
Automating the Measurement of Open Source Projects

Daniel German
Department of Computer Science

University of Victoria
dmgerman@uvic.ca

Audris Mockus
Avaya Labs

Department of Software Technology Research
233 Mt Airy Rd., Basking Ridge, NJ 07920

audris@mockus.org

Abstract

The proliferation of open source projects raises a num-
ber of vital economic, social, and software engineering
questions that are subject of intense research. Based on
experience analyzing numerous open source and commer-
cial projects we propose a set of tools to support extrac-
tion and validation of software project data. Such tools
would streamline empirical investigation of open source
projects and make it possible to test existing and new the-
ories about the nature of open source projects. Our soft-
ware includes tools to extract and summarize information
from mailing lists, CVS logs, ChangeLog files, and defect
tracing databases. More importantly, it cross-links records
from various data sources and identifies all contributors for
a software change. We illustrate some of the capabilities by
analyzing data from Ximian Evolution project.

1. Introduction

The proliferation of open source projects raises a number
of vital economic, social, and software engineering ques-
tions that are subject of intense research. Based on experi-
ence analyzing open source [3] and traditional projects [6]
we propose a set of tools to support extraction and valida-
tion of open source software project data.

Any software project leaves traces of participant actions
and decisions in mailing list archives, in version control and
problem tracking databases. Previous work, e.g., [1, 4], has
identified version control and problem tracking databases
as a promising repository of information about a software
project. It describes methods and tools to retrieve, pro-
cess, and model such data at the fine level of Modification
Requests (MRs or logical changes to software) in order to
understand the relationships among process/product factors
and key outcomes, such as, quality, effort, and interval.

We focus on a system to support the task of measuring
and analyzing open source software data. Such tools would

streamline empirical investigation of open source projects
and make it possible to test existing and new theories about
the nature of open source projects.

Our system retrieves, summarize, and validate data from
mailing lists, CVS logs, ChangeLog files, and defect track-
ing systems based on Bugzilla: systems and sources that
are commonly used in open source projects. Because open
source projects usually involve individuals who do not meet
face to face, almost all of the activity in the project leaves
detectable traces in change logs, mailing lists, or problem
reporting system. Such rich data provides excellent basis
to study and compare open source software projects. Un-
fortunately, extracting, cleaning and validating, and draw-
ing conclusions from such data poses formidable chal-
lenges because the data sources are not designed as mea-
surement tools, and the tools as well as practices of us-
ing the tools vary from project to project. As part of sys-
tem validation methodology we used a cleanroom approach
where two authors has created a totally independent im-
plementation of the basic set of tools. An verified their
correctness by comparing the resulting output. This has
allows us better to understand the pitfalls when creating
a repeatable process of extracting valid information from
these diverse data sources. SoftChange can be found at
http://sourceforge.net/projects/sourcechange.

We start by briefly describing a common open source
project environment exemplified by Ximian Evolution in
Section 2, then we outline the architecture of SoftChange
system in Section 3, and conclude by illustrating some of
the validation, cross-linking, and measurement techniques
in Section 4.

2. Background

Ximian Evolution evolved from the GNOME project as
its groupware suite based around a mail client. The project
started in the beginning of 1998, and it is currently com-
posed of approximately 185k lines of code. Evolution re-
cently received the “2003 LinuxWorld Open Source Prod-

uct Excellence Award” in the category of “Best Front Of-
fice Solution”. One of the objectives of Evolution is to pro-
vide a free software product with functionality similar to
Microsoft Outlook or Lotus Notes[7].

The development environment includes CVS (used for
version control) Bugzilla (used to track defects), one mail-
ing list for developers and one for users, and a collection
of documentation pages hosted in the Ximian and GNOME
developers web sites.

Core developers have write access to CVS whereby they
can submit modifications via the CVS commit command.
The commit command is usually preceded by update com-
mand, that merges any changes committed by other devel-
opers since the last update. CVS prevents committing files
without an update if such modifications exist.

When a developer commits a group of files to the repos-
itory, he or she often modifies the relevant ChangeLog file
with a description of the current change, and this description
is usually repeated as the log message, which is recorded
by CVS, along with the data corresponding to the commit.
The commit triggers an email message to the GNOME cvs-
commits mailing list, which includes all the details of the
transaction: who made it, when, files modified, and the log
message.

