Is Mining Software Repositories
Data Science?

Audris Mockus
Avaya Labs Research
audris@avaya.com

[2014-05-30]

Outline

Data Science and Operational Data, Software Repositories
Illustration: Traditional vs Data Science

Why Research on Operational Data (OD)?

Aim and Approach

Software Repository Puzzle

Resolving the Puzzle: Missing Defects

Conclusions

Supplements

Basics

Definition (Knowledge)

A useful model, i.e., simplification of reality

Definition (Software Repositories)

Data managed or generated by tools in the regular course of
software development and related activities.

Data Science, Operational Data, Software Repositories
Definition (Data Science)

The study of the generalizable extraction of knowledge from data
Goal: Laws of extracting knowledge from data?

Data Science, Operational Data, Software Repositories
Definition (Data Science)

The study of the generalizable extraction of knowledge from data
Goal: Laws of extracting knowledge from data?

» What properties of data make it Data Science?
science extracts knowledge from experiment data

Data Science, Operational Data, Software Repositories

Definition (Data Science)
The study of the generalizable extraction of knowledge from data
Goal: Laws of extracting knowledge from data?

» What properties of data make it Data Science?
science extracts knowledge from experiment data

Definition (Operational Data (OD))

Digital traces produced in the regular course of work or play (i.e.,
data generated or managed by operational support tools)

> no carefully designed measurement system

Data Science, Operational Data, Software Repositories

Definition (Data Science)
The study of the generalizable extraction of knowledge from data
Goal: Laws of extracting knowledge from data?

» What properties of data make it Data Science?
science extracts knowledge from experiment data

Definition (Operational Data (OD))

Digital traces produced in the regular course of work or play (i.e.,
data generated or managed by operational support tools)

> no carefully designed measurement system

Definition (Mining Software Repositories)

The (generalizable) analysis of data in software repositories to
uncover interesting and actionable information about software
systems and projects

Data Science, Operational Data, Software Repositories

Definition (Data Science)
The study of the generalizable extraction of knowledge from data
Goal: Laws of extracting knowledge from data?

» What properties of data make it Data Science?
science extracts knowledge from experiment data

Definition (Operational Data (OD))

Digital traces produced in the regular course of work or play (i.e.,
data generated or managed by operational support tools)

> no carefully designed measurement system

Definition (Mining Software Repositories)

The (generalizable) analysis of data in software repositories to
uncover interesting and actionable information about software
systems and projects

Goal: Laws of extracting knowledge from software data?

Science: Traditional Data for Surface Temperature

Meteorology

» Weather stations: temperature
SENsors
» Locations:
> Known
> Distributed over areas both
easy and hard to access

Science: Traditional Data for Surface Temperature

Meteorology

» Weather stations: temperature
SENsors
» Locations:
> Known
> Distributed over areas both
easy and hard to access

» Calibrated sensor, 5 £ 1 ft above
the ground, shielded from sun,
freely ventilated by air flow ...

Science: Traditional Data for Surface Temperature

Meteorology

» Weather stations: temperature
sensors >
» Locations:

> Known Y
> Distributed over areas both
easy and hard to access

» Calibrated sensor, 5 &= 1 ft above
the ground, shielded from sun,
freely ventilated by air flow ...

» Measures collected at defined
times

Science: Traditional Data for Surface Temperature

Meteorology

» Weather stations: temperature
sensors
» Locations:

> Known
> Distributed over areas both
easy and hard to access

» Calibrated sensor, 5 &= 1 ft above
the ground, shielded from sun,
freely ventilated by air flow ...

» Measures collected at defined
times

» Can focus on modeling the surface
temperature

Data Science: Operational Data for Surface Temperature

Logs from Mobile Phones

» No temperature measures

» Geo-location,
accelerometer, . ..

> No context: indoors/in a
car/outside

» Not all locations are
covered, not all time

Sensor Values

Data Science: Operational Data for Surface Temperature
Logs from Mobile Phones

» Discover Data Laws, e.g,
» How temperature affects R
sensor data? o
» How to recognize when a
subject/sensor is outside?

