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Motivation

F A key software engineering objective is to improve quality via
practices and tools supporting requirements, design,
implementation, verification, and maintenance

F Needs of a user: reliability, maintainability, availability, backward
compatibility, cost, and features

F Primary objectives

G Can we measure quality in vivo?
G Is the common wisdom about software quality correct?

F Secondary (background) objectives

G Can we show if or where software engineering works?
G Can information hidden in support systems provide additional

insights?
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Outline

F Quality for communications

F Ways to observe and estimate quality in vivo

F Questions

G Can we compare quality among releases?
G Does hardware or software have more impact on quality?
G Which part of the life-cycle affects quality the most?
G Can we approximate quality using easy-to-obtain measures?

F Answers

G Yes, software, service, no

F Discussion
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Common Approaches

F Measuring quality

G Theoretical models [16]
G Simulations (in silico)
G Observing indirectly (test runs, SW defects)
G Observing directly in vivo via recorded user/system actions (not

opinion surveys)
G More realistic
G More accurate
G Provides higher level of confidence
G In vivo research is more suited to observe an overall effect than in

vitro research
G More relevant
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Communications Quality [6]

F Context: military and commercial communication systems,
1960-present

F Goals: system outage, loss of service, degradation of service

G Downtime of 2 hours over 40 yr, later “5 nines” (or 5 min per year)
G Degradation of service, e.g., < .01% calls mishandled
G Faults per line per time unit, e.g., errors per 100 subscribers per year
G MTBF for service or equipment, e.g, exchange MTBF, % subscribers

with MTBF > X

G Duplication levels, e.g., standby HW for systems with > 64

subscribers
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Observing in vivo — architecture
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Observing in vivo — sources

F Service tickets

G Represent requests for action to remedy adverse events: outages,
software and hardware issues, and other requests

G Manual input: not always accurate
G Some issues may be unreported

F Software alarms

G Complete and detailed list for the systems set to generate them
G Irrelevant events are included, e.g, experimental, misconfigured

systems that are not in production use at the time

F Inventory

G Type, size, configuration, install date for each release

F Link between deployment dates and tickets/alarms
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Issues with commonly available data and
published analyses

F Present

G Problem reports by month (hopefully grouped by release)
G Sales by month (except for freely downloadable SW)

F Absent

G No link between install time and problem report =⇒ no way to get
accurate estimates of hazard trends

G No complete list of software outages =⇒ no way to get rough
estimates of the underlying rate
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Data Remedies

F Only present state of inventory is kept =⇒ collect snapshots to
reconstruct history

F The accounting aggregation (by solution) is different from service
(by system) or production (by release/patch) aggregation =⇒
remap to the finest common aggregation

F Missing data

G Systems observed for different periods =⇒ use survival curves
G Reporting bias =⇒ divide into groups according to service levels

and practices

F Quantity of interest not measured =⇒ design measures for
upper and lower bounds
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Practical questions

F Can we compare quality among releases to evaluate the
effectiveness of QA practices?

F Does hardware or software have more impact on quality?

F Which part of the production/deployment/service life-cycle
affects quality the most?

F Can quality be approximated with easy-to-obtain measures, e,g.,
defect density?
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Naive reliability estimates

F Naive estimate: calendar time×installed base
# software restarts

F Naive+ estimate: runtime|simplex systems
# restarts|simplex

F Alarming syst. estimate: runtime|simplex,generating alarms
# restarts|simplex

Naive Naive+ Alarming

Systems 80000 1011 761

Restarts 14000 32 32

Period .5 .25 .25

MTBF (years) 3 7.9 5.9
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What affects restart rates?
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F Kaplan-Meier estimates of the survival curves for three platforms and
two releases

F Differences between releases dwarfed by differences among
platforms [8]
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Hazard function
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F Have to adjust for runtime and separate by platform or the MTBF
will characterize the currently installed base, not release quality

F So how to compare release quality?
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Interval Quality
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F Fraction of customers that report software failures within the first few
months of installation

F Does not account for proximity to launch, platform mix

F Significant differences marked with “*”
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F “We live or die by this measure”
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Can we use easy-to-obtain defect density?
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High defect density leads to satisfied
customers???

