
Knowledge Flows in Open Source
Software Supply Chains

Audris Mockus
University of Tennessee

audris@utk.edu

[2017-11-03 Fri]

Outline

Preliminaries

Mapping SC and KF networks

Constructing the Network

Database Design

How does the network look like?

Network clusters (ecosystems)

Risk identification

Operational Data Quality

Summary

Ad

Because it is a supply chain

I 23 years at Bell Labs/Avaya Labs

I 3 at the University of Tennessee

I Data Science/Big data/Software
Engineering

I Looking for interested PhD
students

I Please contact at audris@utk.edu

Definition (What is Supply Chain)
is a set of three or more companies directly linked by one or
more of the upstream or downstream flows of products,
services, finance, and information from a source to a customer

Graphics courtesy of Diane Palmquist and Greg Kefer, GT Nexus, UT Supply Chain Forum, November 12, 2014

Definition (What is Supply Chain)
is a set of three or more companies directly linked by one or
more of the upstream or downstream flows of products,
services, finance, and information from a source to a customer

Graphics courtesy of Diane Palmquist and Greg Kefer, GT Nexus, UT Supply Chain Forum, November 12, 2014

Definition (What is Software Supply Chain)
is a supply chain with individual developers and groups
(software projects or packages) representing ”companies”
producing new versions of the source code (e.g., files,
modules, frameworks, or entire distributions).
The upstream and downstream flow from projects to end users
is represented by the dependencies and sharing of the source
code and by the contributions via patches, issues, and
exchange of information.

Definition (What are Knowledge Flows)
Transfer of tacit and explicit information, culture, behaviors,
customs, or values among individuals or groups that occurs as
a result of activities that are based on shared or
interdependent artifacts, interests, or objectives [1]. It is not
simply an exchange of explicit information as on, for example,
StackExchange.

Why think of FLOSS as a supply chain?

Because it is a supply chain

I Distributed authority/control
I A lack of understanding and

visibility

I Need for risk management
I Companies may withdraw support,

developers may move on
I See ”Roads and Bridges” report

from Ford foundation
I E.g. Heartbleed: single developer

for all e-commerce

Impact of Supply Chain Visibility

I Inventory savings of 20% of value

I Increased forecast accuracy of about 25%

I Improved SLAs to consistent 98% levels

I Freight charge reductions from 5% to 3.5% of
volume

I Decrease of inventory on stock from just over
10 days to fewer than 7 days

I Reduction in workforce by 10%
Source: Why Supply Chain Leaders Should Aim for End-to-End Supply Chain Visibility by 2016, November 1, 2013

SC to KF map

Supply Chain

I Nodes: customers, enterprises, suppliers of
information, materials, logistics, and financing

I Links: material, information, and financial flows

Knowledge Flows

I Nodes: packages, authors, maintainers

I Links: runtime, build, optional dependencies,
author-file/project-induced relationships,
mentor follower relationships

Visibility
Information that developers have about the
inputs, processes, sources and practices used to
bring the product to consumers/market. This
includes complete supply chain visibility including
traceability for the entire supply chain. Visibility
is, generally, inwardly/developer focused.

Transparency
Information that developers share with their
consumers about the inputs, processes, sources
and practices used to bring the product to the
consumer. It is more outwardly focused/from the
consumer perspective than visibility.

Constructing FLOSS Network

I Get the data

I Store

I Produce accurate networks

I Estimate risks

Data collection/storage

I Get the data
I VCS - discovery (50+M projects and growing)
I Package managers (over 30 and growing)

I Store the data
I Simply cloning ($≥$500TB)

I Constructing networks
I How to structure of the database?

I Analytics
I How to do in reasonable time?

Illustration: Data collection workflow

Elements

I git objects: commits, trees, blobs, and tags

I sha1 based on object content

Rapid collection of new data

I Cashing of the object IDs via git sha1
I Pre-hash to 128 TokyoCabinets (200G)

I maps sha1 to a BER compressed integer

Minimize storage needs

I Store only once (500TB → 40TB)
I Avoids overlap: git clone prA and git clone prB
I Needs custom git backend to enable updates
I Store heads for each repo

Database Structure and Updates

Ability to do fast analysis:
Map and Inverse Map

I Commit to parents, created blobs, repository,
file names modified, author, date, commit
comment

I File name to blob
I e.g. package.json maps to over 6M blobs
I NAMAPACE to 120K blobs
I setup.py to 1M blobs
I Makefile to 7M blobs

I Text indexing of commit messages, file names,
author names, and file content

Lets look at some networks

I How do they look?

I What properties they have?

I Do they vary among different supply chains?

PyPi

Runtime dependencies: PyPi A
http://kgullikson88.github.io/blog/pypi-analysis.html

http://kgullikson88.github.io/blog/pypi-analysis.html

Runtime dependencies: PyPi B
http://ogirardot.github.io/meta-deps/

http://ogirardot.github.io/meta-deps/

CRAN

Runtime dependencies: CRAN

ember

Runtime dependencies: ember

Code-reuse-induced dependencies

I Collect all the blobs for a project

I Look for all other projects that contain the
same blobs

I Investigate blobs that span many projects

I What are these code reuse patterns?

Code-reuse-induced — emberjs

I Build tools: rake — for Ruby on Rails

I Testing: qunit — testing framework

I Runtime: jQuery – a JavaScript library

I Framework: epf – Emberjs Persistence
Foundation

Code-reuse-induced — emberjs

I Prior incarnations: SproutCore/Amber.js - early
name for the EmberJS project,

I Hard forks: innoarch/bricks.ui - a hard fork of
EmberJS that was developed as a separate
project.