Each CVS commit often corresponds to a logical change
which we refer to as MR and contains one or more deltas
(revisions to individual files). A description of good CVS
practices [8] provides more details on the process of using
CVS, but it is not clear if all of the practices described there
are wide-spread.

Usually, the ChangeLog and the CVS log messages in-
dicate the nature of the change, lists PR numbers from
Bugzilla, and often include a URL pointing to the change
and/or to the PR.

3. Architecture

SoftChange is a collection of scripts intended to re-
trieve, process, correlate and validate the change informa-
tion from a typical open source project. By functionality
the SoftChange can be broken into retrieval of raw data,
validation, and summarization parts. Each data processing
stage produces successively better quality data on software
software changes, however links to raw data are retained to
allow automatic and manual validation.

Retrieval of raw data Software changes are obtained
from sources listed below and are represented as a table of
delta including login, timestamp, comment, file, and other
attributes available for each particular source of data.

Parsing CVS mailing lists. This information is relatively
easy to download and process. The main drawback is that
CVS could be configured in different ways to produce email

messages, and, often these messages do not contain full in-
formation from CVS logs.

Getting logs from CVS systems. This is a bit more time
and network-bandwidth consuming but it obtains all the de-
tail about changes.

Getting code changes from CVS system. This is the
most involved operation, but it allows fully to reconstruct
the code evolution in each file and is necessary to obtain
code related measures: does the change involve comments
or code, what function was changed, etc.

Extracting changes from ChangeLog files. This is least
precise, but may be the only option in systems that to not
use version control.

Problem reports (PRs) are obtained by retrieving the web
pages for each PR and extracting the available attributes of
each PR, including its ID, description, status history (iden-
tity of individuals, dates, and status changes).

Augmenting and validating of raw data
Removing system generated artifacts. This mostly con-

cerns eliminating branch delta from CVS logs where the
code is not modified. Another common problem is copy-
ing of CVS repository files. There we eliminate duplicate
delta from two or more files that had the same origin or
are included in several modules. In the gnome CVS reposi-
tory this was a frequent problem with 13 percent of all delta
involving such files. Six files belong to 212 different mod-
ules!

Other important tasks include matching delta obtained
from various sources, matching delta to PR numbers, de-
termining contributors for each delta, and converting deltas
into MRs.

Finally, change measures (see, e.g, [5] and summary
benchmarks (see, e.g., [3]) are produced.

Some of the infrastructure to process the semi-structured
text in software changes involves detection/parsing of dates,
bug numbers, and contributors and link between various
spellings of names and email.

4. The Evolution of Evolution

We have chosen to use Evolution to illustrate some of the
capabilities of SoftChange. We focus on the data provided
by CVS logs and the CVS commit mailing list. Our data
includes changes to the CVS repository from April 1998 to
January 2003.

4.1. CVS MRs

In CVS a delta is a change to a single file. It is produced
by the commit command executed by a developer. A single
commit usually includes several files that correspond to a
particular logical operation (we call this operation an MR).

2

It is worth noting that commits may involve several unre-
lated MRs, however each such MR would typically have
different comments. A MR provides insight on how files
interrelate, the way developers work, and the extend of a
given change. Unfortunately CVS does not keep track of
MRs. As a consequence, SoftChange analyzes the deltas
and gathers them into MRs. All deltas from a single devel-
oper with the same comment and committed within short
(two minute) interval are grouped into a single MR.

Figure 4.1 shows the number of MRs per month for Evo-
lution. The plot also shows the different releases in the
project. There are several interesting observations from this
graph. First, the number of MRs dramatically increased
when Ximian is created. Second, there was a surge in the
number of minor releases and MRs in the six months that
preceded the release of Version 1.0, and a relatively flat
development afterward. Our hypothesis is that after ver-
sion 1.0, developers have been spending more time fixing
bugs. We have also seen that number of added lines to the
project goes down, indicating activity related to defect fix-
ing, not introduction of new functionality. We need to cor-
relate Bugzilla data with CVS data to get further evidence.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 5 25 125

%
 o

f d
ev

el
op

er
s

Number of developers (log scale)

Number of transactions per each developer, Accumulative

Transactions

Figure 2. From a total of 196 developers, 5
account for 47% of the MRs, while 20 account
for 81% of the MRs, and 55 have done 95% of
them.