F What does any human/organization strive for?
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Stability

F The rate at which customer problems get to Tier IV is almost
constant despite highly varying deployment and failure rates
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Major versus Minor releases

F Defect density numerator is about the same as for IQ because

G Major releases are deployed more slowly to fewer customers
G For minor releases a customer is less likely to experience a fault so

they are deployed faster and to more customers

F The denominator diverges because

G Major releases have more code changed and fewer customers
G Minor releases have less code and more customers
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Hardware vs Software
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F Limitations

G Durations of SW Warm,
SW Cold, HW differ by or-
ders of magnitude

G Warm rst. don’t drop calls
G High/Critical cfg. may by

unaffected
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tive
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F Distribution of MTBF for 15 platform/release combinations
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Which part of the software production and
delivery contributes most to quality?

F Development perspective - fraction of MRs removed per stage

G Development→ features, bugs introduced, and resolved
G Verification→ 40% of development stage MRs (post unit-test)
G α/β trials→ 7% of development stage MRs
G Deployment→ 5% in major and 18% in minor releases

F Customer perspective - probability of observing a failure

G may drop up to 30 times in the first few months post-launch [15]
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More detailed information =⇒ new insights

F New insights gleaned via support systems

F Results become an integral part of development practices —
continuous feedback on production changes/improvements

F Measurement hints

G Pick the right measure for the objective — no single “quality” exists
G Adjust for relevant factors to avoid measuring demographics
G Navigate numerous pitfalls of missing, biased, irrelevant data, bound

the quantity of interest

F Action hints

G Maintenance — the most important quality improvement activity
G Development process view does not represent customer views
G Software tends to be a bigger reliability issue with a few exceptions
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Thank You.
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Limitations

F Different characteristics of the project including numbers of
customers, application domain, software size, quality
requirements are likely to affect most of the presented values

F Many projects may not have as detailed and homogeneous
service repositories

25 July, 2006 Audris Mockus Faces of Software Quality



Methodology: Validation
F Interview a sample of individuals operating and maintaining

relevant systems

G Go over recent cases the person was involved with
G to illustrate the practices (what is the nature of the work item, why

you got it, who reviewed it)
G to understand/validate the meaning of attribute values: (when was

the work done, for what purpose, by whom)
G to gather additional data: effort spent, information exchange with

other project participants
G to add experimental/task specific questions

F Augment data via relevant models [8, 11, 1, 12]

F Validate and clean retrieved and modeled data

F Iterate
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Methodology: Existing Models

F Predicting the quality of a patch [12]

F Work coordination:
G What parts of the code can be independently maintained [13]
G Who are the experts to contact about any section of the code [10]
G How to measure organizational dependencies [4]

F Effort: estimate MR effort and benchmark practices
G What makes some changes hard [5]
G What practices and tools work [1, 2, 3]
G How OSS and Commercial practices differ [9]

F Project models
G Release schedule [14]
G Release readiness criteria [7]
G Consumer perceived quality [15, 8]
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Abstract
Improving software quality is a primary concern of software engineering. It is, therefore, of interest
how various software engineering approaches impact software quality. The quality of software is
commonly measured via defect density often assuming that it will relate to some of customer
experiences with software. We set out to quantify customer experiences of a deployed software
system to provide a basis for quality improvement actions. First, we process and model information
gathered from a variety of service support systems to obtain estimates of software reliability and
discover the hazard function to vary with time elapsed from installation. This suggests a quality
measure based on the customers’ probability of failure within the first few months of installation.
Surprisingly, the customer perceived quality has negative correlation with defect density. The large
magnitude of quality improvement after system verification stage suggests that the most efficient
way to achieve the highest levels of quality is to manage the deployment practices by, for example,
adjusting the deployment rate, by providing adequate resources to resolve post-launch problems, and
by conducting extensive alpha and beta trials.
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