposed 

changes, and automatic notification messages about changes in the code and problem 

reports.  There were nearly 50,000 messages posted to the list during the period starting 

February, 1995. Our analysis is based on all email archives retrieved on May 20, 1999. 

We wrote Perl scripts to extract date, sender identity, message subject, and the 

message body that was further processed to obtain details on code changes and problem 

reports (see below). Manual inspection was used to resolve such things as multiple email 

addresses in cases where all automated techniques failed.   

Concurrent Version Control archive (CVS). The CVS commit transaction represents a 

basic change similar to the Modification Request (MR) in a commercial development 

environment. (We will refer to such changes as MRs.)  Every commit automatically 

generates an email message stored in the apache-cvs archive that we used to reconstruct 

the CVS data (the first recorded change was made on February 22, 1996. The version 1.0 



DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

of Apache released in January 1996 had a separate CVS database). The message body in 

the CVS mail archive corresponds to one MR and contains the following tuple: date and 

time of the change, developer login, files touched, numbers of lines added and deleted for 

each file, and a short abstract describing the change.  We further processed the abstract to 

identify people who submitted and/or reviewed the change and to obtain the Problem 

Report (PR) number for changes made as a result of a problem report. We will refer to 

changes made as a result of a PR as “fixes,” and changes made without a problem report 

as “code submissions.”  According to a core participant of Apache, the information on 

contributors and PRs was entered at least 90% of the time. All changes to the code and 

documentation were used in the subsequent analysis. 

Problem reporting database (BUGDB).  As in CVS, each BUGDB transaction 

generates a message to BUGDB stored in a separate BUGDB archive. We used this 

archive to reconstruct BUGDB.  For each message, we extracted the PR number, affected 

module, status (open, suspended, analyzed, feedback, closed), name of the submitter, 

date, and comment. 

We used the data elements extracted from these archival sources to construct a 

number of measures on each change to the code, and on each problem report. We used 

the process description as a basis to interpret those measures. Where possible, we then 

further validated the measures by comparing several operational definitions, and by 

checking our interpretations with project participants. Each measure is defined in the 

following sections within the text of the analysis where it is used. 

2.2 Mozilla data sources 

The quantitative data was obtained from CVS archives for Mozilla [23] and from the 

Bugzilla problem tracking system [20]. 

Deltas were extracted from CVS archive running CVS log on every file in the 

repository. MRs were constructed by gathering all delta that share login, comment, and 

are recorded within a single three minute interval. The comment acknowledges people 

who submitted the code and contains relevant PR numbers (if any). As before, we refer to 

MRs containing PRs as “fixes,” and the remaining MRs as “code submissions.”   

The product is broken down into directories /layout, /mailnews, etc. Files required to 

build a browser and mail reader are distributed among them. We have selected several 

directories that correspond to modules in Mozilla (so that each one has an owner) and 

that are similar in size to Apache project (generate between 3K and 12K delta per year).  

Abbreviated descriptions of directories taken from Mozilla documentation [15] are 

below: 
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• /js contains code for tokenizing, parsing, interpreting and executing JavaScript scripts.  
• /layout contains code for the layout engine that decides how to divide up the "window real estate" 

among all the pieces of content.  
• /editor contains code used for the HTML editor (i.e. Composer in Mozilla Classic), for plain text and 

HTML mail composition and for text fields and text areas throughout the product. 
• /intl contains code for supporting localization.  
• /rdf contains code for accessing various data and organizing their relationships according to 

Resource Description Framework (RDF), which is an open standard.  
• /netwerk contains code for low-level access to the network (using sockets and file and memory 

caches) as well as higher-level access (using various protocols such as http, ftp, gopher, castanet).  
• /xpinstall contains the code for implementing the SmartUpdate feature from Mozilla Classic. 

We refer to developers with email domain @netscape.com and @mozilla.org as 

internal developers, while all others we call external developers. It is worth noting, that 

some of the 12 people with @mozilla.org email address are not affiliated with Netscape. 

We attempted to match email to full name to eliminate cases where people changed email 

address over considered period or used several different email addresses, or, when there 

was a spelling mistake. 

To retrieve problem report data we used scripts that would first retrieve all problem 

report numbers from Bugzilla and then retrieve the details and the status changes of each 

problem report. In the analysis we consider only three status changes for a problem 

report. A report is first CREATED, then it is  RESOLVED, either by a fix, or other action 

(there are multiple reasons possibly, however we discriminated only between FIXED the 

rest in the analysis below.)  After inspection, the report reaches the state of VERIFIED if 

it passes, or is reopened again if it does not pass.  Only reports including code changes 

are inspected.  Each report has priority associated with it with values P1 through P5. PRs 

also include field "Product" with "Browser" being the most frequent value occurring in 

80% of PRs.    

2.3 Data for commercial projects 
The change history of the files in the five commercial projects was maintained using the 

Extended Change Management System (ECMS) [18], for initiating and tracking changes, 

and the Source Code Control System (SCCS) [29], for managing different versions of the 

files. 

We present a simplified description of the data collected by SCCS and ECMS that are 

relevant to our study.  SCCS, like most version control systems, operates over a set of 

source code files. An  atomic change, or delta, to the program text consists of the lines 

that were deleted and those that were added in order to make the change.  Deltas are 

usually computed by a file differencing algorithm (such as Unix diff), invoked by SCCS, 

which compares an older version of a file with the current version.   

SCCS records the following attributes for each change: the file with which it is 

associated; the date and time the change was ``checked in''; and the name and login of the 



DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

developer who made it. Additionally, the SCCS database records each delta as a tuple 

including the actual source code that was changed (lines deleted and lines added), login 

of the developer, MR number (see below), and the date and time of change. 

In order to make a change to a software system, a developer may have to modify 

many files.  ECMS groups atomic changes to the source code recorded by SCCS (over 

potentially many files) into logical changes referred to as Modification Requests (MRs).  

There is typically one developer per MR. An MR may have an English language abstract 

associated with it, provided by the developer, describing the purpose of the change. The 

open time of the MR is recorded in ECMS. We use time of the last delta of an MR as the 

MR close time. Some projects contained information about the project phase in which 

MR is opened. We use it to identify MRs that fix post-feature-test and post-release 

defects. 

2.4 Commercial Development Process 

Here we describe commercial development process used in the five comparison projects. 

We chose these projects because they had the time span and size of the same order of 

magnitude as apache, and we have studied them previously, so we were intimately 

familiar with the processes involved and had access to their change data. In all projects 

the changes to the source code follow a well-defined process. New software features that 

enhance the functionality of the product are the fundamental design unit by which the 

systems are extended.  Changes that implement a feature or solve a problem are sent to 

the development organization and go through a rigorous design process. At the and of the  

design process the work is assigned to developers  in the form of Modification Requests, 

which are information representing the work to be done to each module. To perform the 

changes, a developer makes the required modifications to the code, checks whether the 

changes are satisfactory (within a limited context, i.e., without a full system build), and 

then submits the MR. Code inspections, feature tests, integration, system tests, and 

release to customer follow. Each of these stages may generate fix MRs which are 

assigned to a developer by a supervisor who assigns work according to developer 

availability and the type of expertise required. In all of the considered projects the 

developers had ownership of the code modules. 

The five considered projects were related to various aspects of telecommunications. 

The Project A involved software for a network element in an optical backbone network 

such as SONET or SDH. Project B involved call handling software for a wireless 

network. The product was written in C and C++ languages. The changes used in the 

analysis pertain to two years of mostly porting work to make  legacy software  run on a 
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new real time operating system.  Projects C, D, and E, represent Operations 

Administration and Maintenance support software for telecommunications products. 

These projects were smaller in scale. 

3. STUDY 1: THE APACHE PROJECT 

3.1 The Apache Development Process 

Q1: What was the process used to develop Apache? 

Apache began in February 1995 as a combined effort to coordinate existing fixes to 

the NCSA httpd program developed by Rob McCool. After several months of adding 

features and small fixes, Apache developers replaced the old server code base in July 

1995 with a new architecture designed by Robert Thau.  Then all existing features, and 

many new ones, were ported to the new architecture and it was made available for beta 

test sites, eventually leading to the formal release of Apache httpd 1.0 in January 1996. 

The Apache software development process is a result of both the nature of the project 

and the backgrounds of the project leaders, as described in [11].  Apache began with a 

conscious attempt to solve the process issues first, before development even started, 

because it was clear from the very beginning that a geographically distributed set of 

volunteers, without any traditional organizational ties, would require a unique 

development process in order to make decisions. 

3.1.1 Roles and responsibilities 

The Apache Group (AG), the informal organization of core people responsible for 

guiding the development of the Apache HTTP Server Project, consisted entirely of 

volunteers, each having at least one other "real" job that competed for their time. For this 

reason, none of the developers could devote large blocks of time to the project in a 

consistent or planned manner, therefore requiring a development and decision-making 

process that emphasized decentralized workspaces and asynchronous communication.  

