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The requirements
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Topics for day’s discussions

Topics on software engineering
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The process
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The complication

✦ The only thing I know for sure is that I don’t know
anything

✧ How can I provide topics worthy of discussion?

✧ How can I avoid embarrassing organizers?
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The way out

Tell what I do not know
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But how can I tell what I do not know?
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by asking questions?!
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The proposed solution

✦ I will ask questions, you will provide answers

✧ “One fool can ask more questions than one hundred wise (wo)men

can answer”

✧ so please don’t get frustrated by silly questions...
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Basic questions
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The purpose of human endeavor?

✦ If the works succeeds beyond the wildest dreams, will the results

be useful?

✧ For me?

✧ For anyone else?

✧ For people who do what?

✧ How many?

✧ For how long?
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What are we doing in this room?

✦ What is MSA?

✦ Is it different from MSR?

✦ Is it data mining?

✦ Is it software engineering?

✦ Is it measurement?

✦ Is it science?

12 A. Mockus Measurement in Science and Software Engineering Monte Verita, 2010



Data Mining?

✦ “the process of extracting patterns from data”

✦ What to do with patterns?

✧ Use them to accomplish specific tasks?

✧ Direct benefits: more revenue/less cost

✧ Recommend a movie?

✧ Pick the advertisement or advertiser?

✧ In software - static analysis (e.g., klockwork), test generation?

✧ Indirect: more reputation/trust?

✧ Provide relevant information/service (search, news, reviews,

people, ...)?

✧ In software?
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Statistics?

“the science of making effective use of numerical data, including not

only the collection, analysis and interpretation of such data, but also

the planning of the collection of data.”

14 A. Mockus Measurement in Science and Software Engineering Monte Verita, 2010



Measurement?

✦ Why measure? Because without data, you only have opinions? or

✧ to characterize, or gain understanding of your processes, products,

resources, and environments?

✧ to evaluate, to determine your status with respect to your plans?

✧ to predict, by understanding relationships among processes and

products so the values you observe for some attributes can beused to

predict others?

✧ to improve, by identifying roadblocks, root causes, inefficiencies, and

other opportunities for improvement?

✦ Why analyze? Because the data you collect can’t help you if you

don’t understand it anduseit to shape your decisions?
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Software Engineering?

✦ Characterize, understand, and improve software practice?

✧ Inform and predict: (quantitatively) trade-offs among schedule,

quality, cost?

✧ Where effort is spent, where defects are introduced?

✧ What is the impact of technologies/organization/individuals?

✧ Act:

✧ Introduce technologies?

✧ Change organization?

✧ Train individuals?
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Science?

✦ Fundamental questions about human and collective nature?

✧ X is the study ofpast human events and activities

✧ Y is the study of humancultures through therecovery,

documentation and analysis ofmaterial remains

✧ Z is the study of developercultures andbehaviorsthrough the

recovery, documentation and analysis ofdigital remains

✦ Is it X, Y, or Z?

✧ Tomographyis image reconstruction from multiple projections

✧ What is the reconstruction of developer behavior from the digital

traces they leave in the code and elsewhere?
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Method: Software Tomography?
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Software change?
✦ Developerscreatesoftware by changes?

✦ All changesare recorded?

Before:

int i = n;

while(i++)

prinf(” %d”, i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(” %d”, i−−);

✦ one line deleted

✦ two lines added

✦ two lines unchanged

✦ Many other attributes: date, developer, defect number, . . .
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Uniform Theory of Everything?

✦ Sales/Marketing: customer information, rating, purchasepatters,

needs: features and quality

✦ Accounting: customer/system/software/billing

✦ Maintenance support: installed system, support level, warranty

✦ Field support: dispatching repairmen, replacement parts

✦ Call center support: customer/agent/problem tracking

✦ Development field support: software related customer problem

tracking, installed patch tracking

✦ Development: feature and development, testing, and field defects,

software change and software build, process WIKI
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Context, data, and software — D-Ware?

✧ Data have meaning without context?

✧ Data have meaning without knowing how it was obtained?

✧ Data have meaning without knowing how it was processed?

✧ Data have “bugs” beyond bugs in the analysis software?
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SW tomography: all D-Ware has bugs?

✦ Bugs in the phenomena under study — randomness?

✦ Bugs in data recording — people (longitudinal), process, tool

interface and schema (bias)?

✦ Bugs in data processing — software, schema, no “classical”

randomness?

✦ Bugs in interpretation — method?

22 A. Mockus Measurement in Science and Software Engineering Monte Verita, 2010



Any bugs here?

Priority Tot. Prj A Tot. Prj B Tot. Prj C % A % B % C

Critical 10 62 0 0 0 0

High 201 1642 16 5 13 5

Medium 3233 9920 659 84 76 85

Low 384 344 1 10 3 1

Total 3828 12968 676 100 100 100
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Any bugs here?

