
Large-scale code reuse in open source software

Audris Mockus
Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ 07901
audris@avaya.com

Abstract

We are exploring the practice of large-scale reuse in-
volving at least a group of source code files. Our research
question is to determine the extent of such reuse occurring
in open source projects, to identify the code that is reused
the most, and to investigate patterns of large-scale reuse.
We start by identifying a sample of projects involving all
code in several large repositories of open source projects,
all projects bundled with popular distributions of Linux and
BSD, and several large individual projects. In the next step
we obtain the source code and identify groups of files reused
among projects and determine the code that is most widely
reused in our sample. Our findings indicate that more than
50% of the files were used in more than one project. The
most widely reused components were small and represented
templates requiring major and minor modifications and a
group of files reused without any change. Some widely
reused components involved hundreds of files.

1. Introduction

The practice of large-scale reuse is of tremendous inter-
est because of the potential savings in effort and improve-
ments in quality and lead time such reuse may bring. If the
highly reused source code tends to have better quality and
requires less effort to maintain [9, 3], the extent of reuse
can serve as a guide of source code’s reuse potential and be
used to rank functionally relevant candidates [5]. Further-
more, if highly reused code and projects have attributes that
distinguish them from the low reuse projects, some of these
qualities may guide new projects that strive for their code
to be reused more widely. Finally, existing projects may be
able to take measures to increase the reuse potential of their
code.

One of the advantages of open source projects is that the
source code can be taken and modified by other projects in
case the project is no longer supported or if the required
modifications are outside the scope of the original project.

It is, therefore, of interest to quantify the extent of such code
sharing in practice. Such reuse may extend to projects that
do not follow the open source model as well [4], though we
are not attempting to quantify it here.

Our primary objective is to identify and quantify large-
scale reuse in open source software. Our interest in large-
scale reuse is based on interest in larger components that
are more likely to contain a more complete set of function-
ality and, therefore, are more likely to be utilized via their
interfaces as opposed to being extensively modified. In this
work we investigate only one aspect of reuse where large
amounts of code is copied. Discussion in Section 5 consid-
ers the limitations imposed by such approach.

To pursue our objective we first design a large sample
of open source projects, retrieve their repositories, identify
reused components, and quantify the extent of reuse and in-
vestigate patterns of reuse for the most widely reused com-
ponents.

Section 2 considers related work, Section 3 describes
methodology we have applied and Section 4 describes our
findings. We conclude with discussion and future work in
Section 6.

2. Related work

Despite several decades of extensive and fruitful research
related to software reuse we are not aware of work attempt-
ing to quantify and investigate reuse in open source soft-
ware. There are, however, numerous approaches and re-
sults closely related to our research objective. A large field
of code clone detection (see, for example, [6, 7, 1]) is fo-
cused on developing better and more effective tools to de-
tect copies of the source code. The objective of that work
is focused on detection of copying of relatively small snip-
pets of code and, therefore, is relatively expensive in terms
of computational resources. Many of the tools rely on ex-
traction of a syntax tree and, therefore, may not be easy to
apply for more exotic languages and instances where the
code may not parse.

Our focus is on large-scale reuse that, in principle, may



be detected by such tools, but the extent of computation
needed to process large volumes of source code may be pro-
hibitive. For example, just the source code in the CVS bun-
dles of the 7238 projects from SourceForge represent 9.2
million versions of 2.6 million source code files containing
732 million lines of code.

It is worth noting that use of open source code in
commercial projects imposes a number of responsibil-
ities on the user and detection of such reuse repre-
sents business opportunities. Several companies, for ex-
ample, Palamida (www.palamida.com) and Black Duck
(www.blackducksoftware.com), have a business model
based on providing tools and consulting in this area. How-
ever, their objectives are primarily focused on compliance
with licensing requirements and methods are not transpar-
ent because, presumably, they represent their competitive
advantages.

Google Code Search tool (codesearch.google.com) al-
lows search of publicly available source code by language,
package name, file name, and types of license. The service
helps finding reusable code and, presumably, will be sup-
ported by advertising revenue as are other types of search
services provided by the company. The size of the reposi-
tory and the ranking algorithms are not published.

3. Method

In this section we describe our approach to achieve re-
search objectives. We start by describing the method used
to select a sample of open source projects and continue with
methods to identify and measures to quantify reuse.

3.1. Sample selection and retrieval

To get a representative set of open source projects
we started by selecting a number of well-known large
projects including Apache, Gnome, KDE, Mozilla, Open-
Solaris, Postgres, and W3C repositories that represent sys-
tem, server, and user interface software. To add breadth
to the list of projects we have also included all applica-
tions in several large distributions of Linux and BSD includ-
ing Fedora 6, Gentoo, Slackware, FreeBSD, NetBSD, and
OpenBSD. We also selected all projects utilizing version
control in open development portals of Savannah, Source-
Forge, and Tigris. Finally, we selected projects that may not
be using version control tools by obtaining the source code
from repositories including FreshMeat, CPAN, RpmForge,
and Gallery of Free Software Packages (www.netsw.org).

