
Large-Scale Reuse in Open Source Software

Audris Mockus

audris@avaya.com

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/



Open Source Innovations

✦ Fundamentally different model of software development

✧ Built by large numbers of volunteers without physical contact

✧ Work is not assigned but chosen

✧ Design controlled by a few architects

✦ Resulting properties of software and process [2]

✧ Small core team controlling code submission and new features with

an order of magnitute wider bug fix community and two orders of

magnitude larger problem reporting community

✧ Low post-feature-test defect density

✧ Large developer productivity

✧ Rapid response to user problems

2 A. Mockus Large Scale Reuse in Open Source Software



Research Goals

✦ A key premise of open source is that the code can be used in

other projects

✧ Reduces risks of project’s code being no longer available or

supported

✧ Provides social value by encouraging innovation (no need to

reimplement existing functionality)

✦ These suggest the following research questions:

✧ What is the extent of reuse?

✧ What are properties of highly reused code?

✧ How to evaluate reuse potential for a component?

✧ How to to find code most suitable for reuse?

✧ How to produce code that is more likely to be reused?

3 A. Mockus Large Scale Reuse in Open Source Software



Experimental approach

✦ Sample a large set of open source projects

✦ Identify and quantify instances of large-scale reuse

✧ not a copy and paste in an editor

✧ not a case of reuse where another project is reused as-is through

libraries without copying the code

✦ Identify common patterns of reuse

✦ Quantify quality and other properties of the reused code

4 A. Mockus Large Scale Reuse in Open Source Software



Sample selection and retrieval

✦ Sample

✧ Important projects: Apache, Gnome, KDE, Mozilla, OpenSolaris,

Postgres, and W3C

✧ Large distributions: Fedora 6, Gentoo, Slackware, FreeBSD,

NetBSD, and OpenBSD

✧ Development portals: Savannah, SourceForge, and Tigris

✧ Random or language specific: FreshMeat, CPAN, RpmForge, and

Gallery of Free Software Packages

✦ Retrieval

✧ SVN/CVS, wget, and page scraping (FreshMeat)

✧ 13.2M files from49.9K bundles

✧ 5.3M source code files and38.7K bundles after normalization

(removing package versions, binary files, ...)

5 A. Mockus Large Scale Reuse in Open Source Software



Quantify large-scale reuse

✦ Method

✧ Identify pairs of directories with a large fraction of filenames that are

shared between them [1] as reused directories

✧ Consider files with the same names in reused directories to be reused

✦ Measures

✧ Overall reuse — a fraction of files that are in more than one project

✧ Component reuse — a number of projects in which the component is

present

6 A. Mockus Large Scale Reuse in Open Source Software



Results

✦ Results using different parameter values for the minimal fraction

of shared filenames between two directories

(30%) (50%) (80%)

File count 2, 837, 233 2, 782, 339 2, 654, 977

Overall reuse .53 .52 .49

Table 1: Reused files in open source projects.

7 A. Mockus Large Scale Reuse in Open Source Software



Scenarios of reuse

✦ Most reused (numbers are based on80% cutoff)

✧ Text template:657 projects using language translations, “po”

directory with almost 50 files: “am.po”, ..., “zhTW.po”

✧ Functional template:576 projects using install module for Perl

✧ Verbatim copy:547 projects using C functions for

internationalization

✦ Largest components reused at least50 times

✧ 701 include files for Linux kernel

✧ System dependent configuration: glibc/sysdeps/generic with 750

files

8 A. Mockus Large Scale Reuse in Open Source Software



Validity

✦ Sampling process to increase the representativeness of project

sample

✦ The definition of large-scale reuse

✧ not a copy and paste in an editor

✧ not a case of reuse where another project is reused as-is through

libraries without copying the code

✦ No substantial changes to filenames or directory structure

✦ The instances of reuse are underestimated (no cases of mistaken

identification of reuse were found)

9 A. Mockus Large Scale Reuse in Open Source Software



Summary and future work

✦ Findings

✧ The three most common patterns of reuse do not suggest immediate

ways to increase reuse but point out less intuitive avenues for reuse

✧ The reuse is, indeed, massive and, therefore, has to facilitate

innovation and to ensure that reused code lives on even if some

projects die or vegetate

✧ The amount of OSS code is not that vast

✦ Future

✧ Better sample, identification of reuse, classification of patterns

✧ Reconstructing authorship and implicit collaborations viauniversal

version history

✧ Quantifying quality and other properties of highly reused code

✧ Quantifying benefits to society

10 A. Mockus Large Scale Reuse in Open Source Software



References
[1] Hung-Fu Chang and Audris Mockus. Constructing universal version history. InICSE’06

Workshop on Mining Software Repositories, pages 76–79, Shanghai, China, May 22-23 2006.

[2] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source
software development: Apache and mozilla.ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.