We have identified a total of approximately 18000 MRs.
As figure 3 shows, 80% of them include 4 files or less, with
a minimum of 1 file and a maximum of 650. The largest MR
corresponds to the change of the license to the GPL version
2 on 2001/10/27 (in that day a single developer modified a
total of 1257 files, the largest number of files modified in a
single day by a single developer). Similarly, 2001/06/23
was the second busiest day (in terms of files modified),
when 688 files were altered to reflect that Helixcode had
changed its name to Ximian.

There is a relatively large number of MRs involving only

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128
 1

 4

 16

 64

 256

 1024

 4096

 16384

%
 o

f M
R

s

N
um

be
r o

f M
R

s
(lo

g
sc

al
e)

Number of files in MR (log scale)

Number of files, accumulated
Number of files

Figure 3. 80% of MRs include 4 or less files.

one file (22%). A preliminary analysis shows that most of
these changes are of two types: a) files which were over-
looked in a previous MR, and committed minutes later; and
b) minor corrections, such as fixing spelling mistakes. Fur-
ther analysis is needed to corroborate this hypothesis.

Figure 2 shows that 5 developers (from a total of 196)
account for 47% of the MRs, while 20 have done 81% of
them. Here we used CVS logins to identify developers.
Since some of the code is provided by developers without
CVS commit access, the reported numbers underestimates
the number of contributors. While SoftChange has capa-
bilities to identify contributors, due to time constraints we
do not report the data here. In table 1 we list the top 11
developers. The top 10 appear to be Ximian employees
or consultants (see http://primates.ximian.com/). This fact
corroborates our hypothesis that private companies (such as
RedHat, Ximian, and Eazel) have had a very important ef-
fect in the development of the GNOME project [2]. In that
respect it is similar to Mozilla project where top developers
work for Netscape (see, e.g., [3]).

4.2. ChangeLogs

ChangeLog files are an important source of information
about the development and evolution of a project. As the
GNU ChangeLog standards indicate, the ChangeLog ex-
plains how earlier versions of software were different from
the current version. The Evolution developers are fairly
consistent in their modifications to the ChangeLog files.
From all MRs involving 2 or more files, 93% include a mod-
ification of a ChangeLog.

Table 2 shows the 10 most modified files, 8 of them are
ChangeLogs. ChangeLogs (and CVS logs) provide insight
on patches submitted by developers without a CVS account,
as developers are expected to be careful to give credit to the
patch submitter in the corresponding ChangeLog entry.

SoftChange produces the list of delta from CVS logs,

3

 0

 200

 400

 600

 800

 1000

 1200

98/0198/01 99/0199/01 00/0100/01 01/0101/01 02/0102/01 03/0103/01

N
um

be
r o

f M
R

s

Date

Ximian starts operations

Release 0.0 Release 1.0

MRs
Main Releases

Figure 1. Number of MRs per month. There is a significant increase in activity after Ximian starts
operations (originally known as Helixcode, and later renamed to Ximian), and the largest activity
coincides with the release of version 1.0.

Percent. Accum. Userid
15.52% 15.52% fejj
10.19% 25.72% ettore
9.00% 34.72% danw
6.31% 41.02% clahey
6.30% 47.32% zucchi
5.15% 52.47% jpr
4.70% 67.17% toshok
2.79% 59.96% federico
2.70% 62.66% peterw
2.55% 65.25% unammx
2.59% 67.80% iain

32.20% 100.00% rest of developers

Table 1. % of MRs committed to the project by
the top 11 most active developers. Only iain
does not seem to be a Ximian employee.

Deltas Percent. Accum. File
2725 3.72% 3.72% mail/ChangeLog
1853 2.53% 6.25% camel/ChangeLog
1768 2.41% 8.66% calendar/ChangeLog
1404 1.92% 10.57% addressbook/ChangeLog
1268 1.73% 12.30% ChangeLog
1239 1.69% 13.99% shell/ChangeLog
1166 1.59% 15.58% po/ChangeLog
638 0.87% 16.45% configure.in
517 0.71% 17.16% composer/ChangeLog
460 0.63% 17.79% mail/mail-callbacks.c

Table 2. Top 10 most modified files. ChangeL-
ogs clearly take the lead. As its name implies,
mail-callbacks.c contains the callbacks of the
mail client, hence the frequency at which it is
modified.