After the sample of projects was selected, it was nec-
essary to retrieve their version control repositories or code
snapshots for further processing. Unfortunately not all of
the repositories make that task trivial by placing all relevant

data in a single location and various tools had to be written
to retrieve projects’ source code.

3.2. Identifying large-scale reuse

Our definition of large-scale reuse involves actual incor-
poration of the parts or an entire tree of source code from
a different project. It does not involve reuse at the binary
level or use of the functionality from another project when
the user has to retrieve the binaries or the source code for
that component separately. We are looking for instances
where at least several source code files are being borrowed
from another project.

To accomplish the task we use the technique evaluated
in [2]. The algorithm identifies reuse by finding directo-
ries of source code files that share several file names and
the fraction of shared file names to the total number of file-
names exceeds a specified threshold.

3.3. Quantifying reuse

Our primary question relates to the extent of large-scale
reuse that we estimate by calculating the fraction of the
source code that appears in more than one project. This re-
quires operationalizations for measures counting the source
code and ways to identify a project.

We chose to count the fraction of files that are shared
among projects as the overall measure of reuse following
empirical studies conducted at NASA [8]. Weighting such
number by the size of the source code files and counting the
fraction of shared components (the groups of files) are two
obvious alternatives.

The extent of reuse for a particular component is simply
the number of projects where its source code is incorpo-
rated.

The methodology needed to identify a project is a bit
more tricky. We try to be as pragmatic as possible and
define projects as the bundles in the form of a tar files or
other similar packaging (e.g., rpm files in many Linux dis-
tributions, or CVS bundles representing entire version his-
tory of the project). Unfortunately, the source code bundle
for the same project may be located in several places and
also may have variation in the way it is named, for exam-
ple, to indicate a particular released version of the project’s
code. Since our goal was not to count the number of places
the project’s code may be residing in, but rather, its incor-
poration into other projects, we needed a way to arrive at
a canonical representation for the many possible locations
and for the variations in the bundles’ name.

Therefore we strip the url of the bundle’s location and
bundle’s version number from it’s name. If such trans-
formation is not done, the bundles located at several urls



or bundles that have several version numbers would be
counted as separate projects.

In particular, we would map various versions of Linux
kernel repository, for example, “linux-2.4.19”, “linux-
2.4.33.3”, “linux-2.6.18” and so forth to “linux” as a root
directory of the Linux kernel project.

4. Results

As a result of our sample selection and retrieval we have
obtained 13.2 million source code files. Many of these files
had their version histories but versions within the history
are not included in the file count. These files came from
49.9 thousand distinct bundles. In order to group multi-
ple bundles into projects we stripped their version numbers
and other variations in their names. This left us with 38.7
thousand unique projects and 10.7 million distinct file name
paths. In order to focus only on text files (project reposi-
tories often also contain images and other types of binary
files) we have further narrowed down the sample to 5.3 mil-
lion unique file name paths representing only text files.

Filename Frequency
Makefile.am 61161
index.html 19851
package.html 10693

init .py 7581
aclocal.m4 7109
index.php 6097
build.xml 5800
main.c 5552
README.txt 5335
package-frame.html 4667
readme.txt 4622
package-summary.html 4583
package-tree.html 4476
ltmain.sh 3867
main.cpp 3844
config.h 3530
package-use.html 3024
style.css 2735
test.pl 2681
acinclude.m4 2461
resource.h 2343
Makefile.inc 2304
acconfig.h 2294
autogen.sh 2277
script.xlb 2250
CMakeLists.txt 2202
main.php 2050
admin.php 1903
modinfo.php 1844
util.c 1784

Table 1. The most frequent file names.

It may be of peripheral interest to investigate the fre-
quency of various file names. We present the most frequent
file names and their frequencies in Table 1.

The 5.3 million unique file name paths were used to
identify shared components as described in Section 3.2. In
particular all possible pairs of directories were compared
by identifying filenames that are common to the pair. The
most frequent filenames that occurred more than 1000 times
in the sample were excluded from the comparison. If two
projects share such a file name that does not necessarily
imply that projects are similar, because such frequent file-
names often represent a functional role for the file (e.g.,
“main.c”), but do not increase probability that the file was
reused. In particular, all filenames listed in Table 1 are not
considered when identifying reuse because they all occur in
more than 1000 projects.