AG used email lists exclusively to communicate with each other, and a minimal quorum 

voting system for resolving conflicts. 

The selection and roles of core developers are described in [11]. AG members are 

people who have contributed for an extended period of time, usually more than 6 months, 

and are nominated for membership and then voted on by the existing members. AG 

started with 8 members (the founders), had 12 through most of the period covered, and 

now has 25.  

The "core developers" in any period include both the subset of AG that are active in 

development (usually 4-6 in any given week) and the developers who are on the cusp of 
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being nominated (usually 2-3). That's why the "core" appears as 15 people during the 

period studied. 

Each AG member can vote on the inclusion of any code change, and has commit 

access to CVS (if they desire it).  Each AG member is expected to use his/her judgment 

about committing code to the base, but there is no rule prohibiting any AG member from 

committing code to any part of the server.  Votes are generally reserved for major 

changes that would affect other developers who are adding or changing functionality. 

Although there is no single development process, each Apache core developer iterates 

through a common series of actions while working on the software source.  These actions 

include discovering that a problem exists or new functionality is needed, determining 

whether or not a volunteer will work on the issue, identifying a solution, developing and 

testing the code within their local copy of the source, presenting the code changes to the 

AG for review, and committing the code and documentation to the repository.  

Depending on the scope of the change, this process may involve many iterations before 

reaching a conclusion, though it is generally preferred that the entire set of changes 

needed to solve a particular problem or add a particular enhancement be applied in a 

single commit.   

3.1.2 Identifying work to be done 

There are many avenues through which the Apache community can report problems and 

propose enhancements.  Change requests are reported on the developer mailing list, the 

problem reporting system (BUGDB), and the USENET newsgroups associated with the 

Apache products.  The developer discussion list is where new features and patches for 

bugs are discussed and BUGDB is where bugs are reported (usually with no patch).  

Change requests on the mailing list are given the highest priority. Since the reporter is 

likely to be a member of the development community, the report is more likely to contain 

sufficient information to analyze the request or contain a patch to solve the problem.  

These messages receive the attention of all active developers.  Common mechanical 

problems, such as compilation or build problems, are typically found first by one of the 

core developers and either fixed immediately or reported and handled on the mailing list. 

In order to keep track  of the project status, an agenda file ("STATUS") is stored in each 

product's repository, containing a list of high priority problems, open issues among the 

developers, and release plans. 

The second area for reporting problems or requesting enhancements is in the project's 

BUGDB, which allows anyone with Web or email access to enter and categorize requests 

by severity and topic area.  Once entered, the request is posted to a separate mailing list 
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and can be appended to via email replies, or edited directly by the core developers.  

Unfortunately, due to some annoying characteristics of the BUGDB technology, very few 

developers keep an active eye on the BUGDB.  The project relies on one or two 

interested developers to perform periodic triage of the new requests: removing mistaken 

or misdirected problem reports, answering requests that can be answered quickly, and 

forwarding items to the developer mailing list if they are considered critical. When a 

problem from any source is repaired, the BUGDB is searched for reports associated with 

that problem so that they can be included in the change report and closed. 

Another avenue for reporting problems and requesting enhancements is the discussion 

on Apache-related USENET newsgroups.  However, the perceived noise level on those 

groups is so high that only a few Apache developers ever have time to read the news.  In 

general, the Apache Group relies on interested volunteers and the community at large to 

recognize promising enhancements and real problems, and to take the time to report them 

to the BUGDB or forward them directly to the developer mailing list. In general, only 

problems reported on released versions of the server are recorded in BUGDB.  

In order for a proposed change actually to be made, an AG member must ultimately 

be persuaded it is needed or desirable.  “Showstoppers,” i.e., problems that are 

sufficiently serious (in the view of a majority of AG members) that a release cannot go 

forward until they are solved, are always addressed.  Other proposed changes are 

discussed on the developer mailing list, and if an AG member is convinced it is 

important, an effort will be made to get the work done. 

3.1.3 Assigning and performing development work  

Once a problem or enhancement has found favor with the AG, the next step is to find a 

volunteer who will work on that problem. Core developers tend to work on problems that 

are identified with areas of the code with which they are most familiar.  Some work on 

the product's core services, while others work on particular features that they developed.  

The Apache software architecture is designed to separate the core functionality of the 

server, which every site needs, from the features, which are located in modules that can 

be selectively compiled and configured.  The core developers obtain an implicit "code 

ownership" of parts of the server that they are known to have created or to have 

maintained consistently.  Although code ownership doesn't give them any special rights 

over change control, the other core developers have greater respect for the opinions of 

those with experience in the area being changed.  As a result, new core developers tend to 

focus on areas where the former maintainer is no longer interested in working, or in the 



DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

development of new architectures and features that have no preexisting claims (frontier 

building). 

After deciding to work on a problem, the next step is attempting to identify a solution. 

In many cases, the primary difficulty at this stage is not finding a solution, it is in 

deciding which of various possibilities is the most appropriate solution.  Even when the 

user provides a solution that works, it may have characteristics that are undesirable as a 

general solution or it may not be portable to other platforms.  When several alternative 

solutions exist, the developer usually forwards the alternatives to the mailing list in order 

to get feedback from the rest of the group before developing a solution.   

3.1.4 Pre-release testing 

Once a solution has been identified, the developer makes changes to a local copy of the 

source code and tests the changes on their own server.  This level of testing is more or 

less comparable to unit test, and perhaps feature test in a commercial development, 

although the thoroughness of the test depends on the judgment and expertise of the 

developer.  There is no additional testing (e.g., regression, system test) required prior to 

release, although review is required before or after committing the change (see next 

section). 

3.1.5 Inspections 

After unit testing, the core developer either commits the changes directly (if the Apache 

guidelines [2] call for a commit-then-review process) or produces a "patch" and posts it 

to the developer mailing list for review.  In general, changes to a stable release require 

review before being committed, while changes to development releases are reviewed 

after the change is committed.  If approved, the patch can be committed to the source by 

any of the developers, though in most cases it is preferred that the originator of the 

change also perform the commit.   

As described above, each CVS commit results in a summary of the changes being 

automatically posted to the apache-cvs mailing list, including the commit log and a patch 

demonstrating the changes.  All of the core developers are responsible for reviewing the 

apache-cvs mailing list to ensure that the changes are appropriate.  Most core developers 

do in fact review all changes.  In addition, since anyone can subscribe to the mailing list, 

the changes are reviewed by many people outside the core development community, 

which often results in useful feedback before the software is formally released as a 

package.   
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3.1.6 Managing releases  

When the project nears a product release, one of the core developers volunteers to be the 

release manager, responsible for identifying the critical problems (if any) that prevent the 

release, determining when those problems have been repaired and the software has 

reached a stable point, and controlling access to the repository so that developers don't 

inadvertently change things that should not be changed just prior to the release.  The 

release manager creates a forcing effect in which many of the outstanding problem 

reports are identified and closed, changes suggested from outside the core developers are 

applied, and most loose ends are tied up.  In essence, this amounts to "shaking the tree 

before raking up the leaves."  The role of release manager is rotated among the core 

developers with the most experience with the project. 

In summary, this description helps to address some of the questions about how 

Apache development was organized, and provides essential background for 

understanding our quantitative results.  In the next section, we take a closer look at the 

distribution of development, defect repair, and testing work in the Apache project, as well 

as the code and process from the point of view of customer concerns. 

3.2 Quantitative Results 

In this section we present results from several quantitative analyses of the archival data 

from the APACHE project. The measures we derive from these data are well-suited to 

address our research questions [4]; however, they may be unfamiliar to many readers 

since they are not software metrics that are in wide use, e.g., [6, 10].  For this reason, we 

provide data from several commercial projects, to give the reader some sense of what 

kinds of results might be expected.  Although we picked several commercial projects that 

are reasonably close to APACHE, none is a perfect match, and the reader should not infer 

that the variation between these commercial projects and APACHE is due entirely to 

differences between commercial and OSS development processes. 

It is important to note that the server is designed so that new functionality need not be 

distributed along with the core server.  There are well over 100 feature-filled modules 

distributed by third parties, and thus not included in our study.  Many of these modules 

include more lines of code than the core server. 

3.2.1 The size of the Apache development community. 

Q2: How many people wrote code for new Apache functionality?  How many people 

reported problems?  How many people repaired defects? 

The participation in Apache development overall was quite wide, with almost 400 

individuals contributing code that was incorporated into a comparatively small product.  
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In order to see how many people contributed new functionality and how many were 

involved in repairing defects, we distinguished between changes that were made as a 

result of a problem report (fixes) and those that were not (code submissions).  We found 

that 182 people contributed to 695 fixes, while 249 people contributed to 6092 code 

submissions.  

