1 Introduction

We describe a set of exploratory tools to investigate and to model spatial-temporal
patterns of diseases. The essential idea is to integrate statistical and visual modelling
with interactive visual representation. The disease data represents multiple spatial-
temporal processes where each reported observation (number of cases in space-time
region) is an aggregate quantity (averaged over the particular region). The imple-
mented visual representations of such data include static and dynamic maps and time
series plots. The modelling tools include transformations, color mappings, smooth-
ing, aggregation, estimation of dependence structure, and other models. The toolset
can be easily extended by a non-expert using the S language (Becker, Chambers, and
Wilks, 1988) . We start by describing the data, then describe our approach and some
features of the implementation.

2 Data

The data we use were obtained from the Centers for Disease Control and Pre-
vention (CDC) which operates the National Notifiable Diseases Surveillance System
(NNDSS) in partnership with the Council of State and Territorial Epidemiologists
(CSTE). The CDC collects weekly provisional information on the occurrence of dis-
eases that are defined as "notifiable” by CSTE. Further details concerning the NNDSS
can be found, for example, in Chorba et al. (1989).

The dataset contains weekly by state reports on 57 diseases for the period between
1980 and 1994. There are 783 report weeks in this period and the reports are provided
for 51 states, 3 territories and New York City. The names of the reported diseases,
the total number of cases over the reported period, and the number of missing reports
are in Table 7?7. The table conveys a general idea of how widespread each particular
disease is and how much care is taken to report the disease cases.

3 Multivariate Interactive Animation System For
Map Analysis

We previously analyzed similar data on the disease mumps in Eddy and Mockus
(1993). The analysis we performed produced successively smoother non-interactive
dynamic maps of the incidence rates and a dynamic map of the residuals from a two
way analysis of variance model. Here we generalize this approach to multiple diseases.
We have designed a system to integrate dynamic and static maps, transformations,
smoothing, and other techniques for spatio-temporal modelling and visualization. We
refer to this system as MIASMA (for Multivariate Interactive Animation System For
Map Analysis).

The system accepts observations in the form of a three dimensional array. The
first dimension ranges over all regions in space (e.g., counties or states). The second
dimension ranges over all time periods (e.g., days, weeks, months, years). The third



Name # of Cases  # of Missing Name # of Cases  # of Missing

Asep-Mening 135327 399 GC-Mil 31221 2529
Brucellosis 1053 13469  Syphilis-(Total) 457212 341
Chickenpox 374072 36404  Syphilis-Civ 350404 3901
Diphtheria 30 16755  Syphilis-Mil 566 25303
Enceph-Prim 15346 266  Rabies-Animal 79813 220
Post-Eceph-(Total) 2666 229  Antrax 4 21747
Post-Eceph-CPox 1350 21746  Botulism 372 21747
Post-Eceph-Mump 25 21747  Cong-Rubella 68 21747
Post-Eceph-Other 468 21747  Leprosy 2745 5263
Hep-B 280586 464  Leptospirosis 388 21746
Hep-A 328964 467  Polio-Total 17 21747
Hep-unsp 66036 480  Polio-Paralytic 16 21747
Malaria 15353 290  Polio-Nonparalytic 0 21747
Measles 69714 406  Polio-Unspecified 1 21747
Mening-Inf (Total) 36703 242  Plague 65 21747
Mening-Inf-Civ 7576 25293  Pisttacosis 535 21747
Mening-Inf-Mil 10 25305 Rabies-Human 19 21747
Mumps 64535 1045  Cholera 164 21747
Pertussis 38241 403 Hep-NA-NB 40045 5942
Rubella 13980 410  Legionellosis 11379 5924
Tetanus 411 16710  Measles-Indigenous 48668 8660
Tuberculosis 327441 351  Measles-Imported 3500 8664
Tularemia 2816 226  Toxic-Shock-Syndrome 3424 8664
Typhoid-Fever 5786 293 BOT-Food 132 21747
RMSF 11067 294  BOT-Infant 198 21747
Typhus-Murine 20 38782  BOT-Other 42 21747
Trichinosis 166 21747  H.-Influenzae 10718 30233
Gonorrhea-(Total) 10522000 338 Lyme-Disease 26525 30763
GC-Civ 8874720 3901

Table 1: The list of diseases and numbers of cases

dimension lists all the quantities of interest (e.g., population size, number of cases for
a particular disease, incidence rates for a particular disease, or derived quantities).
Notice, that we only consider quantities that are averages over regions in space and
time. The first two dimensions of the array define a dynamic map and the last one
implies that there may be multiple dynamic maps.

The input to the system can be either original reported data or the output from
a statistical model (e.g. residuals and/or effects of a spatial temporal model). Those,
we can successively fit models and inspect residuals until we obtain a satisfactory fit.