If a directory pair had more than five shared filenames
and if the fraction of shared filenames was greater than
80% of the total number of files in the smaller directory we
considered all of shared filenames to represent code reused
between the directories. The minimum of five shared file-
names serves as a limit on how small the reused component
may be and also reduces the likelihood that the two directo-
ries are classified as reused simply by chance. The limit on
the fraction of the shared files serves primarily to exclude
incorrect identification of reuse. Based on experience in [2]
the particular choices tend to exclude cases where reuse is
erroneously indicated, however it tends to miss groups of
files that are reused from a smaller directory in a larger di-
rectory. To provide a range of the extent of reuse we have
calculated the measures using three distinct cutoffs for a
minimum of 80%, 50%, and 30% of the filenames shared
between the pair of directories in order to consider these
shared filenames to have been reused. The extent of reuse
is presented in Table 2. The results do not appear to depend
strongly on the algorithm parameters. Approximately half
of the 5.3 million files are used in more than one project. As
we discussed, we are considering only fairly large chunks of
code consisting of more than five files. It is likely that reuse
at finer code snippet level is even higher. This tremendous
amount of large-scale reuse may represent a key advantage
of open source software projects. In our experience, the
reuse in commercial projects does not reach such a high
level and only relatively large organization may have op-
portunities to reuse so much code within the organization
itself.

Reuse (30%) Reuse (50%) Reuse (80%)
Count 2, 837, 233 2, 782, 339 2, 654, 977
Fraction .53 .52 .49

Table 2. Reused files in open source projects.



We are also interested in the most widely reused com-
ponents. The most widely reused components may be in
some ways distinct from less utilized ones and suggest types
of source code that are most suitable for reuse.

The most widely reused set of files were language
translations for user messages. The top cluster (gnome-
media/po) of such translation files involved 657 projects
(here and below we present cluster numbers based on the
80% cutoff only. The size of the cluster increases signifi-
cantly as the cutoff is reduced). In some sense these files are
not represent what is usually considered as a source code,
because the translation files contain a simple template for
each language. Each file contains pairs of strings used in
the application — a string in English, and a corresponding
string in the target language.

The next most common component with 576 instances of
reuse is install module for Perl. A typical content involves
the following files:

Module/Install.pm
Module/Install/AutoInstall.pm
Module/Install/Base.pm
Module/Install/Can.pm
Module/Install/Fetch.pm
Module/Install/Include.pm
Module/Install/Makefile.pm
Module/Install/Metadata.pm
Module/Install/Scripts.pm
Module/Install/Win32.pm
Module/Install/WriteAll.pm

Unlike translation files in this case the underlying func-
tionality is very similar among the projects. Each project
takes the component and modifies it to satisfy its needs.

The third most widely reused component (547 projects)
involves C language functions related to internationaliza-
tion. An example may be found in “a2ps” project:

a2ps/intl/bindtextdom.c
a2ps/intl/cat-compat.c
a2ps/intl/dcgettext.c
a2ps/intl/dgettext.c
a2ps/intl/explodename.c
a2ps/intl/finddomain.c
a2ps/intl/gettext.c
a2ps/intl/gettext.h
a2ps/intl/gettextP.h
a2ps/intl/hash-string.h
a2ps/intl/intl-compat.c
a2ps/intl/l10nflist.c
a2ps/intl/libgettext.h
a2ps/intl/linux-msg.sed
a2ps/intl/loadinfo.h
a2ps/intl/loadmsgcat.c
a2ps/intl/localealias.c
a2ps/intl/textdomain.c
a2ps/intl/xopen-msg.sed

Unlike the other two components, this component is
reused without any modifications.

If we look for the largest components reused at least 50
times the 701 include files representing interfaces for the
Linux kernel and glibc/sysdeps/generic directory contain-
ing C-language system functions with 750 files are by far
the largest. Both are reused with no or little modification.

5. Validity

There are a number of threats to validity in our inves-
tigation. First question involves representativeness of the
project sample. Since we do not have an infrastructure of
crawling a significant portion of the web like, for example,
Google Code Search, our sample may not be representative
of all open source projects. Therefore, the extent of reuse in
our sample may differ from the extent of reuse in all open
source projects. To address this threat to validity we have
designed a sampling process that incorporates source code
from large and widely known projects to a much larger set
of projects that are included in various operating system dis-
tribution. We also try to capture the broadest set of projects
from large project repositories. Because we are primarily
interested in more mature projects that use some sort of
version control we may, in fact, be capturing a significant
subset of the entire sample. It is, however, important to note
that our results apply to more commonly used projects that
are included in operating system distributions and projects
that are available from the largest open source repositories.