We examined the BUGDB to determine the number of people who submitted problem 

reports.  The problem reports come from a much wider group of participants. In fact, 

around 3060 different people submitted 3975 problem reports. 458 individuals submitted 

591 reports that subsequently caused a change to the Apache code or documentation. The 

remaining reports did not lead to a change because they did not contain sufficient detail 

to reproduce the defect, the defect was already fixed or raised, the issue was related to 

incorrect configuration of the product, or the defect was deemed to be not sufficiently 

important to be fixed. Many of the reports were in regard to operating system faults that 

were fixed by the system vendor, and few others were simply invalid reports due to spam 

being directed at the bug reporting system’s e-mail interface. 2654 individuals submitted 

3384 reports that we could not trace to a code change.  

3.2.2 How was work distributed within the development community? 

Q3: Were these functions carried out by distinct groups of people, i.e., did people 

primarily assume a single role?  Did large numbers of people participate somewhat 

equally in these activities, or did a small number of people do most of the work? 

First, we examine participation in generating code.  Figure 1 plots the cumulative 

proportion of code changes (vertical axis) versus the top N contributors to the code base 

(horizontal axis).  

The contributors are ordered by the number of MRs from largest to smallest. The 

solid line in Figure 1 shows the cumulative proportion of changes against the number of 

contributors. The dotted and dashed lines show the cumulative proportion of added and 

deleted lines and the proportion of delta (an MR generates one delta for each of the files 

it changes). These measures capture various aspects of code contribution. 

Figure 1 shows that the top 15 developers contributed more than 83% of the MRs and 

deltas, 88% of added lines and 91% of deleted lines. Very little code and, presumably, 

correspondingly small effort is spent by non-core developers (for simplicity, in this 

section we refer to all the developers outside the top 15 group as non-core). The MRs 

done by core developers are substantially larger than those done by the non-core group. 

This difference is statistically significant; the distribution of MR fraction is significantly 

(p < 0.01) smaller (high values of the distribution function are achieved for smaller 
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values of the argument) than the distribution of added lines using Kolmogorov-Smirnov 

test. Kolmogorov-Sminov test is a nonparametric test that uses empirical distribution 

functions (such as shown in Figure 1). We used a one-sided test with a null hypothesis 

that the distribution of the fraction of MRs is not less than the distribution of fraction of 

added lines. Each of the two samples under comparison contained 388 observations 

representing the fraction of MRs and the fraction of lines added by each developer. 
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Figure 1.  The cumulative distribution of contributions to the code base. 

Next, we looked separately at fixes only. There was a large (p-value < 0.01) 

difference between distributions of fixes and code submissions. (We used a two-sample 

test with samples of fraction of MRs for fixes and code submissions. There were 182 

observations in the fix sample and 249 observations in the code submission sample). 

Fixes are shown in Figure 2. The scales and developer order are the same as in Figure 1.  

Figure 2 shows that participation of wider development community is more 

significant in defect repair than in the development of new functionality. The top 15 

contributors produced only 66% of the fixes. The participation rate was 26 developers per 

100 fixes and 4 developers per 100 code submissions, i.e., more than six times lower for 

fixes. These results indicate that despite broad overall participation in the project, almost 

all new functionality is implemented and maintained by the core group.  
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Figure 2.  Cumulative distribution of fixes. 

We inspected the regularity of developer participation by considering two time 

intervals: before and after Jan 1, 1998. Forty-nine distinct developers contributed more 

than one fix in the first period, and the same number again in the second period. Only 20 

of them contributed at least two changes in both the first and second periods. One 

hundred and forty developers contributed at least one code submission in first period, and 

120 in the second period. Of those, only 25 contributed during both periods. This 

indicates that only a few developers beyond the core group submit changes with any 

regularity. 

Table 1. Statistics on Apache and five commercial projects. 

 MRs (K) Delta (K) Lines added (K) Years Developers 
Apache 6 18 220 3 388 
A 3.3 129 5,000 3 101 
B 2.5 18 1,000 1.5 91 
C 1.1 2.8 81 1.3 17 
D 0.2 0.7 21 1.7 8 
E 0.7 2.4 90 1.5 16 

 

Although developer contributions vary significantly in a commercial project, our 

experience has been that the variations are not as large as in the APACHE project. Since 
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the cumulative fraction of contribution is not commonly available in the programmer 

productivity literature we present examples of several commercial projects that had a 

number of deltas within an order of magnitude of the number Apache had, and were 

developed over a similar period. Table 1 presents basic data about this comparison group. 

All projects come from the telecommunications domain. Project A is a port of a legacy 

code for an optical network element, Project B is code for a wireless base station, and 

projects C, D, and E represent various applications for operations, administration, and 

maintenance. The first two projects were written mostly in the C language, and the last 

three mostly in C++.  
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Figure 3.Cumulative distribution of the contributions in two commercial projects. 

Figure 3 shows the cumulative fraction of changes for commercial projects A and B. 

To avoid clutter, and because they do not give additional insights, we do not show the 

curves for projects C, D, or E. 

The top 15 developers in project B contributed 77 percent of the delta (compared to 

83% for Apache) and 68 percent of the code (compared to 88%). Even more extreme 

differences emerge in porting of a legacy product done by project A. Here, only 46 and 

33 percent of the delta and added lines are contributed by the top 15 developers.  

We defined "top" developers in the commercial projects as groups of the most 

productive developers that contributed 83% of MRs (in the case of KMR/developer/year) 
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and 88% of lines added (in the case of KLOC/developer/year).  We chose these 

proportions because they were the proportions we observed empirically for the summed 

contributions of the 15 core Apache developers.   

Table 2. Comparison of code productivity of the top Apache developers and the top 

developers in several commercial projects. 

 Apache A B C D E 

KMR/developer/year .11 .03 .03 .09 .02 .06 
LOC/developer/year 4.3 38.6 11.7 6.1 5.4 10 

If we look at the amount of code produced by the top Apache developers versus the 

top developers in the commercial projects, the Apache core developers appear to be very 

productive, given that Apache is a voluntary, part time activity and the relatively "lean" 

code of Apache.  Measured in KLOC per year, they achieve a level of production that is 

within a factor of 1.5 of the top full-time developers in projects C and D. Moreover, the 

Apache core developers handle more MRs per year than the core developers on any of 

the commercial projects.  (For reasons we do not fully understand, MRs are much smaller 

in Apache than in the commercial projects we examined.) 

Given the many differences among these projects, we do not want to make strong 

claims about how productive the Apache core has been.  Nevertheless, one is tempted to 

say that the data suggest rates of production that are at least in the same ballpark as 

commercial developments, especially considering the part-time nature of the undertaking. 

3.2.3  Who reports problems?  

Problem reporting is an essential part of any software project. In commercial projects the 

problems are mainly reported by build, test, and customer support teams. Who is 

performing these tasks in an OSS project? 

The BUGDB had 3975 distinct problem reports. The top 15 problem reporters 

submitted only 213 or 5% of PRs. Almost 2600 developers submitted one report, 306 

submitted two, 85 submitted three, and the maximum number of PRs submitted by one 

person was 32. 

Of the top 15 problem reporters only three are also core developers. It shows that the 

significant role of system tester is reserved almost exclusively to the wide community of 

Apache users.     

One would expect that some users, like administrators of web hosting shops, would 

be reporting most of the problems. Given the total number of websites (domain names) of 

over four million (according to the NetCraft survey [24]), this might indeed be so. The 

three thousand individuals reporting problems represent less than one percent of all 
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Apache installations if we assume the number of actual servers to be one tenth of the 

number of websites (each server may host several websites). 

3.2.4 Code Ownership 

Q4: Where did the code contributors work in the code?   Was strict code ownership 

enforced on a file or module level? 

Given the informal, distributed way in which Apache has been built, we wanted to 

investigate whether some form of "code ownership" has evolved.  We thought it likely, 

for example, that for most of the Apache modules, a single person would write the vast 

majority of the code, with perhaps a few minor contributions from others. The large 

proportion of code written by the core group contributed to our expectation that these 15 

developers most likely arranged something approximating a partition of the code, in order 

to keep from making conflicting changes.   

An examination of persons making changes to the code failed to support this 

expectation.  Out of 42 ".c" files with more than 30 changes, 40 had at least two (and 20 

had at least four) developers making more than 10% of the changes. This pattern strongly 

suggests some other mechanism for coordinating contributions. It seems that rather than 

any single individual writing all the code for a given module, those in the core group 

have a sufficient level of mutual trust that they contribute code to various modules as 

needed.   

This finding verifies the previous qualitative description of code "ownership" to be 

more a matter of recognition of expertise than one of strictly enforced ability to make 

commits to partitions of the code base. 

3.2.5 Defects 

Q5: What is the defect density of Apache code?    

First we discuss issues related to measuring defect density in an OSS project and then 

present the results, including comparison to four commercial projects. 

