
Industrial Strength Software
Measurement

Audris Mockus, David Weiss
{audris,weiss}@avaya.com

Copyright© 2006 Avaya Inc. All rights reserved 2

Topics
• Why measure?

– On industrial scale?
– On project scale?
– On individual scale?
– On country scale?

• The GQM model for measurement?
•Goals, Questions, Measures
•Evolution of goals

»The cost, quality, time to market rotation
– Characteristics of industrial measurement

• Some of our goals
• Available data
• Some examples

– Interval Quality
– Registration Refactoring
– Introduction of Test Coverage Tools

Copyright© 2006 Avaya Inc. All rights reserved 3

Measurement Approach: GQM

• Identify goals of software development process
– Example: Produce more new features, fewer defects with fewer, more

distributed, resources.

• Propose questions whose answers establish progress towards goals
– Example: What is the ratio of new features to bug fixes by product? By site?

• Define measures that can be used to answer questions and that can
be practically obtained for the software project
– Example: Ratio of new feature MRs to bug fix MRs by product and site,

normalized.

• Validate measures internally and externally
– Example: remove tool generated artifacts and ensure the measure

represents the phenomena it is intended to measure

• Establish infrastructure for data collection and analysis
– Dashboards
– Automated data collection and analysis

Copyright© 2006 Avaya Inc. All rights reserved 4

Software Changes: A Fabric of Measurement

• MR = Modification Request
– For every change

• Why was it made?
• Who requested it?
• Who made the change?
• What was changed?
• When was it changed?
 ….

• States of an MR
– Created (Developer, Tester, Support)
– Assigned (MR Review Board)
– Submitted (Developer)
– Verified (Tester)
– Completed (MR Review Board)
– Accepted

Copyright© 2006 Avaya Inc. All rights reserved 5

Background

• Software is created incrementally, via changes
recorded by a VCS

• A delta is an addition and deletion of lines in a file
before: after:

// print N integers
int i=N; int i=N;
while (i) while (N > 0 && i > 0)

 printf (“%d\n”,i--); printf (“%d\n”,i--);

– one line deleted
– two lines added
– two lines unchanged

Copyright© 2006 Avaya Inc. All rights reserved 6

Change Hierarchy

Copyright© 2006 Avaya Inc. All rights reserved 7

Characteristics of Industrial Measurement

• Meaningful
– Show progress towards meeting goals

• Trends, snapshots, figures of merit

• Nonintrusive
– Don’t add to developers’ burden
– Use data (already) collected for development purposes

• Automatable
– Handle large amounts of data over long periods of time

• 10s of thousands of records over decades
– Automatically produce dashboards (website)

• Customizable
– Each project can customize for its own version of goals

• Feasible
– Data can be collected in an automated way
– Verification possible

Copyright© 2006 Avaya Inc. All rights reserved 8

Some Key Feasible Measures
• Diffusion (# of subsystems, modules, files,

developers)

• Size (# of lines added, deleted, and in the
touched files)

• Diffusion & Size (# of deltas, MRs)

• Lead time (interval from start to completion)

• Purpose (Fix/New)

• Identity and experience (# of delta done in the
past/recently/on a relevant part of the product)
of creators

Copyright© 2006 Avaya Inc. All rights reserved 9

Some Benefits of Change Measures

+ Availability and cost
+obtainable for all projects using CM
+nonintrusive – use existing data

+ Detail and coverage
+ fine grained – information at MR/delta level
+complete – all parts of software are recorded
+massive – larger than surveys/project measures

+ Stability and bias
+uniform – slowly change over time
+unbiased – no observer effect

Copyright© 2006 Avaya Inc. All rights reserved 10

Some Drawbacks of Change measures

– Require validation and careful interpretation

– Data recorded for other purposes

– Often need nontrivial datamining techniques

– Different project support systems contain different
attributes

– Different projects may use the same system in
different ways

Copyright© 2006 Avaya Inc. All rights reserved 11

Some Current Avaya Goals (1)

• Significantly improve predictability
– Is predictability improving?
– What fraction of projects are on time?
– What are the factors associated with late projects?

• Significantly improve quality
– Is quality improving?
– What is the customers’ perceptions of software quality?
– What is the in-process quality?