The system is implemented as a selection of different classes of tools. The most
important classes include multiple visual representation, transformation, handling of
missing values, aggregation and smoothing, superpositions of several quantities, and
statistical model fitting toolsets.

We separate modelling tools into two groups: models for visual representation, and
models for statistical analysis. The models for visual representation must be tightly
integrated into the system to allow adequate interactive response, while statistical
models can be loosely integrated via file sharing. We separate the implementation of
modelling and visualization tools to simplify extensions to the system.

3.1 Display

An example display of our system is given in Figure ?7?.
The system consists of the main control window and various view windows. The
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Figure 1: Control window and two views of the MIASMA

control window contains menus and selection lists. Modelling and transformation
methods are controlled from the main window. In Figure ?? the data on the disease
aseptic meningitis is selected and the rank transformation is being used. The main
window also contains the current date (year and week) for the dynamic map view
shown at the bottom. A time series plot of the disease incidence in Alabama is in the
window overlapping the control window. The state and the disease can be selected
interactively using scrollbars at the bottom and at the left of the time series plot.

3.2 Visual Models

The models/tools for visual representation include view selection, spatial smooth-
ing, time interpolation, transformation, color mapping, display of missing values, and
display of multiple quantities. The available views are time series, static maps, and
dynamic maps. Each type of view is presented in a separate window and an unlimited
number of windows can be created for each view.

The time series view presents the time series of the data for a particular quantity
and spatial region over the available time period. Two scrollbars allow selection of
the spatial region and quantity of interest.

The static map view displays a static map of the data where color of a pixel in
the window encodes the value of the quantity at the particular location in time and



space. Since the quantities are aggregates over a space-time region we provide several
interpolation techniques. The simplest one just shows a constant value within each
region. As with a time series view the two scrollbars allow selection of the quantity
to be displayed and the time moment.

The dynamic map view is an animation of a static map. As with the static
map, several interpolation techniques are provided. The simplest—piecewise con-
stant interpolation—shows a constant value within each region and within each time
interval. A slightly smoother animation can be obtained by interpolating linearly
between two time intervals, namely, two maps are computed for each time period as
the key frames and then linearly interpolated for the intermediate frames. The num-
ber of intermediate frames can be changed to increase or decrease the speed of the
animation. A spatially smooth animation can be obtained by spatial interpolation
as described in Eddy and Mockus (1993). The smoothing parameter and starting
location for the animation can be selected using scrollbars.

We consider spatial and temporal smoothing as a visual model since it facilitates
perception of the dynamic map. Time smoothing removes jumps in time (the jumps
create a distracting blinking appearance) and smoothing in space hides region bound-
ary artifacts (which are clearly perceived by an observer but are often irrelevant to
the quantity of interest). Time-space smoothing represents a simple visual model that
allows qualitative (without excessive detail) display of data that was aggregated over
regions in time and space. We have found that in a dynamic display it is important
to limit the amount of information since it is not trivial to perceive every detail even
with the high bandwidth of a human visual system. Smoothing can be viewed as
fitting of a statistical model; we discuss that approach later.

Essential visual representation models are various transformations of the data into
the range of available display attributes. The simplest—Ilinear transformation—can
often be inadequate due to the discrete nature and limited range of display attributes,
such as, pixels, colors, patterns. We have found that different transformations empha-
size different features present in the data, e.g., few large outliers can make a dynamic
map look almost constant if a linear transformation is used. Rank transformation, on
the other hand, ignores the outliers and make the distribution of the display attributes
uniform over the available range. In addition to linear and rank transformations we
have arbitrary power transformations (extended by a logarithmic transformation). In
the case of dynamic and static maps we encode the value of a quantity of interest by
color. The transformation (mentioned above) converts each value into an integer code
in the range between 1 and 256 (code 0 is reserved for the background). Those codes
are then displayed according to the colormap that maps each code into a color. The
colormap can be selected interactively. For a discussion on how to select colormaps
to convey quantitative information see Levkowitz and Herman (1992).

3.2.1 Display of Missing Values

By inspecting Table 77 it becomes apparent that a substantial amount of obser-
vations are missing. It is essential to address this problem in constructing a visual



representation of the missing data.

We implement a number of ways to address this problem. In the time series view
we show the data as small dots. Missing data is absent from the display, although
we can infer its presence from the larger horizontal gaps. We take two different
approaches in the case of static and dynamic maps. The two alternatives are to leave
the missing data out (use a neutral, background, transparent, or some other color
that is not present in the color scale) or to fill in some color using the available data.
Currently we show missing values in the background color or impute the color (by
taking a median value for each time moment) and add a pattern to indicate that that
value was not observed.

3.3 Statistical models

We have found several statistical models very useful to study these data. We
start from the simplest but very useful models of aggregation, then consider smooth-
ing methods, a two-way table, estimation of dependence structure, and best linear
prediction (kriging).