How to Measure Defect Density?  One frequently used measure is post-release defects 

per thousand lines of delivered code.  This measure has at least three major problems, 

however.  First, "bloaty" code is generally regarded as bad code, but it will have an 

artificially low defect rate.  Second, many incremental deliveries contain most of the code 

from previous releases, with only a small fraction of the code being changed. If all the 

code is counted, this will artificially lower the defect rate.  Third, it fails to take into 

account how thoroughly the code is exercised. If there are only a few instances of the 

application actually installed, or if it is exercised very infrequently, this will dramatically 

reduce the defect rate, which again produces an anomalous result. 
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We know of no general solution to this problem, but we strive to present a well-

rounded picture by calculating two different measures, and comparing Apache to several 

commercial projects on each of them.  To take into account the incremental nature of 

deliveries we emulate the traditional measure with defects per thousand lines of code 

added (KLOCA) (instead of delivered code). To deal with the "bloaty" code issue we also 

compute defects per thousand deltas.  To a large degree, the second measure ameliorates 

the "bloaty" code problem, because even if changes are unnecessarily verbose, this is less 

likely to affect the number of deltas (independent of size of delta).  We do not have usage 

intensity data, but it is reasonable to assume that usage intensity was much lower for all 

the commercial applications. Hence we expect that our presented defect density numbers 

for Apache are somewhat higher than they would have been if the usage intensity of 

Apache was more similar to that of commercial projects. Defects, in all cases, are 

reported problems that resulted in actual changes to the code.   

If we take a customer's point of view, we should be concerned primarily with defects 

visible to customers, i.e., post-release defects, and not build and testing problems.  The 

Apache PRs are very similar in this respect to counts of post-release defects, in that they 

were raised only against official, stable releases of Apache, not against interim 

development "releases."   

However, if we are looking at defects as a measure of how well the development 

process functions, a slightly different comparison is in order.  There is no provision for 

systematic system test in OSS generally, and for the Apache project in particular.  So the 

appropriate comparison would be to pre-system test commercial software.  Thus, the 

defect count would include all defects found during the system test stage or after (all 

defects found after "feature test complete" in the jargon of the quality gate system).   

Defect Density Results.  Table 3 compares Apache to the previous commercial projects. 

Project B did not have enough time in the field to accumulate customer-reported 

problems and we do not have pre-system test defects for Project A. The defect data for 

Apache was obtained from bugdb, for Mozilla from Bugzilla, and for commercial 

projects from ECMS as described in sections 2.1 and 2.2, and 2.3. Only defects resulting 

in a code change are presented in Table 3. 

We see that the two defect density measures in commercial projects A, C, D, and E 

are in good agreement (the defect density itself varies substantially, though). While the 

user-perceived defect density of the Apache product is inferior to that of the commercial 

products, the defect density of the code before system test is much lower.  This latter 

comparison may indicate that fewer defects are injected into the code, or that other 
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defect-finding activities such as inspections are conducted more frequently or more 

effectively.   

Table 3. Comparison of defect density measures. 

Measure Apache A C D E 
Post-release Defects/KLOCA 2.64 0.11 0.1 0.7 0.1 
Post-release Defects/KDelta 40.8 4.3 14 28 10 
Post-feature test Defects/KLOCA 2.64 * 5.7 6.0 6.9 
Post-feature test Defects/KDelta 40.8 * 164 196 256 

3.2.6 Time to resolve problem reports  

Q6: How long did it take to resolve problems?  Were high priority problems resolved 

faster than low priority problems? Has resolution interval decreased over time? 

The distribution of PR resolution interval is approximated by its empirical distribution 

function that maps interval in days to proportion of PRs resolved within that interval.  

Fifty percent of PRs are resolved within a day, 75% within 42 days, and 90% within 140 

days. Further investigation showed that these numbers depend on priority, time period, 

and whether or not the PR causes a change to the code. 

Priority. We operationalized priority in two ways. First we used the priority field 

reported in the BUGDB database. Priority defined in this way has no effect on interval. 

This is very different from commercial development, where priority is usually strongly 

related to interval.  In Apache BUGDB, the priority field is entered by a person reporting 

the problem and often does not correspond to the priority as perceived by the core 

developer team. 

The second approach for operationalizing priority categorized the modules into 

groups according to how many users depend on them. PRs were then categorized by the 

module to which they pertain.  Such categories tend to reflect priorities since they reflect 

number of users (and developers) affected. Figure 4 shows comparisons among such 

groups of modules. The horizontal axis shows interval in days and the vertical axis shows 

proportion of MRs resolved within that interval. "Core" represents the kernel, protocol, 

and other essential parts of the server that must be present in every installation.  "Most 

Sites" represents widely-deployed features that most sites will choose to include. PRs 

affecting either "Core" or "Most Sites" should be given higher priority because they 

potentially involve many (or all) customers and could potentially cause major failures.  

On the other hand, "OS" includes problems specific to certain operating systems, and 

"Major Optional" include features that are not as widely deployed.  From a customer's 

point of view, "Core" and  "Most Sites" PRs should be solved as quickly as possible, 

while the "OS" and "Major Optional" should generally receive lower priority. 
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Figure 4.  Proportion of changes closed within given number of days. 

The data (Figure 4) show exactly this pattern, with much faster close times for the 

higher-priority problems. The differences between the trends in the two different groups 

are significant (p-value<.01 using Kolmogorov-Smirnov test), while the trends within 

groups do not differ significantly. The documentation PRs show mixed behavior, with 

"low priority" behavior for intervals under 5 days and "high priority" behavior, otherwise. 

This may be explained by the fact that documentation problems are not extremely urgent 

(the product still operates), yet very important. 

Reduction in resolution interval. To investigate if the problem resolution interval 

improves over time, we broke the problems into two groups according to the time they 

were posted (before or after Jan 1, 1997).  The interval was significantly shorter in the 

second period (p-value<.01). This indicates that this important aspect of customer support 

improved over time, despite the dramatic increase in the number of users.   

3.3 Hypotheses 

In this case study, we reported results relevant to each of our research questions.  

Specifically, we reported on 
• the basic structure of the development process, 
• the  number of participants filling each of the major roles, 
• the distinctiveness of the roles, and the importance of the core developers, 
• suggestive, but not conclusive, comparisons of defect density and productivity with commercial 

projects, and 
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• customer support in OSS. 
Case studies such as this provide excellent fodder for hypothesis development.  It is 

generally inappropriate to generalize from a single case, but the analysis of a single case 

can provide important insights that lead to testable hypotheses.  In this section, we cast 

some of our case study findings as hypotheses, and suggest explanations of why each 

hypothesis might be true of OSS in general.  In the following section, we present results 

from Study 2, another case study, which allows us to test several of these hypotheses.  All 

the hypotheses can be tested by replicating these studies using archival data from other 

OSS developments.   

Hypothesis 1: Open source developments will have a core of developers who control the 

code base.  This core will be no larger than 10-15 people, and will create approximately 

80% or more of the new functionality.   

We base this hypothesis both on our empirical findings in this case, and also on 

observations and common wisdom about maximum team size.  The core developers must 

work closely together, each with fairly detailed knowledge of what other core members 

are doing.   Without such knowledge they would frequently make incompatible changes 

to the code.  Since they form essentially a single team, they can be overwhelmed by 

communication and coordination overhead issues that typically limit the size of effective 

teams to 10-15 people.   

Hypothesis 2: For projects that are so large that 10-15 developers cannot write 80% of 

the code in a reasonable time frame, a strict code ownership policy will have to be 

adopted to separate the work of additional groups, creating, in effect, several related 

OSS projects. 

The fixed maximum core team size obviously limits the output of features per unit 

time. To cope with this problem, a number of satellite projects, such as Apache-SSL, 

were started by interested parties. Some of these projects produced as much or more 

functionality than Apache itself.  It seems likely that this pattern of core group and 

satellite groups that add unique functionality targeted to a particular group of users, will 

frequently be adopted in such cases.   

In other OSS projects like Linux, the kernel functionality is also small compared to 

application and user interface functionalities. The nature of relationships between the 

core and satellite projects remains to be investigated; yet it might serve as an example 

how to break large monolithic commercial projects into smaller, more manageable 

pieces. We can see the examples where the integration of these related OSS products is 
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performed by a commercial organization, e.g., RedHat for Linux, ActivePerl for Perl, and 

CYGWIN for GNU tools. 

Hypothesis 3: In successful open source developments, a group larger by an order of 

magnitude than the core will repair defects, and a yet larger group (by another order of 

magnitude) will report problems. 

Hypothesis 4: Open source developments that have a strong core of developers but never 

achieve large numbers of contributors beyond that core will be able to create new 

functionality but will fail because of a lack of resources devoted to finding and repairing 

defects.  