✦ Question: Reliability of SD Flash cards (used to boot the

system)?

✦ Answers:

✧ Lets count the number of cases where customer tickets mention flash

card and divide by the number of all systems/run-time?

✧ Lets count the number of flash card replacement shipments?
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Any bugs here?

✧ Lets count the number of flash card replacement shipments?

✧ Unneeded replacements (the card was fine)?

✧ Missed replacements (the card was obtained through other sources)?
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Any bugs here?

✧ Lets count the number of cases where customer tickets mentionflash

card?

✧ What if the ticket just mentions the flash card, but there is no

problem with it?
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Any bugs here?

✧ Lets count the number of cases where customer tickets mention flash

card?

✧ What if the ticket just mentions the flash card, but there is no

problem with it?

✧ If we eliminate these false matches, what about the rest?
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Any bugs here?

✧ Lets count the number of cases where customer tickets mention flash

card?

✧ What if the ticket just mentions the flash card, but there is no

problem with it?

✧ If we eliminate these false matches, what about the rest?

✧ Interview people who worked on the problem — (ground truth -

Terra Verita)?
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Any bugs here?

✧ Lets count the number of cases where customer tickets mention flash

card?

✧ What if the ticket just mentions the flash card, but there is no

problem with it?

✧ If we eliminate these false matches, what about the rest?

✧ Interview people who worked on the problem — (ground truth -

Terra Verita)?

✧ What if we cant trust them? E.g., “the first action in a case of a

problem with a reboot is to replace the card.”
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SW tomography: bugs in the phenomena?
“We get the notions theories are right because we keep talking about them.

Not only are most theories wrong, but mostdata are alsowrong at first

subject to glaring uncertainties. The recent history of X isfull of promising

discoveries that disappeared because they could not be repeated.”

✦ Statistical methods takevariability into account to support making

informed decisions based on quantitative studies designedto answer

specific questions.

✦ Visual displays and summary statistics condense the information in data

sets intousable knowledge.

✦ Randomnessis the foundation for using statistics to draw conclusions

when testing a claim or estimating plausible values for a population

characteristic.

✦ The design of an experiment or sample survey is of critical importance to

analyzing the data and drawing conclusions.
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SW tomography: Debugging
✦ Learn the real process

✧ Interview key people: architect, developer, tester, field support,

project manager

✧ Go over recent change(s) the person was involved with

✧ To illustrate the actual process (What is the nature of this work

item, why/where it come to you, who (if any) reviewed it, ...)

✧ To understand what the various field values mean: (When was

the work done in relation to recorded fields, ...)

✧ To ask additional questions: effort spent, information exchange

with other project participants, ...

✧ To add experimental questions

✧ Apply relevant models

✧ Validate and clean recorded and modeled data

✧ Iterate
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SW tomography: Levels [0-2]
✦ Level 0 — actual project. Learn about the project, make copies of

its systems

✦ Level 1 — Extract raw data

✧ change table, developer table (SCCS: prs, ClearCase: cleartool-lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Level 2 — Do basic cleaning

✧ Eliminate administrative and automatic artifacts

✧ Eliminate post-preprocessor artifacts
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SW Tomography: Testing/Debugging

Takes up 9[5-9]% of all effort

✦ Use levels and pipes, a la satellite image processing

✦ Validation tools (regression, interactive) for each level/transition

✧ Traceability to sources from each level

✧ Multiple operationalizations within/across levels

✧ Comparison against invariants

✧ Detecting default values

✧ Handling missing values

Version control D-Ware to aid “data debugging”?

***Keep raw data/systems and version control processing scripts?***
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Why software tomography?
✧ Non-intrusive, minimizes overhead?What about in-depth

understanding of project’s development process?

✧ Historic calibration, immediate diagnosis?It takes time and effort to get

to that point?

✧ Fine-grain, at the delta level?But aren’t links to more sensible attributes

like features and releases often tenuous?

✧ Everything is recorded?What about entries that are inconsistently or

rarely filled in?

✧ Uniform over time? But process may have changed?

✧ Small effects can be detected with a lot of data?Are the relevant

quantities extractable?

✧ No observer effect?Even when the such data are used widely in

organizational measurement?
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Why not Software Tomography?

✦ Apples and oranges:

✧ Do projects use the same rules to divide work (MRs)?

✧ How to compare data from: CVS, ClearCase, SCCS, svn, git, hg,

bzr?

✧ Does every project uses the same tool in the same way: under what

circumstances the change is submitted, when the MR is created?

✦ Easy to get lost analyzing irrelevant things?