3.3.1 Aggregation

Various aggregation methods can dramatically reduce the amount of data and
simplify the inspection process. By aggregation we mean reduction of the number
of observations in our dataset (represented by a 3-dimensional array (diseases, time
moments, states)) by combining several cells into a single cell. The aggregations differ
in which cells are selected for aggregation (neighborhoods) and in which method is
used to produce a single value out of values in the neighborhood. Another operation
which we call smoothing operates the same way as aggregation except it does not
reduce the number of cells in the data array, i.e., for each cell a neighborhood of cells
is defined and then the combine operator is applied to the values in the neighborhood
of a cell to produce a single value for that cell. Since the smoothing and aggregation
methods are so similar we will consider only aggregation methods. Analogous selec-
tion of neighborhoods and combine operators is available for smoothing operations
too.

Definition of neighborhoods. We consider several ways to select neighborhoods
by selecting a direction in the data array and by selecting the size of the neighborhood.
Since the data is represented by a 3-dimensional array z; ; ; the aggregation direction
is defined by selecting the index of the array. The first index corresponds to spatial
location, the second - to time intervals, and the third - to diseases.

For example, we can aggregate over time intervals with the window size of 4 time
intervals to convert weekly data to monthly data. The monthly data array

Xi,J,k = Agg(%,u,k, Ti4J+1,k) LiaJ+2.k;> Ii,4J+3,k),

where z; ;1 is weekly data array, and Agg() is aggregation operator. The aggrega-
tion/smoothing operator can be selected independently of the neighborhood selection.

5



It can range from a simple sum (Agg(x,y, z,w) = x+y+ z+w) to an ARIMA filter,
where the result represents parameter values of the ARIMA process, or the smoothed
version of of the time series.

We can investigate periodic behavior in the dataset by defining appropriate neigh-
borhoods. For example, to produce a standard yearly cycle from weekly data we can
aggregate values for a particular week over all years.

Spatial neighborhoods need be treated differently from time neighborhoods. To
define spatial neighborhoods we need to define adjacencies between the locations of
observations because the simple ordering by time is no longer present. In our case
regions A; (states) form a partition of A (the continental US). We define two spatial
regions to be adjacent (or one-adjacent) if they share a common border consisting of
more than one point. If there is a region to which they both are adjacent then we
call them two-adjacent. Similarly we can define k-adjacent regions. The sizes of the
spatial neighborhood is the number k.

It may be of interest to aggregate over different quantities (diseases) in an at-
tempt to capture relationships between different diseases. Any composition of aggre-
gation/smoothing methods can be performed within MIASMA.

Aggregation operators can be divided into several classes: arithmetic, order,
selection, composition, and other. The arithmetic operators include sum and variance,
the order operators include various quantiles, the selection operators select a value(s)
based on position within the neighborhood (section, several sections). Composition of
the operators is also possible. More complicated complicated operators are described
in the next section.

3.3.2 Other statistical models

Given a complicated structure of observations it seems useful to be able to inspect
the model and the residuals. For example, let z;;, be the reported incidence rates
of disease k in state ¢ for month j. We can use median polishing to fit a model
Zijk = Sik + tjk + Mijk, Where s;’s are state-disease effects and ¢;;,’s are time-disease
effects. Since the model contains a large number of parameters we may inspect the
parameters as well as the fit using the tools available in MIASMA. To do that we
can use derived datasets Effects;j, = s, + ti or Residuals;j, = 7, instead of the
original observed incidence rates. In particular, the residuals do not have seasonal
and longer term trends observed in the disease reports, but can indicate unusually
high incidence rates (epidemics).

Another approach is to model the disease as a space-time process. The observed
data would represent the integrals of the incidence rate process over the regions A;; in
space and time, x;;, = [ Asj fr(x)dz. To predict the process fi at a particular location
in space and time one has to estimate (or know) the covariance function of the process
fr. For a reference on spatial prediction see Cressie (1991). Estimation of the spatial
covariance function from aggregate data is described in Mockus (1994).



4 Summary

We designed and implemented a system (MIASMA) to analyze spatio-temporal
patterns in a dataset containing weekly reports of 57 diseases in the United States.
The system integrates statistical and visual representation tools for interactive mod-
elling and exploratory analysis of similar datasets. The visual representation tools
can be used to look at the raw data, at the fitted models, or at the residuals from the
fitted models. We found that interactive model fitting and exploratory analysis is es-
sential in dealing with large spatial dataset. Our modeling and visualization tools are
geared to analyze aggregate data, when observations represent averages over space-
time regions of some underlying process. In particular we implement smoothing,
interpolation, aggregation, and prediction methods for aggregate space-time dataset.
We separated implementation of the visual representation and statistical analysis
tools to simplify extensions of our system.
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