• Rapidly produce new products (days and weeks instead of months
and years)

– Use a modular, family architecture
– Take advantage of commonalities to compose and generate rather than hand code
– Make production predictable
– Continually predict, trial, and leverage expected future needs
– Develop infrastructure for composing products from modules

Copyright© 2006 Avaya Inc. All rights reserved 12

Some Current Avaya Goals (2)

• Keep production within limits of resources, which are becoming
more distributed

– How distributed are resources? What’s the trend?
– Are there differences in productivity, quality among sites?

• Make globally distributed development (independent component
development at different sites) an advantage

– Are there differences in productivity, quality among sites?

• Introduce new software development processes
– Agile development using automated test tools

• Ensure minimum of 60% test coverage for all new code

Copyright© 2006 Avaya Inc. All rights reserved 13

(A Few) Proposed Questions
1. What is the time and effort to create a new product? How predictable is product

creation (time, effort, resources)?
– Snapshot and trends

• What is the ratio of new modules to reused modules in a product?
– Snapshot and trends

• For each (new?) product, which modules are new, which are reused unchanged, and
which are reused wit adaptation or configuration?

• What is the ratio of new features to bug fixes by product? By site?
1. Snapshot and trends

• What is the time and effort to create a new version of a new module? By site? How
predictable is module creation (time, effort, resources)?

– Snapshot and trends

• Is the architecture modular? Are interfaces suitable for use in many products and
well-defined?

• Does the architecture match the organization (one site per module)?
• Is iterative development possible?
• What is the quality of products? What is the quality of modules?

– Snapshot and trends

Copyright© 2006 Avaya Inc. All rights reserved 14

Plan

• Iterate on goals, questions

• Define data collection needs and resources
– Who is responsible for assuring (accurate) data are collected?

• Trial data collection and analysis

• Iterate, revise, scale-up: create dashboards

Copyright© 2006 Avaya Inc. All rights reserved 15

Distribution of Software Development

The number of International R&D locations has
increased while the number of US locations has
decreased between 2001 and 2005.

Copyright© 2006 Avaya Inc. All rights reserved 16

Resources for Software Development

Copyright© 2006 Avaya Inc. All rights reserved 17

Growth of the Code Base

Copyright© 2006 Avaya Inc. All rights reserved 18

Predictability

Copyright© 2006 Avaya Inc. All rights reserved 19

Relative
Schedule
 Range

Feasibility Plans and
Requirements

Product
Design

Detailed
Design

Development and Test

200%

50%

Project Estimates
At Gate 1 MedianProject Estimates

at Gate 2

150%

75%

100%

Predicting Software Development (50 sampled projects)

.

Launch

Copyright© 2006 Avaya Inc. All rights reserved 20

Example Staffing Profile

Original Plan

Replan

Actual

Gate 1 Estimated Launch Actual Launch

FTE staff

Copyright© 2006 Avaya Inc. All rights reserved 21

Distributed development, innovation, new features,
legacy adaptation all contribute to delays

Copyright© 2006 Avaya Inc. All rights reserved 22

Interval Quality

Copyright© 2006 Avaya Inc. All rights reserved 23

Context of quality measurement

• Primary question:
– Is the quality (reliability/availability) experienced by customers

increasing/decreasing?

• Data sources
– Customer inventory
– Service calls, system alarms
– Software changes

• Primary challenges
– Storing, cleaning, and linking data sources
– Designing a simple to understand and use quality measure

Copyright© 2006 Avaya Inc. All rights reserved 24

The probability of a customer observing a failure
• Is affected by:

– Major/minor release
– How soon after launch the system was installed
– How long the system was running
– The size and utilization of the system

The graph shows two
factors:

- time after launch
- release

Copyright© 2006 Avaya Inc. All rights reserved 25

Interval Quality
• Probability that a

customer observes a
failure within one, three,
and six months after
installation
– 1 month

• more noisy
• allows seeing trends
earlier

– 6 months
• more stable
• have to wait for results

• Drawback
– does not account for the

proximity to launch
• Significant differences are

marked with *, **, and ***
• Priorities changed from

time-to-market to quality

Release

Copyright© 2006 Avaya Inc. All rights reserved 26

Interval Quality and Defect Density
• X-axis:

– Releases
• Y-axis:

– Four measures
• Features:

– negative
correlation

– major releases
look better in
terms of defect
density

Copyright© 2006 Avaya Inc. All rights reserved 27

Introducing New Technology

Copyright© 2006 Avaya Inc. All rights reserved 28

Context for Refactoring a
Telecommunications Domain

• One domain of Avaya’s IP telephony software

• 30 KLOC C++, ASN.1 generated code, 3rd party protocol
stack within 7 MLOC system