Data Science: Operational Data for Surface Temperature
Logs from Mobile Phones

» Use Data Laws (Laws of
Data Science) to

» Recover context, correct,
impute missing

» Map sensor output into
temperature

Equal Areas in Equal Times

Examples of Tools Producing OD

Note:
OD from traces of events or associations are most amenable to
reconstructing the past states of the world (work and play).

Examples of Software Tools that Generate OD
» Version control systems (VCS)

» SCCS, CVS, ClearCase, SVN, Bazaar, Mercurial, Git

> Issue tracking and customer relationship management
» Bugzilla, JIRA, ClearQuest, Siebel

» Code editing (Eclipse), communication (Twitter),
documentation (StackOverflow), ...

Example OD: Version Control Data

Developers use VCS to make changes to code (in parallel)

Traces Left by VCS
Code Before
inti = n;

while (i——)
printf (" %d", i);

Code After
//print n integers iff n> 0
inti = n;
while (——i > 0)
printf (" %d", i);

Example OD: Version Control Data

Developers use VCS to make changes to code (in parallel)

Traces Left by VCS
Code Before
inti = n;
while (i——)
printf (" %d", i);

one line deleted

Code After
//print n integers iff n> 0
inti = n;
while (——i > 0)
printf (" %d", i);

Example OD: Version Control Data
Developers use VCS to make changes to code (in parallel)

Traces Left by VCS

Code Before Code After
//print n integers iff n> 0
inti = n; inti = n;
while (i——) while (——i > 0)
printf (" %d", i); printf (" %d", i);

two lines added

Example OD: Version Control Data

Developers use VCS to make changes to code (in parallel)

Traces Left by VCS
Code Before
inti = n;

while (i——)
printf (" %d", i);

Code After
//print n integers iff n> 0
inti=n;
while (——i > 0)
printf (" %d", i);

two lines unchanged

Example OD: Version Control Data

Developers use VCS to make changes to code (in parallel)

Traces Left by VCS
Code Before
inti = n;
while (i——)
printf (" %d", i);

one line deleted

Code After
//print n integers iff n> 0
inti=n;
while (——i > 0)
printf (" %d", i);

two lines added two lines unchanged

Other attributes: date: 2014-05-29 01:25:30, developer id: audris,
branch: master, Comment: “Fix bug 3987 - infinite loop if n < 0"

Why Research on Operational Data (OD)?

> Prevalent
» Massive data from software development
» OD increasingly used in practice
» Human activities transition to a digital domain
» Treacherous - unlike experimental data
» Multiple contexts
» Missing events
> Incorrect, filtered, or tampered with
» Continuously changing
» OS systems and practices are evolving
» New OS tools are being introduced in SE and beyond
» Other domains are introducing similar tools

Aim (for MSR and Data Science)

Notes

» OD analysis has to be a software system (ODAS)
» ODAS feeds on (and feeds) operational support (OS) tools

Aim
» Develop approaches and tools for engineering ODAS
» To ensure the integrity of results
» To improve effectiveness of operational support tools
» To simplify building of ODAS
» To improve quality of OD

Method

» Discover by studying existing ODAS

> Integrity issues tend to be ignored
» Cleaning/processing scripts offered

» Borrow suitable techniques from other domains
» e.g., software engineering, databases, statistics, HCI, ...

» Synthesize new approaches for unique features of ODAS

Unique Features of OD: Multi-context, Missing, and Wrong

» Example issues with commits in VCS
» Context:

> Why: merge/push/branch, fix/enhance/license

» What: e.g, code, documentation, build, binaries

> Practice: e.g., centralized vs distributed, frequency of commits
Missing: e.g., private VCS, links to defect IDs
Incorrect: bug/new, problem description
Filtered: small projects, import from CVS
Tampered with: git rebase

vV vy VvYyy

» Establish Data Laws: to segment, impute, and correct
» Mechanisms

> Based on the way operational support systems are used
» Based on the physical and economic constraints
> Are empirically validated

A Puzzle from Software Domain

» Analogy to surface temperature
» Surface temperature
> User-Perceived Quality
» Data
» Software Repositories
» Customer Support Tools
» Context
» Enterprise software products
» Concern: customer found and reported product defects (CFDs)
» Nature of the puzzle: contradicting measures

» CFDs per LOC/Change
» Chances for a user to experience a defect

Defects

0.05 0.10 0.15

Defects per change and % of cstmr rpt defect

0.00

per change — R1.1 - best, R2.2 - Worst?