CVS email, and ChangeLogs, to allow assessment of qual-
ity for each data source. Different sources contain differ-
ent amounts of information and comparison is non triv-
ial. For example, CVS email for evolution module in 2002
has 11875 deltas, and CVS logs for the same period con-
tain 12111 deltas. While there are a total 12711 CVS log
delta, we exclude 599 deltas that do not modify files (branch
delta). Such selection is not possible with email archives
since they do not keep information about the extent of mod-
ification. The remaining of the deltas are missing from files
that that were not part of Evolution module initially, so CVS
mail archives indicate a different module for these deltas.

4.3. Files

Figure 4 shows the distribution of files according to their
types. It includes files which have been erased but remain
in the repository (a place known as the attic) in case they
are needed later. The source files are mainly C files (.c and
.h). Table 3 shows the number of deltas per file extension.
As it is expected, most of the changes are made to source
code files (there are 698 .c and 617 .c files plus 498 .c and
453 .h files in the attic); .h files tend to be modified 1/3
the number of times .c files are modified). ChangeLog files
are followed by makefiles (.am), and then translations (.po).
.ics files correspond to information about time zones needed
by Evolution at run-time (they are 394 of them, none in the
attic). Documentation is typically written in SGML (there
are 80 different .sgml files plus 148 in the attic).

Most MRs tend to concentrate on few hot spots. After
ChangeLog files, .c files are the most modified. The mod-
ule with the largest number of modifications is mail. This
is not surprising, since the mail client represents the core
functionality of Evolution. For Figure 5, we only took into
account .c and .h files; the figure shows that 12 files (approx.
0.5% of the total) account for 10% of the deltas.

4

����

��

��	
��

��

�	���	�����

��

����������������

��� �

���

��	����

���

������

 !�

����

�"�

Figure 4. Number of files per type. Includes
those in the Attic.

Deltas Percent. Accum. Extension
29420 40.13% 40.13% .c
15360 20.95% 61.09% ChangeLog

9897 13.50% 74.59% .h
3611 4.93% 79.52% .am
2754 3.76% 83.27% .po
1899 2.59% 85.86% .ics
1839 2.51% 88.37% .sgml
1413 1.93% 90.30% .in
860 1.17% 91.47% .png
783 1.07% 92.54% .xml

5467 7.46% 100.00% other types

Table 3. Deltas per file extension. C files
(.h and .c) and ChangeLog modifications ac-
count for almost 75% of modifications.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000
 1

 10

 100

%
 o

f d
el

ta
s

N
um

be
r o

f d
el

ta
s

(lo
g

sc
al

e)

Number of files (log scale)

Deltas, Accum., left axis
No. Deltas., right axis

Figure 5. 2240 .c and .h files have been modi-
fied in 39317 deltas. 12 files account for 10%
of the deltas; and less than 100 files have
been involved in more than 100 deltas.

4.4. Summary and Further Work

We are still in the early stages of developing SoftChange.
The project itself is created in an open source fashion to
facilitate usage and contributions. Numerous topics in-
cluding definition of automating production of change and
project measures, data quality summaries code measure-
ment and discussion list analysis tools are on the agenda.
Our goal is to provide a framework that supports the com-
parison of open source projects (such as Mozilla, Apache,
gcc, GNOME, KDE, etc) that rely upon CVS, Bugzilla, and
mailing lists as their main repository of information about
the project. We have illustrated some of the capabilities us-
ing Ximian Evolution as an example.

Acknowledments

This work has been partially funded by ASI and NSERC.

References

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: A case
study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] D. M. German. The evolution of the GNOME Project. In
Proceedings of the 2nd Workshop on Open Source Software
Engineering, 2002.

[3] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and mozilla.
ACM Transactions on Software Engineering and Methodol-
ogy, 11(3):1–38, July 2002.

[4] A. Mockus and L. G. Votta. Identifying reasons for software
change using historic databases. In International Conference
on Software Maintenance, pages 120–130, San Jose, Califor-
nia, October 11-14 2000.

[5] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180, April–
June 2000.

[6] A. Mockus and D. M. Weiss. Globalization by chunking: a
quantitative approach. IEEE Software, 18(2):30–37, March
2001.

[7] E. Perazzoli. Ximian Evolu-
tion: The GNOME Groupware Suite.
http://developer.ximian.com/articles/whitepapers/evolution/,
2001.

[8] V. Venugopalan. Software configuration management for
open source projects. http://ibiblio.org/gferg/ldp/SCM-
OpenSource/.

5