✦ Are there change back-projection models of key software

engineering problems?
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Software Tomography: reconstructing the
image

✦ Predicting the quality of a patch [16]

✦ Globalization: move development where the resources are:

✧ What parts of the code can be independently maintained [17]

✧ Who are the experts to contact about any section of the code [13]

✧ Mentorship and learning [11, 20]

✦ Effort: estimate MR effort and benchmark process

✧ What makes some changes hard [7, 6, 10]

✧ What processes/tools work [1, 2, 4, 14]

✧ What are OSS/Commercial process differences [12]

✦ Project models

✧ Release schedule [8, 18, 5]

✧ Release quality/availability [3, 15, 9, 19]
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Questions of style and productivity
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Why do easy things?

✦ Counts, trends, patterns?

✦ Open source, popular projects, VCS?

✦ Topics that are well formulated?

✧ Which modules will get defects?
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Patterns: Developer changes over 24 hours — isn’t it beautiful?
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Fascination with defects
✦ How to not introduce defects?

✧ Improve requirements and other process?

✧ Improve modularity, increase language level, smarter static

type-checking, LINT-type heuristics, . . . ?

✧ Verification of software models?

✦ How to find/eliminate defects?

✧ Inspections?

✧ Testing?

✧ Debugging?

✦ How to predict defects?

✧ When to stop testing and release?

✧ What files, changes will have defects?

✧ How customers will be affected?
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Where faults will occur?

✦ Assume the best possible outcome, i.e., we can predict exactly!

✦ Does it help?

✧ “We look at defects for features, not for files”

✧ Most defects discovered by static-analysis tools are not fixed?

✧ “often it’s better to leave a known defect unresolved, than fix it and

[by doing that] introduce a defect you don’t know about”

✧ Effort needed to investigate predictions exceeds all QA resources?
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Can bugs be predicted reliably?
No
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Why such huge improvement in quality?

42 A. Mockus Measurement in Science and Software Engineering Monte Verita, 2010



How many customers got each release?
No
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Questions of practice
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Practice: how to compare software releases?
“we tried to improve quality : get most experienced team members

to test, code inspections, root cause analysis, ...”

“Did it work? I.e., is this release better than previous one?”

Everyone usesdefect density(e.g.,customer reported defects per

1000 changes or lines of code), but “itdoes not reflectfeedback from

customers.”

Ok, then lets measure the probability thata customer will report a

software defect
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A paradox: large telecom software
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Is the paradox unique for this product?
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What fraction of customers are affected (IQ)?
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✦ Fraction of customers reporting software failures within months of installation

✦ Significant differences from prior releases marked by “*”

✦ “We live or die by this measure.”

— executive for product quality
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Can we move software production to the
cheapest location?

Offshoring/Outsourcing/Retirement

Developer Churn
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A plateau?
“developers reachfull productivity infew months.”

— a common response from managers and developers
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Fully productive, but...

“We do not assign important tasksfor developers that have been

less than three yearson a project.”

“We tried to do that aftertwo years, but itdid not work well.”

— Senior architect
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Task’s importance keeps increasing?
7.

0
7.

5
8.

0
8.

5
9.

0
9.

5

log(Centrality) ~ ID + Tenure

Tenure (months)

C
en

tra
lit

y 
fo

r A
vg

 D
ev

lp
r

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Average task’s centrality (average centrality of modules modified by

the task) versus Tenure
52 A. Mockus Measurement in Science and Software Engineering Monte Verita, 2010



Social learning
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Discussion
✦ Entire social and business life is digitally recorded: infinite

resources and opportunities for Software Tomography?

✧ Multiple dimensions of human activity are recorded?

✧ Multiple models (reconstructions) from various fields are

(re)invented?

✦ D-Ware bugs: phenomena, UI, software, data processing, and
interpretation?

✧ Statistical and software “randomness/bugs”?

✦ But how to use these digital projections of human endeavor toget
results relevant to

✧ Yourself?

✧ Someone else?

✧ Many people?

✧ For eternity...
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Abstract
Measurement is the essence of science: ”To measure is to know”. In engineering the data can’t help

if you don’t understand it and use it to make decisions. As many professional and social activities

are moving online and rely on software tools, a vast amount ofdata becomes available. Practical

applications in business intelligence, and sciences have been demonstrated that use various models

and methods to solve a particular problem in the corresponding domain. It is, therefore, tempting to

apply these techniques on software engineering data often without the adequate adaptations to the

domain with the completely different needs. Furthermore, as the field of Computer Science matures,

it requires more rigorous empirical approaches and the samecan be said about rapidly maturing

fields of Mining Software Archives/Repositories. Therefore, we discuss common issues facing

researchers with Computer Science background as they move into empirical areas that require

several fundamentally different concepts: variation, reproducibility, and human factors. In addition

to methodological issues, we also look at the future challenges posed by the need to integrate more

and more disparate sources of data, the tradeoffs between using the most easily available and the

more meaningful measures, and the need to address core software engineering concerns.
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