=ph= Customer Defects Per Pre—Release change

ri.1 ri.2 ri.3 r2.0 r2.1

Defects

0.05 0.10 0.15

Defects per change and % of cstmr rpt defect

0.00

per change — R1.1 - best, R2.2 - Worst?

=== Customer Defects Per Pre—Release Change
=G % of custmrs with defect within 3m. of install

ri.1 ri.2 ri.3 r2.0 r2.1

Defects

0.05 0.10 0.15

Defects per change and % of cstmr rpt defect

0.00

per change — R1.1 - best, R2.2 - Worst?

=== Customer Defects Per Pre—Release Change
=G % of custmrs with defect within 3m. of install

ri.1 ri.2 ri.3 r2.0 r2.1

Defects

0.05 0.10 0.15

Defects per change and % of cstmr rpt defect

0.00

per change — R1.1 - best, R2.2 - Worst?

=== Customer Defects Per Pre—Release Change
=G % of custmrs with defect within 3m. of install

ri.1 ri.2 ri.3 r2.0 r2.1

Defects per change — R1.1 - best, R2.2 - Worst?

fect
0.15

0.10

0.05

=== Customer Defects Per Pre—Release Change
=G % of custmrs with defect within 3m. of install

Defects per change and % of cstmrs rpt de

0.00

ri.1 ri.2 ri.3 r2.0 r2.1 r2.2

Reality check: rl1.1 - worst, r2.2 - best.

Is this a unique case?

Five releases of another product

0.6

0.5

=fh= Customer Defects Per Pre—Release Change
A = (O Customer Defects/Installed System

0.0

r5 r5.1 r6.0 r7.0 r7.1

Perfect anti-correlation again?!

Are there Systematic Ways to Resolve Similar Paradoxes?

» Derive measures from operational data that

> Usefully reflect reality
» Can be used to improve software development

How are Bugs Observed?

Context
Enterprise software products, highly configurable, sophisticated
users, many releases of software

Definition (Platonic Defect)

An error in coding or logic that causes a program to malfunction or
to produce incorrect/unexpected results

Definition (Customer Found Defect (CFD))

A user found (and reported) program behavior (e.g., failure) that
results in a code change.

Implications of Using Software Repository OD to Count
CFDs

v

CFDs are observed/measured, not defects

» By definition, CFDs are introduced by users, not developers
Lack of use hides defects

» A mechanism by which defects are missing
Not CFDs

» (Small) issues users don't care to report
» (Serious) issues that are too difficult to reproduce or fix

More CFDs — more use — a better product
» Smaller chances of discovering a CFD by later users

v

v

v

v

Can't introduce flaws intentionally to increase release
"quality”
» Because users will not install bad release

Laws and Commandments
Mechanisms and Good Practices for CFDs

v

Law I: Code Change Increase Odds of CFDs
Law II: Deploying to More Users will Increase Odds of CFDs

v

v

Law IlI: Longer (and Heavier) Use will Increase Odds of CFDs

Commandment |: Don’t Be the First User of a Release

v

v

Commandment II: Don't Panic After Install/Upgrade
Commandment lll: You Should Keep a Steady Rate of CFDs

v

Law II: Deploying to More Users will Increase Odds of
CFDs

Mechanism

» New use profiles

» Different environments

Evidence

V60

nths)

Release with no

PersoNn Mo
3

users

’IN has no CFDs
e

Post Release

MRs per Week |

“M||||||||I|||.|m.... R

Al

Commandment |: Don’t Be the First User of a Release

Fraction

00

Formulation
First users are more likely to experience a CFD
Mechanism

> Later users get builds with patches
» Services team learns how to install /configure properly