The second major issue represents the definition of reuse.
Some projects may not incorporate the source code but
reuse components in binary or source code that needs to
be retrieved separately (from the original project). This is
clearly a desirable form of reuse because the reused code
can be maintained in the centralized location. It may be that
the projects that were not responsive to bug reports and/or
did not parameterize well for wider use were reused by bor-
rowing their code, while projects that were responsive and
had flexible interfaces were reused without borrowing their
code. Therefore, the interpretation of our results should be
done with the understanding that the code is copied and pos-
sibly modified with all the potential negative (or positive)
consequences that may imply.

Apart from the two main threats to validity, we assume
that large-scale code reuse can be identified by detecting di-
rectories that share a large fraction of their filenames. Sim-
ple renaming of the files would make such detection impos-
sible. Therefore, our results should be interpreted as the
lower bound on the extent of reuse. The previous study
on commercial code [2] found that in instances where large
fraction of filenames are shared across directories the files
are almost always reused.



6. Discussion and future work

Even though it is well known that a significant advantage
of open source software is the ability to reuse the source
code, we did not expect to observe reuse at such a large
scale. It is worth noting that it is a lower boundary of reuse
because we consider only instance of large-scale reuse and
our measures may be missing instances where the filenames
are modified in the process of reuse.

Another surprise was relative dearth of the open source
software. We did focus on more mature projects that have
their version control data available, and did sample projects
instead of covering entire web, but even with these caveat
we found only 5.3 million files in 38.7 thousand projects.
In our experience commercial projects tend to be orders of
magnitude larger and a comparable number of files can be
observed within a single large software organization.

The three patterns of reuse we have detected do not nec-
essarily suggest strategies projects need to undertake in or-
der to increase reuse of their code. The first two patters
represent reuse of templates (for translation and for instal-
lation), while the third represents very well defined and
unchanging functionality needed to deal with international
characters. Reuse of Linux kernel and gcc headers simply
reflect their extensive use by other projects.

While such proliferation of code copying may appear as
a bad practice, it may serve an important need in the evolu-
tionary development of the open source software. Function-
ality that is incorporated in many projects can evolve and
the best instances would eventually dominate (as may be the
case in the third pattern of reuse we have identified). Pro-
liferation of the same or similar code in many projects in-
creases robustness of the entire system — the needed func-
tionality will be more likely to survive (in terms of being
maintained) in at least one project and is less likely to be
affected by fates of individual projects.

Clearly, this research is exploratory and can be extended
in several directions. A number of improvements in project
sampling strategy can be applied to improve coverage. The
precision of the currently approximate technique to detect
reuse can be improved using various clone detection tech-
niques. More importantly, better ways to define reused
components and automation of techniques that detect var-
ious patterns of reuse could be designed.

The most interesting directions, nevertheless, involve ex-
tending and rephrasing research questions. In particular, we
are interested in differences between reuse in closed and
open source projects, and, more importantly, in the rela-
tionship of reuse and key software engineering questions
related to reduction in effort and lead time and improve-
ments in product quality. In addition to immediate cost re-
ductions and quality improvements, the reuse may also have
significant social benefits within an enterprise by connect-

ing development groups, within open source community by
serving as a basis for developer networks, and by providing
links between enterprises and open source community.

7 Acknowledgments

We gratefully acknowledge support by the National Sci-
ence Foundation to several collaborators of this study under
Grant No. IIS-0414698.

References

[1] B. Baker. On finding duplication and near duplication in large
software system. In IEEE Working Conference on Reverse
Engineering, 1995.

[2] H.-F. Chang and A. Mockus. Constructing universal version
history. In ICSE’06 Workshop on Mining Software Reposito-
ries, pages 76–79, Shanghai, China, May 22-23 2006.

[3] P. T. Devanbu, S. Karstu, W. L. Melo, and W. Thomas. Ana-
lytical and empirical evaluation of software reuse metrics. In
ICSE 1996, pages 189–199, 1996.

[4] R. Ghosh. Final report. study on the economic impact of open
source software on innovation and the competitiveness of the
information and communication technologies (ict) sector in
the eu. Technical report, UNU-MERIT, NL, 2006.

[5] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component rank: Relative signifi-
cance rank for software component search. In ICSE’03, pages
14–24, 2003.

[6] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multi-
linguistic token- based code clone detection system for large
scale source code. IEEE Trans. Software Engineering, 28(7),
2002.

[7] C. Kapser and M. W. Godfrey. Improved tool support for
the investigation of duplication in software. In International
Conference on Software Maintenance, 2005.

[8] F. McGarry, R. Pajerski, G. Page, S. waligora, V. Basili, and
M. Zelkowitz. Softwre process improvement in the nasa soft-
ware engineering laboratory. Technical Report SEI-95-TR-
22, CMU, December 1994.

[9] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. n
empirical study of software reuse vs. defect-density and sta-
bility. In ICSE 2004, pages 282–292, 2004.