I Tutorials cookbooks/nodjs: early code
examples

I Package manager: package.json — for npm

Identify boundaries of supply chains

I As a network cluster:
more links inside the cluster than outside

I Lets call these clusters ecosystems
I How to identify them?

I Community detection

I How to compare them?
I Properties of the networks

Clustering/community detection

I Based on:
I Code reuse network
I Package manager dependency network
I Development tool sharing network
I Mentorship network

I Are these clusters different?

I Implications for risk?

Is CRAN different from emberjs?

I Core package: ember-source, R-base
I npm has 500K+ packages

I ember-source recursively depends
(runtime+dev+optional) on 3,544 npm packages

I 4,559 packages named ember* recursively depend
on 20K npm packages

I 9,961 authors in the EmberJS ecosystem had
participated in 1.1 million FLOSS projects

I CRAN has 13K packages

Compare: CRAN vs emberjs

Downstream/Author

I Only 12% of ember and
25% of CRAN packages
have dependents

I ember-cli-babel has 3.7K
dependents

I Rcpp has 4.4K
dependents

I Fewer packages/mntnr in
CRAN

Compare: CRAN vs emberjs

Upstream

I ember packages have few
direct (2) and many
recursive (200)

I CRAN packages have
more direct (3) but few
recursive (9)

We constructed/compared the networks

I So what?
I Estimate risk and
I Provide recommendations for

I End User
I Developer (using components)
I Contributor (learning/gaining reputation)
I Organization (strategy)

Types of risk

I License/Regulatory

I Breaking Changes

I Lack of updates

I Corporate Involvement

I Exploits

I Truck factor

I Technology advancements

What are main challenges?

I Operational data are treacherous -
unlike experimental data

I Multiple contexts
I Missing events
I Incorrect, filtered, or tampered

with

I Continuously changing

I Systems and practices are
evolving

I Challenges measuring or defining
accuracy

I Potential for misinterpretation

Network construction challenges

Identity for individuals and packages

I Within VCS

I Among VCS

I Other sources

Cross-package-manager dependencies

OD: commits in VCS

I Context:
I Why: merge/push/branch, fix/enhance/license
I What: e.g, code, documentation, build, binaries
I Practice: e.g., centralized vs distributed

I Missing: e.g., private VCS, no links to defect

I Incorrect: tangled, incorrect comments, wrong
dates, authors

I Filtered: small projects, import from CVS

I Tampered with: git rebase

Summary

I What are software supply
chains?

I Why care about FLOSS supply
chains?

I SSCs

I How to construct
I Explore
I Measure

I Operational data challenges

Summary

I What are software supply
chains?

I Why care about FLOSS supply
chains?

I SSCs

I How to construct
I Explore
I Measure

I Operational data challenges

Summary

I What are software supply
chains?

I Why care about FLOSS supply
chains?

I SSCs

I How to construct
I Explore
I Measure

I Operational data challenges

Summary

I What are software supply
chains?

I Why care about FLOSS supply
chains?

I SSCs

I How to construct
I Explore
I Measure

I Operational data challenges

Summary

I What are software supply
chains?

I Why care about FLOSS supply
chains?

I SSCs

I How to construct
I Explore
I Measure

I Operational data challenges

Summary

I What are software supply
chains?

I Why care about FLOSS supply
chains?

I SSCs

I How to construct
I Explore
I Measure

I Operational data challenges

Bio

Audris Mockus worked at AT&T, then Lucent Bell Labs and Avaya Labs for 21 years.
Now he is the Ericsson-Harlan D. Mills Chair professor in the Department of Electrical
Engineering and Computer Science of the University of Tennessee.
He specializes in the recovery, documentation, and analysis of digital remains left as
traces of collective and individual activity. He would like to reconstruct and improve
the reality from these projections via methods that contextualize, correct, and
augment these digital traces, modeling techniques that present and affect the behavior
of teams and individuals, and statistical models and optimization techniques that help
understand the nature of individual and collective behavior. His work has improved the
understanding of how teams of software engineers interact and how to measure their
productivity.
Dr. Mockus received a B.S. and an M.S. in Applied Mathematics from Moscow
Institute of Physics and Technology in 1988. In 1991 he received an M.S. and in 1994
he received a Ph.D. in Statistics from Carnegie Mellon University.

Abstract

The open source universe represents the ultimate ecosystem of individuals and
organizations creating and enhancing common good. Its health may be critical for
sustained innovation, but little is understood beyond a few well studied large projects
and ecosystems. We quantify aspects of knowledge supply chains in this universe by
constructing, refining, and analyzing a time series of bipartite networks representing
individuals and the source code. To accomplish that we first collect version control
data representing a large fraction of code changes in public version control systems.
We then devise and fit behavioral fingerprinting models to resolve synonyms and
homonyms for developer, project, and source code IDs. The resulting time-dependent
relationships among developers are then interpreted as knowledge flows and analyzed
to quantify their global and local properties. Surprisingly, these networks represent
several types of online activities in addition to software development and are not
separated into individual projects but link the vast majority of developers into a single
connected sub-graph. This global knowledge supply chain can then be studied to
understand and quantify its emergent properties and associated risks.

References

Audris Mockus.

Succession: Measuring transfer of code and developer productivity.
In 2009 International Conference on Software Engineering, Vancouver, CA, May 12–22 2009. ACM Press.

	Preliminaries
	Mapping SC and KF networks
	Constructing the Network
	Database Design
	How does the network look like?
	Network clusters (ecosystems)
	Risk identification
	Operational Data Quality
	Summary