» Workarounds for many issues are discovered

Evidence

Fraction of customers observing SW issue

> Quality 1 with time (users) after
the launch, and may be an order
of magnitude better one year
later[2]

oo o= o o s o
Time (years) between launch and deployment

Why Users Like More CFDs? A Game-Theoretic View

» Utility/Loss for a customer i installing at
time t;

> Loss /;p(t;): (see Law II, C-t I)
> p(t) = e *"p(0)
> p(0) - the chance of defect at launch

> n(t) - the number of of users who
install by time t

p(t): % of users with CFD

) os o5 s
t: (years) from launch

Why Users Like More CFDs? A Game-Theoretic View

» Utility/Loss for a customer i installing at
time t;

p(t): % of users with CFD

> Loss /;p(t;): (see Law II, C-t I)
> p(t) = e "()p(0)

> p(0) - the chance of defect at launch

> n(t) - the number of of users who
install by time t

* £ (yea?é) from Taunch’
Constraints

» Rate k at which issues are fixed by developers (see C-t Ill)

» Value of new features: v;(T —t;): decreases with install delays

Best strategy: t* = argmaxy, vi(T — t;) — lip(t;)

Implications

» How quality translates into revenue [1]?
» Can bound the deplyment/sales based on

» Launch quality p(0)
» Rate at which CFDs are fixed k

n(T) < apl(o) (e T —1)

Summary: Yes, OD are common to DS and MSR

Summary: Yes, OD are common to DS and MSR

> Research for OD-based engineering

> Is badly needed and challenging
» Should be fruitful

Summary: Yes, OD are common to DS and MSR

» Research for OD-based engineering

> Is badly needed and challenging
» Should be fruitful

» Defining features of OD
» No two events have the same context
> Anything observable represents a mix of platonic concepts
> Not everything is observed
» Data may be incorrect

Summary: Yes, OD are common to DS and MSR

» Research for OD-based engineering

> Is badly needed and challenging
» Should be fruitful

» Defining features of OD
» No two events have the same context
> Anything observable represents a mix of platonic concepts
> Not everything is observed
» Data may be incorrect

» How to engineer ODAS?

» Understand practices of using operational systems
» Use other sources (e.g., traditional observation) to establish
relationships among observed and unobserved factors (Data
Laws) to
» Recover the context
» Correct data
> Impute missing information

Bio

Audris Mockus wants to know how and why software development
and other complicated systems work. He combines approaches
from many disciplines to reconstruct reality from the prolific and
varied digital traces these systems leave in the course of operation.
Audris Mockus received a B.S. and an M.S. in Applied
Mathematics from Moscow Institute of Physics and Technology in
1988. In 1991 he received an M.S. and in 1994 he received a Ph.D.
in Statistics from Carnegie Mellon University. He works at Avaya
Labs Research. Previously he worked at Software Production
Research Department of Bell Labs.

Abstract

Trick question: what is Data Science? The collection and use of
low-veracity data in software repositories and other operational
support systems is exploding. It is, therefore, imperative to
elucidate basic principles of how such data comes into being and
what it means. Are there practices of constructing software data
analysis tools that could raise the integrity of their results despite
the problematic nature of the underlying data? The talk explores
the basic nature of data in operational support systems and
considers approaches to develop engineering practices for software
mining tools.

References

[d Audris Mockus.
Engineering big data solutions.
In FOSE, ICSE 2014, Hyderabad, India, June 1-6 2014.

@ Audris Mockus, Ping Zhang, and Paul Li.
Drivers for customer perceived software quality.

In ICSE 2005, pages 225-233, St Louis, Missouri, May 2005.
ACM Press.

:noexport:

	Data Science and Operational Data, Software Repositories
	Illustration: Traditional vs Data Science
	Why Research on Operational Data (OD)?
	Aim and Approach
	Software Repository Puzzle
	Resolving the Puzzle: Missing Defects
	Conclusions
	Supplements