Many defect repairs can be performed with only a limited risk of interacting with 

other changes. Problem reporting can be done with no risk of harmful interaction at all.  

Since this work has reduced dependencies among participants, potentially much larger 

groups can work on them.  In a successful development, these activities will be 

performed by larger communities, freeing up time for the core developers to develop new 

functionality.  Where an OSS development fails to stimulate wide participation, either the 

core will become overburdened with finding and repairing defects, or the code simply 

will never reach an acceptable level of quality. 

Hypothesis 5: Defect density in open source releases will generally be lower than 

commercial code that has only been feature-tested, i.e., received a comparable level of 

testing. 

Hypothesis 6: In successful open source developments, the developers will also be users 

of the software. 

In general, open source developers are experienced users of the software they write.  

They are intimately familiar with the features they need, and what the correct and 

desirable behavior is.  Since the lack of domain knowledge is one of the chief problems 

in large software projects [7], one of the main sources of error is eliminated when domain 

experts write the software.  It remains to be seen if this advantage can completely 

compensate for the absence of system testing. In any event, where the developers are not 

also experienced users of the software, they are highly unlikely to have the necessary 

level of domain expertise or the necessary motivation to succeed as an OSS project. 

Hypothesis 7: OSS developments exhibit very rapid responses to customer problems.  

This observations stems both from the "many eyeballs implies shallow bugs" 

observation cited earlier [28], and the way that fixes are distributed.  In the "free" world 

of OSS, patches can be made available to all customers nearly as soon as they are made.  



DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

In commercial developments, by contrast, patches are generally bundled into new 

releases, and made available according to some predetermined schedule. 

Taken together, these hypotheses, if confirmed with further research on OSS projects, 

suggest that OSS is a truly unique type of development process.  It is tempting to suggest 

that commercial and OSS practices might be fruitfully hybridized, a thought which led us 

to collect and analyze the data reported in Study 2 below. 

Subsequent to our formulation of these hypotheses, we decided to replicate this 

analysis on another open source project.  We wanted to test these hypotheses where 

possible, and we particularly wanted to look at a hybrid commercial/OSS project in order 

to improve our understanding of how they could be combined, and what the results of 

such a combination would be. Recent developments in the marketplace brought forth 

several such hybrid projects, most notably the Mozilla browser, based on the commercial 

Netscape browser source code.  

In the next section, we use the methodology described above to characterize Mozilla 

development, to answer the same basic questions about the development process, and 

insofar as possible, test the hypotheses we developed in Study 1.   

4. STUDY 2: THE MOZILLA PROJECT 

Mozilla has process with commercial roots. In the face of stiff competition, Netscape 

chose to leverage the benefits of OSS development to ensure survival of the product. At 

the time of writing it is unclear how well the strategy succeeded.  There are many ways in 

which characteristics of open source and commercial development might be combined, 

and Mozilla represents only a single point in a rather large space of possibilities.  It must 

be kept in mind, therefore, that very different results might be obtained from different 

hybridization strategies.  In our conclusions, we will describe what we see as the 

strengths and weaknesses of the Mozilla approach, and suggest other strategies that seem 

promising. Unlike Apache, the work in Mozilla project is much more diverse --- it 

supports many technologies including development tools (CVS, Bugzilla, Bonsai, 

Tinderbox) that are not part of the web browser.  It also builds toolkit-type applications, 

some of which are used to build a variety of products, such as Komodo from ActiveState, 

not just browsers. 

We base our description of the Mozilla development process on references [1, 3, 9, 

13, 15, 20-22, 25, 26, 31-33] with a view from the inside [3, 26], from the outside [25], 

and from a historic perspective  [13, 33].  

4.1 The Mozilla development process 

Q1: What was the process used to develop Mozilla? 



DRAFT: to appear in  ACM Transactions on Software Engineering and Methodology 

Mozilla initially had difficulty attracting the level of outside contributions that was 

expected. Mitchell Baker, of mozilla.org expressed the view that "the public expectations 

for the Mozilla project were set astoundingly high.  The number of volunteers 

participating in the Mozilla project did not meet those expectations.  But there has been 

an important group of volunteers providing critical contributions to the project since long 

before the code was ready to use."  After one year, one of the project leaders quit, citing 

lack of outside interest because of the large size, cumbersome architecture, absence of a 

working product, and lack of adequate support from Netscape.   

However, after the documentation was improved, tutorials were written, and the 

development tools and processes refined, participation started slowly to increase. Some 

documents now available address the entire range of outsider problems (like [25]). Also, 

the fact that the development tools were exported to be used in commercial software 

projects at HP, Oracle, and Sun Microsystems [31], is evidence of their high quality and 

scalability.  At the time of this writing, Mozilla is approaching it's first release "1.0". 

Mozilla has substantial documentation on the architecture, the technologies used, and 

has instructions for building and testing. It also has web tools to provide code cross-

reference (LXR) and change presentation (Bonsai) systems. A brief point-by-point 

comparison of Apache and Mozilla process is presented in Table 8. Below we describe 

the necessary details. 

4.1.1 Roles and responsibilities 

Mozilla is currently operated by mozilla.org staff (12 members at the time of this writing) 

that coordinate and guide the project, provide process, and engage in some coding.  Only 

about four of the core members spend a significant part of their time writing code for the 

browser application.  Others have roles dedicated to such things as community QA, 

milestone releases, website tools and maintenance, and tools such as Bugzilla that assist 

developers.   While the external participation (beyond Netscape/AOL) has increased over 

the years, even some external people (e.g., from Sun Microsystems) are working full 

time, for pay, on the project. 

Decision-making authority for various modules is delegated to individuals in the 

development community who are close to that particular code.  People with an 

established record of good quality code can attempt to obtain commit access to the CVS 

Repository. Directories and files within a particular module can be added or changed by 

getting the permission of module owner.  Adding a new module requires the permission 

of mozilla.org.  While much responsibility is delegated by means of distributed commit 

access and module ownership, mozilla.org has ultimate decision-making authority, and 
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retains the right to designate and remove module owners, and to resolve all conflicts that 

arise. 

4.1.2 Identifying work to be done 

Mozilla.org maintains a roadmap document [9] that specifies what will be included in 

future releases, as well as dates for which releases are scheduled.  Mozilla.org determines 

content and timing, but goes to considerable lengths to ensure that the development 

community is able to comment on and participate in these decisions. 

Anyone can report bugs, or request enhancements, in the same way. The process and 

hints are presented in [22]. The bug reporting and enhancement request process uses the 

Bugzilla problem-reporting tool, and requires requesters to set up an account on the 

system.  Bugzilla also has tools that allow the bug reporter to see the most recent bugs, 

and if desired to search the entire database of problem reports.  Potential bug reporters are 

urged to use these tools to avoid duplicate bug reports.  In addition, bug reporters are 

urged to come up with the simplest web page that would reproduce the bug, in order to 

expedite and simplify the bug's resolution.  Bugzilla provides a detailed form to report 

problems or describe the desired enhancement.    

4.1.3 Assigning and performing development work 

The mozilla.org members who write browser code appear to focus on areas where 

they have expertise and where work is most needed to support upcoming releases.  The 

development community can browse Bugzilla to identify bugs or enhancements they 

would like to work on.  Fixes are often submitted as attachments to Bugzilla problem 

reports.  Developers can mark Bugzilla items with a "helpwanted" keyword if they think 

an item is worth doing but don't themselves have the resources or all the required 

expertise.  Discussions can also be found in mozilla news groups, which may give 

development community members ideas about where to contribute.  Mozilla.org 

members may use the mozilla web pages to note particular areas where help is needed.  

When working on a particular Bugzilla item, developers are encouraged to record that 

fact in Bugzilla in order to avoid duplication of effort. 

4.1.4 Pre-release testing 

Mozilla.org performs a daily build, and runs a daily minimal "smoke test" on the build 

for several major platforms, in order to ensure the build is sufficiently stable to allow 

development work on it to proceed.  If the build fails, "people get hassled until they fixed 

the bits they broke."  If the smoke test identifies bugs, they are posted daily so that 

developers are aware of any serious problems in the build. 
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Mozilla currently has six product area test teams that take responsibility for testing 

various parts or aspects of the product, such as standards compliance, mail/news client, 

and internationalization.  Netscape personnel are heavily represented among the test 

teams, but the teams also include mozilla.org personnel, and many others.  The test teams 

maintain test cases and test plans, as well as other materials such as guidelines for 

verifying bugs and troubleshooting guides.   

4.1.5 Inspections 

Mozilla uses two stages of code inspections, one by module owners who review a patch 

in the context of the module and the second by a smaller designated group (referred to as 

super-reviewers, and highly accomplished technically) who review a patch for its 

interaction with the codebase as a whole before it is checked in. 