• 40 different developers over 5 years

• Design degradation

• Constant change
– inflow of defects from 5+ deployed releases
– changes to implement new functionality for 2+ future releases

Copyright© 2006 Avaya Inc. All rights reserved 29

Software Refactoring

• For migrating legacy code to a target design

• Improve code structure without changing external behavior

• Sequence of simple behavior preserving code transformation
steps

• For instance: “Extract Method”: Turn a code fragment into a
method whose name explains the purpose of the method

Copyright© 2006 Avaya Inc. All rights reserved 30

Refactoring Hypotheses

• H1: The customer reported defect rate will improve
– Better (“collaboration”-based) design
– Refactoring exposed pre-existing issues

• H2: The refactoring reduces the effort required to make
changes
– Information hiding
– If design is good changes will be confined

Copyright© 2006 Avaya Inc. All rights reserved 31

Measures

• H1: The number of field MRs found and the root cause of
these problems

• H2: Change effort and the amount of code that needs to be
inspected to make the change

Copyright© 2006 Avaya Inc. All rights reserved 32

Defect Density

• The number of defects depends on release size

• Reported defects and submitted changes in registration
domain

• Four pre- and one post-refactoring release
 Release Size Field defects
pre-Refactoring 526 41
post-Refactoring 80 0

• Adjust for the shorter exposure of the last release: assume
only 50% of defects in the first 7 months (41/2=20)

• Fisher’s exact test p-value 0.06

Copyright© 2006 Avaya Inc. All rights reserved 33

Change Effort

Stage #changes avg(log(PersonMonths))

Pre-Ref. 292 1.12

Post-Ref. 151 1.23

• two-sample t-test of log(effort) p-value=.06

• Mann-Whitney of log(effort) p-value=.06

• The LOC in the refactored area decreased by 50%

Copyright© 2006 Avaya Inc. All rights reserved 34

Validation

• Reality
– Verified the process
– Verified selection of relevant changes (MRs)
– Manually inspected all field MRs
– Several operationalizations

• Modeling
– Distribution: take logs or use nonparametric tests
– Normalize by size where needed
– Apply relevant models

• A case study precludes causal inference

Copyright© 2006 Avaya Inc. All rights reserved 35

Automated Test Coverage: Goals, Questions

• Estimate impact of introducing new tools, techniques
• Test coverage: Move detection of defects earlier

• Do we see the expected impact?
• What is the effect on effort, quality, schedule?

Number of Defects
Found

Development
Stages

System
Validation

System
Validation

Unit &
Integration
Testing

Unit &
Integration
Testing

Copyright© 2006 Avaya Inc. All rights reserved 36

Coverage Report (Batch)

Copyright© 2006 Avaya Inc. All rights reserved 37

Source Code View (GUI - Initial)

Copyright© 2006 Avaya Inc. All rights reserved 38

Automated Test Coverage: Feasibility

• Measured introduction of a test coverage/slicing tool
– Usage logged: date, IP, login, invocation options
– Changes to the codebase: login, file, date, size
– Changes to the test code (JUnit) base
– MRs: date, origin, developer

• Expected outcome
– Logins with higher test tool usage have fewer MRs raised in

testing and post-launch
• Complications

– The coverage tool was run as a part of build process to create
reports, so it was impossible to determine who used the reports

– There was limited understanding about potential uses of the tool
among developer population, some important functions were not
utilized

Copyright© 2006 Avaya Inc. All rights reserved 39

Summary
• Why measure?

– Estimate parameters important to business
• Customer satisfaction, predictability, time and resources needed to create products

– Evaluate progress on particular projects
• When will it be ready? How many architects, developers, testers will we need?

– Estimate capabilities and needs to understand areas for improvement
• What problems do we need to solve to improve?
• What is the impact of introducing new technology, methods?

– Personal, Business, Country, World

• What’s a good model for measurement?
– Define goals first, then ask questions needed to evaluate progress

towards achieving goals
• Goals change over time - interval, quality, cost

– What are characteristics of industrial measurement?
• Change data as a key information source
• Automatibility, nonintrusiveness

• Some examples
– Interval Quality
– Registration Refactoring
– Introduction of Test Coverage Tools