4.1.6 Managing releases 

Mozilla runs a continuous build process (Tinderbox) that shows what parts of the code 

have issues for certain builds and under certain platforms. It highlights the changes and 

their authors. It also produces binaries nightly and issues ``Milestones'' approximately 

monthly.  As Ms. Baker points out, "the Milestone releases involve more than Tinderbox.  

They involve project management decisions, usually a code freeze for a few days, a 

milestone branch, eliminating "stop-ship" bugs on the branch and a bit of polishing.  The 

decision when a branch is ready to be released as a Milestone is a human one, not an 

automated Tinderbox process.  These milestone decisions are made by a designated 

group, known as "drivers@mozilla.org", with input from the community." 

4.2 Quantitative results. 

In this section, we report results that address the same six basic questions we answered 

with respect to Apache in the previous section.  There are some differences between the 

projects that must be understood in order to compare Mozilla to Apache in ways that 

make sense. 

First, Mozilla is a much bigger project.  As shown in Table 4, Apache had about 6,000 

MRs, 18,000 delta, and 220,000 lines of code added.  In contrast, Mozilla consists of 78 

modules (according to M5 at the time of this writing), some of which are much larger 

than the entire Apache project.   

4.2.1 The size of the Mozilla development community. 

Q2: How many people wrote code for new functionality?  How many people reported 

problems?  How many people repaired defects?  
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Table 4. Sizes of Mozilla modules. 

 MRs (K) Delta (K) Lines added (K) Years Developers 
Apache 6 18 220 3 388 
A 3.3 129 5,000 3 101 
B 2.5 18 1,000 1.5 91 
C 1.1 2.8 81 1.3 17 
D 0.2 0.7 21 1.7 8 
E 0.7 2.4 90 1.5 16 
/layout 12.7 42 800 2.6 174 
/js 4.6 14 308 2.6 127 
/rdf 4.1 12 274 2 123 
/netwerk 3.2 10 221 1.6 106 
/editor 2.9 8 203 2 118 
/intl 2 5 118 1.8 87 
/xpinstall 1.9 5 113 1.7 102 

By examining change login and comment records in CVS we found 486 people who 

contributed code and 412 who contributed code to PR fixes that were incorporated. 

Numbers of contributors to individual modules are presented in Table 4.  

Table 5 presents numbers of people who contributed code submissions, problem 

fixes, and who reported problems. Because some problem reports do not correspond to a 

module in cases when the fix was not created or committed, we provide numbers for 

people who reported problems resulting in a fix and estimate of the total number using 

overall ratio in Mozilla of total number of people who reported PRs divided by number of 

people who reported PRs that resulted in code changes. Based on Bugzilla database 6837 

people reported 58K PRs with 1403 people reported 11616 PRs that can be traced to 

changes to the code. To estimate the total number of people reporting PRs for a module 

we multiplied the fourth column by 6837/1403. 

Table 5. Population of contributors to Mozilla modules. 

 
Number of people whose 
code submissions were 
included in the code base 

Number of people 
whose fixes were 
added to code base 

Number of people who 
reported bugs that 
resulted in code changes 

Number of people 
who reported 
problems (est) 

Apache     
/layout 174 129 623 3035 
/js 127 51 147 716 
/rdf 123 79 196 955 
/netwerk 106 74 252 1228 
/editor 118 85 176 857 
/intl 87 47 119 579 
/xpinstall 102 64 141 687 

4.2.2 External participation 

Because Mozilla began as a commercial project, and only later adopted an open source 

approach, in order to understand the impact of this change it is essential to understand the 

extent and nature of external participation. To this end, we examined the extent and the 
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impact of external participation in code contributions, fix contributions, and defect 

reporting.  

Figure 5 plots external participation over time. The measures include fraction of 

external developers and fraction of MRs, delta, and number of added lines contributed 

monthly by external developers. 
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Figure 5. Trends of external participation in Mozilla project. 

Figure 5 shows gradually increasing participation over time, leveling off in the second 

half of 2000. It is worth noting, that outside participants tend, on average, to contribute 

less changes and code relative to internal participants. It might reflect the part-time nature 

of the external participation. 

Much larger external participation may be found in problem reporting. While only 5% 

of the 6873 people who created PR's were internal, however, they reported 47% of the 

58K PRs. This indicates that PR reports were less equally spread among the participants 

than in Apache: 30K PRs were reported by only 113 people each reporting more than 100 

(up to 1000) PRs. 

Q3: Were these functions carried out by distinct groups of people, i.e., did people 

primarily assume a single role?  Did large numbers of people participate somewhat 

equally in these activities, or did a small number of people do most of the work? 
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Figure 6 shows cumulative distribution contributions (as for Apache in Figure 1). The 

developer participation does not appear to vary as much as in the Apache project. In 

particular, Mozilla development had much larger core groups relative to total number of 

participants. The participation curve for Mozilla is more similar to the curves of 

commercial projects presented in Figure 3. 
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Figure 6. The cumulative distribution of contributions to the code base for five Mozilla modules. 

The problem reporting participation was very uniform in Apache, but contributions 

vary substantially in Mozilla, with 50% of PRs reported by just 113 people with top 

person reporting over 1000 PRs (compare to Apache, where top reporter submitted only 

32 PRs).  46 of them did not contribute any code, and 25 were external. This indicates 

that a certain group of people inside and outside was dedicated to testing, unlike the 

Apache case. 

Given that most of the core developers work full time on the project, we can expect 

the productivity figures to be similar to commercial projects (which, when measured in 

deltas or lines added, were considerably higher than for Apache). The productivity of 

Netscape developers does appear to be quite high, and even exceeds the productivity of 

commercial projects that we consider (see Table 6).  
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Table 6. Comparison of productivity of the   "top" developers in selected Mozilla 

modules 
Module KMR/dev/year KLOCA/dev/year Size of core team 
/layout 0.17 11 35 
/js 0.13 16 24 
/rdf 0.11 11 26 
/netwerk 0.13 8.4 24 
/editor 0.09 8 25 
/intl 0.08 7 22 
/xpinstall 0.07 6 22 

As before, we defined core or "top" developers in each module as groups of the most 

productive developers that contributed 83% of MRs (in the case of KMR/developer/year) 

and 88% of lines added (in the case of KLOC/developer/year). There was one person in 

the "core" teams of all seven selected modules and 38 developers in at least two "core" 

teams.  Almost two thirds (64 out of 102) developers were only in a single core team of 

the selected modules.  

While the productivity numbers might be different due to numerous differences 

between projects, the data certainly appear to suggest that productivity in this particular 

hybrid project is comparable to or better to than the commercial projects we examined. 

4.2.3 Code Ownership 

Q4: Where did the code contributors work in the code?   Was strict code ownership 

enforced on a file or module level? 

For the Apache project, we noted that the process did not include any “official” code 

ownership, i.e., there was no rule that required an owner to sign off in order to commit 

code to an owned file or module.  We looked at who actually committed code to various 

modules in order to try to determine if a sort of de facto code ownership had arisen in 

which one person actually committed all or nearly all the code for a given module.  As 

we reported, we did not find a clear ownership pattern. 

In Mozilla, on the other hand, code ownership is enforced.  According to [15, 21], the 

module owner is responsible for: "fielding bug reports, enhancement requests, patch 

submissions, and so on. The owner should facilitate good development, as defined by the 

developer community." 

Also: "before code is checked in to the CVS Repository it must be reviewed by the 

appropriate module owner and possibly peers." To manage checkin privileges Mozilla 

uses a web-based tool called despot.  

Because of this pattern of “enforced ownership,” we did not believe that we would 

gain much by looking at who actually contributed code to which module, since those 

contributions all had to be reviewed and approved by the module owner.  Where there is 
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deliberate, planned, code ownership, there seemed to be no purpose to seeing if de facto 

ownership had arisen. 

4.2.4 Defects 

Q5: What is the defect density of Mozilla code?   

Because Mozilla has yet to have a non-beta release, all PRs may be considered to be 

post-feature-test (i.e., pre-release). The Defect density appears to be similar to, or even 

slightly lower than Apache (see Table 7 below). The defect density, whether measured 

per delta or per thousand lines of code, is much smaller than the commercial projects.  

The highest-defect density module has substantially lower defect density than any of the 

commercial projects, post feature test.  Compared to post-release defect densities, on the 

other hand, the commercial products have much lower defect densities than Mozilla. 

Table 7. Comparison of post-feature-test defect density measures. 
Module #PR/Kdelta #PR/KLOC Added 
Apache 40.8 2.6 
C 164 5.7 
D 196 6.0 
E 256 6.9 
/layout 51 2.8 
/js 19 0.7 
/rdf 27 1.4 
/netwerk 42 3.1 
/editor 44 2.5 
/intl 20 1.6 
/xpinstall 56 4 

4.2.5 Time to resolve problem reports  

Q6: How long did it take to resolve problems?  Were high priority problems resolved 

faster than low priority problems? Has resolution interval decreased over time? 

Out of all 57966 PRs entered in the Bugzilla database, 99% have a valid creation date 

and status change date; 85% of these have passed through the state "RESOLVED" and 

46% of these have resolution "FIXED" indicating that fix was checked into the codebase; 

83% "FIXED" bugs have passed through the state "VERIFIED" indicating that inspectors 

agreed with the fix.  

Figure 7 plots the cumulative distribution of interval for all resolved PRs broken 

down by whether or not the PR resolution is "FIXED", by priority, by the module, and by 

date (made before or after Jan 1, 2000).  

All four figures show that the median resolution interval is much larger than for 

APACHE. We should note, that half of the "FIXED" PR's had 43% or more of their 

resolution interval spent after the stage RESOLVED and before the stage VERIFIED. It 

means that mandatory inspection of changes in Mozilla almost doubles PR resolution 

interval. Half of the observed Mozilla interval is significantly longer than Apache 

interval, though.  
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Figure 7. Problem resolution interval. 

Half of PRs that result in fixes or changes are resolved in less than 30 days, while half 

of PRs that do not result in fixes are resolved in less than 15 days. This roughly 

corresponds to the inspection overhead (inspections are only done for FIXED PRs). 

There is significant relationship between interval and priority. Half of PRs with 

priority P1 and P3 are resolved in 30 days or less and half of priority P2 PRs are resolved 

in 80 days or less, while median interval of P4 and P5 PRs exceeds 100 days. The 

recorded priority of PRs did not matter in the APACHE context, but the “priority” 

implicitly determined by affected functionality had an effect on interval. This indicates 

that participants did adhere to the more formal Mozilla process.  

There is substantial variation in PR resolution interval by module. The PRs have 

median interval of 20 days for /editor and /js modules and 50 days for /layout and 

/netwerk modules. This is in contrast to APACHE where modules could be grouped by 

the number of users they affect. Furthermore, editor affects fewer users than /layout (2D 

graphics), yet resolution of the latter problems is slower, unlike in APACHE, where the 

resolution time decreased when the number of impacted users increased. 

Resolution interval decreases drastically between the two periods, possibly because of 

the increasing involvement of external developers or maturity of the project. We 

observed a similar effect in Apache. 
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5. HYPOTHESES REVISITED 

Hypothesis 1: Open source developments will have a core of developers who control the 

code base.  This core will be no larger than 10-15 people, and will create approximately 

80% or more of the new functionality.   

Hypothesis 2: For projects that are so large that 10-15 developers cannot write 80% of 

the code in a reasonable time frame, a strict code ownership policy will have to be 

adopted to separate the work of additional groups, creating, in effect, several related 

OSS projects. 

These hypotheses are supported by the Mozilla data.  The essential insight that led to 

these hypotheses is that when several people work on the same code, there are many 

potential dependencies among their work items.  Managing these dependencies can be 

accomplished informally by small groups of people who know and trust each other, and 

communicate frequently enough so that each is generally aware of what the others are 

doing.   

At some point, perhaps around an upper limit of 10-15 people, this method of 

coordinating the work becomes inadequate.  There are too many people involved for each 

to be sufficiently aware of the others.  The core groups for the various modules in 

Mozilla (with module size comparable to Apache in range of 3-12K delta per year and of 

duration longer than one year) range from 22 to 36, and so are clearly larger than we 

contemplated in these hypotheses.  And, much as we predicted, a form of code ownership 

was adopted by the various Mozilla teams.   

There are at least two ways, however, that the Mozilla findings cause us to modify 

these hypotheses.   While the size of the project caused the creation of multiple separated 

project "teams" as we had anticipated (for example, Chatzilla and other projects that 

contribute code to a "/extensions" directory), we observe code ownership on a module by 

module basis, so that the code owner must approve any submission to the owned files.  

This uses ownership to create a mechanism whereby a single individual has sufficient 

knowledge and responsibility to guard against conflicts within the owned part of the 

code.  There is no "core" group in the Apache sense, where everyone in the privileged 

group is permitted to commit code anywhere.  

This leads to a further point that not only did the Mozilla group use ownership in 

ways we did not quite expect, they used other mechanisms to coordinate the work that are 

independent of ownership.  Specifically, they had a more concretely defined process, and 

they had a much stricter policy regarding inspections.  Both of these mechanisms serve 
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also to maintain coordination among different work items.  Based on these additional 

findings, we would rephrase Hypotheses 1 and 2 as follows: 

Hypothesis 1a: Open source developments will have a core of developers who control the 

code base, and will create approximately 80% or more of the new functionality.  If this 

core group uses only informal, ad hoc means of coordinating their work, it will be no 

larger than 10-15 people. 

Hypothesis 2a: If a project is so large that more than 10-15 people are required to 

complete 80% of the code in the desired time frame, then other mechanisms, rather than 

just informal, ad hoc arrangements, will be required in order to coordinate the work.  

These mechanisms may include one or more of the following: explicit development 

processes, individual or group code ownership, and required inspections. 

Hypothesis 3: In successful open source developments, a group larger by an order of 

magnitude than the core will repair defects, and a yet larger group (by another order of 

magnitude) will report problems. 

For the modules that we report on in Mozilla, we observed large differences between 

the size of core team (22 to 35), the size of the communities that submit bug fixes that are 

incorporated into the code (47 to 129), and that find and report bugs that are fixed (119 to 

623), and estimated the total population of people that report defects (600 to 3000). These 

differences are substantial, and in the direction of the hypothesis, but are not as large as in 

Apache.  In particular, the group that adds new functionality is larger than we would have 

expected.  This is likely due to the hybrid nature of the project, where the core developers 

are operating in a more industrial mode, and have been assigned to work full time on the 

project.  Since Mozilla does not deviate radically from the prediction, and since the 

prediction was meant to apply only to pure open source projects, we don't believe that it 

requires modification at this time. 

Hypothesis 4: Open source developments that have a strong core of developers but never 

achieve large numbers of contributors beyond that core will be able to create new 

functionality but will fail because of a lack of resources devoted to finding and repairing 

defects.  

We were not able to test this hypothesis with the Mozilla data, since it did in fact 

achieve large numbers of contributors. 

Hypothesis 5: Defect density in open source releases will generally be lower than 

commercial code that has only been feature-tested, i.e., received a comparable level of 

testing. 
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The defect density of the Mozilla code was comparable to the Apache code, hence we 

can regard this hypothesis as supported. In Mozilla, there appears a sizeable group of 

people that specialize in reporting defects – an activity corresponding to testing activity 

in commercial projects. The project also uses a sophisticated problem reporting tool, 

Bugzilla, that keeps track of top problems to speed problem reporting and reduce 

duplicate reports, and maintains continuous multi-platform builds. Inspections, testing, 

and better tools to support defect reporting apparently compensate for larger and more 

complex code. 

The Mozilla project has yet to issue its first non-beta release, so we cannot assess 

post-release defect density at the time of this writing. While these Mozilla results are 

encouraging, they are difficult to interpret definitively.  Without data on post-release 

defects, it is difficult to know if the post-feature test densities are low because there really 

are relatively few defects in the code, or because the code has not been exercised 

thoroughly enough.   As we report above, however, over 6,000 people have reported at 

least one problem with Mozilla, so we are inclined to believe that the low defect densities 

probably reflect relatively low defect code, rather than code that has not been exercised. 

Hypothesis 6: In successful open source developments, the developers will also be users 

of the software. 

The reasoning behind this hypothesis was that low defect densities are achieved 

because developers are users of the software, hence they have considerable domain 

expertise.  This puts them at a substantial advantage relative to many commercial 

developers who vary greatly in their domain expertise.  This certainly appears to be true 

in the Mozilla case. While we did not have data on Mozilla use by Mozilla developers, it 

wildly implausible to suggest that the developers were not experienced browser users, 

hence, "domain experts" in the sense of this hypothesis.   

Hypothesis 7: OSS developments exhibit very rapid responses to customer problems.  

In the hybrid Mozilla case, response times are much longer than in the case of 

Apache.  This may be due to the more commercial-like aspects of development, i.e., the 

need to inspect, to submit the code through the owner, and so on.  It also uses a 30-day 

release (milestone) cycle that more closely resembles commercial processes than the 

somewhat more rapid Apache process.  Furthermore, Mozilla product is still in beta 

stage, and that might partly explain slower response times. Hence, it is not clear that the 

Mozilla data bear on this hypothesis, so long as it is taken to apply only to OSS, not to 

hybrid projects. 
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It should be noted that rapid responses to customer problems together with low defect 

density may significantly increase the availability of OSS software by minimizing the 

number and shortening the duration of downtime of customer’s systems.  

Hybrid Processes 

As we pointed out in the introduction, there are many ways in which elements of 

commercial and open source processes could be combined, and Mozilla represents only a 

single point in that space.  The essential differences have to do with coordination, 

selection, and assignment of the work.   

Commercial development typically uses a number of coordination mechanisms to fit 

the work of each individual into the project as a whole (see, e.g., [12, 14]).  Explicit 

mechanisms include such things as interface specifications, processes, plans, staffing 

profiles, and reviews.  Implicit mechanisms include knowledge of who has expertise in 

what area, customs and habits about how things are done.  In addition, of course, it is 

possible to substitute communication for these mechanisms.  So, for example, two people 

could develop interacting modules with no interface specification, merely by staying in 

constant communication with each other.  The “communication-only” approach does not 

scale, of course, as size and complexity quickly overwhelm communication channels.  It 

is always necessary, however, as the default means of overcoming coordination 

problems, as a way to recover if unexpected events break down the existing coordination 

mechanisms, and to handle details that need to be worked out in real time. 

Apache adopts an approach to coordination that seems to work extremely well for a 

small project.  The server itself is kept small.  Any functionality beyond the basic server 

is added by means of various ancillary projects that interact with Apache only through 

Apache’s well-defined interface.  That interface serves to coordinate the efforts of the 

Apache developers with anyone building external functionality, and does so with minimal 

ongoing effort by the Apache core group.  In fact, control over the interface is 

asymmetric, in that the external projects must generally be designed to what Apache 

provides.  The coordination concerns of Apache are thus sharply limited by the stable, 

asymmetrically-controlled interface. 

The coordination necessary within this sphere is such that it can be successfully 

handled by a small core team using primarily implicit mechanisms, e.g., a knowledge of 

who has expertise in what area, and general communication about what is going on, who 

is doing what, when.  When such are mechanisms are sufficient to prevent coordination 

breakdowns, they are extremely efficient.  Many people can contribute code 

simultaneously, and there is no waiting for approvals, permission, and so forth, from a 
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single individual.  The core people just do what needs to be done.  The Apache results 

show the benefits in speed, productivity, and quality. 

The benefit of the larger open source community for Apache is primarily in those 

areas where coordination is much less of an issue.  While bug fixes occasionally become 

entangled in interdependencies, most of the effort in bug fixing is generally in tracking 

down the source of the problem.  Investigation, of course, cannot cause coordination 

problems.  The tasks of finding and reporting bugs are completely free of 

interdependencies, in the sense that they do not involve changing the code. 

The Mozilla approach has some, but not all, of the Apache-style OSS benefits.  The 

open source community has taken over a significant portion of the bug finding and fixing, 

as in Apache, helping with these low-interdependency tasks.  However, the Mozilla 

modules are not as independent from one another as the Apache server is from its 

ancillary projects.  Because of the interdependence among modules, considerable effort 

(i.e., inspections) needs to be spent in order to ensure that the interdependencies do not 

cause problems.  In addition, the modules are too large for a team of 10-15 to do 80% of 

the work in the desired time.  Therefore, the relatively free-wheeling Apache style of 

communication and implicit coordination is likely not feasible.  The larger Mozilla core 

teams must have more formal means of coordinating their work, which in their case 

means a single module owner who must approve all changes to the module.  These 

characteristics produce high productivity and low defect density, much like Apache, but 

relatively long development intervals.   

The relatively high level of module interdependence may be a result of many factors.  

For example, the commercial legacy distinguishes Mozilla from Apache and many other 

purely open source projects.  One might speculate that in commercial development, 

feature content is driven by market demands, and for many applications (such as 

browsers) the market generates great pressure for feature richness.  When combined with 

extreme schedule pressure, it is not unreasonable to expect that the code complexity will 

be high and that modularity may suffer.  This sort of legacy may well contribute to the 

difficulty of coordinating Mozilla and other commercial-legacy hybrid projects. 

It may be possible to avoid this problem under various circumstances, e.g.,  
• new hybrid projects that are set up like OSS projects, with small teams owning well-separated 

modules, 
• projects with OSS legacy code, and 
• projects with a commercial legacy, but where modules are parsed in a way that minimizes module-

spanning changes (see [19] for a technique that accomplishes this). 
Given this discussion, one might speculate that overall, in OSS projects, low post-

release defect density and high productivity stem from effective use of the open source 
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community for the low-interdependence bug finding and fixing tasks.   The fact that 

Mozilla was able to achieve defect density levels like Apache’s argues strongly that even 

when an open source effort maintains much of the machinery of commercial development 

(including elements of planning, documenting the process and the product, explicit code 

ownership, inspections, and testing), there is substantial potential benefit.  In particular, 

defect density and productivity both seem to benefit from recruiting an open source 

community of testers and bug fixers.   Speed, on the other hand, seems to require highly 

modularized software and small highly-capable core teams and the informal style of 

coordination this permits.  

Interestingly, the particular way that the core team in Apache (and, we assume, many 

other OSS projects) is formed may be another of the keys to their success.  Core members 

must be persistent and very capable to achieve core status.  They are also free, while they 

are earning their core status, to work on any task they choose.  Presumably they will try 

to choose something that is both badly needed and where they have some specific 

interest.  While working in this area, they must demonstrate a high level of capability, 

and they must also convince the existing core team that they would make a responsible, 

productive colleague.  This is in contrast to most commercial development, where 

assignments are given out that may or may not correspond to a developer’s interests or 

perceptions of what is needed.   

We believe that for some kinds of software, in particular those where developers are 

also highly knowledgeable users, it would be worth experimenting, in a commercial 

environment, with OSS-style “open” work assignments.  This approach implicitly allows 

new features to be chosen by the developers/users rather than a marketing or product 

management organization.   

We expect that time and future research will further test the above hypotheses and 

will demonstrate new approaches that would elegantly combine best technologies from 

all types of software development environments.  Eventually, we expect such work to 

blur distinctions between the commercial and OSS process reported in this paper.  
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APPENDIX 

Table 8. Comparison of Apache and mozilla processes. 
 Apache Mozilla 
Scope The apache project we exmined 

includes only the apache server. 
The Mozilla project includes the browser, as 
well as a number of development tools and a 
toolkit.  Each of these projects is as large or 
larger than the Apache server. 

Roles and 
Responsibilities 

The Apache Group (AG) currently has 
about 25 members, all of whom are 
volunteers.  They can commit code 
anywhere in the server.  The core 
development group includes the 
currently active AG members as well as 
others who are very active and under 
consideration for membership in AG.   

Mozilla.org has 12 members, who are 
assigned to this work full time.  Several spend 
considerable time coding, but most play 
support and coordination roles.  Many others 
have substantial responsibility, e.g., owners of 
the approximately 80 modules, and leaders of 
the 6 test teams.  Many of the non-mozilla.org 
participants are also paid to spend time on 
Mozilla development. 

Identifying work 
to be done 

Since only the AG has commit access to 
the code, they control all changes.  The 
process is an open one, however, in the 
sense that others can propose fixes and 
changes, comment on proposed 
changes, and advocate them to the AG.  

Anyone can submit a problem report or 
request an enhancement, but mozilla.org 
controls the direction of the project.  Much of 
this authority is delegated to module owners 
and test teams, but mozilla.org reserves the 
right to determine module ownership and to 
resolve conflicts. 

Assigning and 
performing 
development 
work 

Anyone can submit patches, choosing 
to work on their own enhancements or 
fixes, or responding to the developer 
mailing list, news group, or BUGDB.  
Core developers have “unofficial” areas 
of expertise where they tend to do much 
of the work.  Other core developers 
tend to defer to experts in each area.  

Developers make heavy use of the Bugzilla 
change management tool to find problems or 
enhancements to work on.  They are asked to 
mark changes they choose to work on in order 
to avoid duplication of effort.  Developers can 
use Bugzilla to request help on a particular 
change, and to submit their code. 

Pre-release testing Developers perform something like 
commercial unit and feature testing on a 
local copy.   

Minimal “smoke screen” tests are performed 
on daily builds.  There are six test teams 
assigned to parts of the product.  They 
maintain test cases, guidelines, training 
materials, etc., on the mozilla.org web site. 

Inspections All AG members generally review all 
changes.  They are also distributed to 
the entire development community who 
also frequently submit comments.  In 
general, inspections are done before 
commits on stable releases, and after 
commits on development releases. 

All changes undergo two stages of 
inspections, one at the module level, and one 
by a member of the highly-qualified “super-
reviewer” group.  Module owners must 
approve all changes in their modules. 

Managing 
releases 

Job of release manager rotates through 
experienced members of AG.  Critical 
problems are identified, access to code 
is restricted (it is “frozen”).  When 
release manager determines that critical 
problems are resolved and code is 
stable, the code is released. 

Mozilla has daily builds and “milestone” 
releases approximately monthly.  The code is 
frozen for a few days prior to a milestone 
release, critical problems are resolved.  A 
designated group at mozilla.org is responsible 
for milestone decisions. 
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