
Faces of Software Quality

Audris Mockus

audris@avaya.com

Avaya Labs Research
Basking Ridge, NJ 07920

Motivation

F A key software engineering objective is to improve quality via
practices and tools supporting requirements, design,
implementation, verification, and maintenance

F Needs of a user: reliability, maintainability, availability, backward
compatibility, cost, and features

F Primary objectives

G Can we measure quality in vivo?
G Is the common wisdom about software quality correct?

F Secondary (background) objectives

G Can we show if or where software engineering works?
G Can information hidden in support systems provide additional

insights?

2 July, 2006 Audris Mockus Faces of Software Quality

Outline

F Quality for communications

F Ways to observe and estimate quality in vivo

F Questions

G Can we compare quality among releases?
G Does hardware or software have more impact on quality?
G Which part of the life-cycle affects quality the most?
G Can we approximate quality using easy-to-obtain measures?

F Answers

G Yes, software, service, no

F Discussion

3 July, 2006 Audris Mockus Faces of Software Quality

Common Approaches

F Measuring quality

G Theoretical models [16]
G Simulations (in silico)
G Observing indirectly (test runs, SW defects)
G Observing directly in vivo via recorded user/system actions (not

opinion surveys)
G More realistic
G More accurate
G Provides higher level of confidence
G In vivo research is more suited to observe an overall effect than in

vitro research
G More relevant

4 July, 2006 Audris Mockus Faces of Software Quality

Communications Quality [6]

F Context: military and commercial communication systems,
1960-present

F Goals: system outage, loss of service, degradation of service

G Downtime of 2 hours over 40 yr, later “5 nines” (or 5 min per year)
G Degradation of service, e.g., < .01% calls mishandled
G Faults per line per time unit, e.g., errors per 100 subscribers per year
G MTBF for service or equipment, e.g, exchange MTBF, % subscribers

with MTBF > X

G Duplication levels, e.g., standby HW for systems with > 64

subscribers

5 July, 2006 Audris Mockus Faces of Software Quality

Observing in vivo — architecture
PlatformSystem IDSystem IDSystem ID

System ID

First date

Weekly
snapshots

Ticketing system

Resolution

Other attributes

Installed base

base
Alarming

ticket/alarm
Outage/Restart

Release/Platf.

Rel. launch

System Id/Conf.

Time

Other alarm info

Alarming system
Augmented

Metrics/
Bounds

Level 0 Level 1 Level 2

Ticket ID

Time

Alarm type

Alarm ID MTBF

Availability

Population

Survival

Hazard

Outage duration

Platform
System ID

Release

Inst/runtme
System ID

Inventory system

Date modifiedConfiguration

Customer Info. Release

6 July, 2006 Audris Mockus Faces of Software Quality

Observing in vivo — sources

F Service tickets

G Represent requests for action to remedy adverse events: outages,
software and hardware issues, and other requests

G Manual input: not always accurate
G Some issues may be unreported

F Software alarms

G Complete and detailed list for the systems set to generate them
G Irrelevant events are included, e.g, experimental, misconfigured

systems that are not in production use at the time

F Inventory

G Type, size, configuration, install date for each release

F Link between deployment dates and tickets/alarms
7 July, 2006 Audris Mockus Faces of Software Quality

Issues with commonly available data and
published analyses

F Present

G Problem reports by month (hopefully grouped by release)
G Sales by month (except for freely downloadable SW)

F Absent

G No link between install time and problem report =⇒ no way to get
accurate estimates of hazard trends

G No complete list of software outages =⇒ no way to get rough
estimates of the underlying rate

8 July, 2006 Audris Mockus Faces of Software Quality

Data Remedies

F Only present state of inventory is kept =⇒ collect snapshots to
reconstruct history

F The accounting aggregation (by solution) is different from service
(by system) or production (by release/patch) aggregation =⇒
remap to the finest common aggregation

F Missing data

G Systems observed for different periods =⇒ use survival curves
G Reporting bias =⇒ divide into groups according to service levels

and practices

F Quantity of interest not measured =⇒ design measures for
upper and lower bounds

9 July, 2006 Audris Mockus Faces of Software Quality

Practical questions

F Can we compare quality among releases to evaluate the
effectiveness of QA practices?

F Does hardware or software have more impact on quality?

F Which part of the production/deployment/service life-cycle
affects quality the most?

F Can quality be approximated with easy-to-obtain measures, e,g.,
defect density?

10 July, 2006 Audris Mockus Faces of Software Quality

Naive reliability estimates

F Naive estimate: calendar time×installed base
software restarts

F Naive+ estimate: runtime|simplex systems
restarts|simplex

F Alarming syst. estimate: runtime|simplex,generating alarms
restarts|simplex

Naive Naive+ Alarming

Systems 80000 1011 761

Restarts 14000 32 32

Period .5 .25 .25

MTBF (years) 3 7.9 5.9

11 July, 2006 Audris Mockus Faces of Software Quality

What affects restart rates?

0.0 0.1 0.2 0.3 0.4

0.8
5

0.9
0

0.9
5

1.0
0

Years from installation

Pro
po

rtio
n w

ith
ou

t re
sta

rts

PlatformG
PlatformI
PlatformM

F Kaplan-Meier estimates of the survival curves for three platforms and
two releases

F Differences between releases dwarfed by differences among
platforms [8]

12 July, 2006 Audris Mockus Faces of Software Quality

Hazard function

0.0 0.1 0.2 0.3 0.4

0.0
0.2

0.4
0.6

0.8
1.0

Years from installation

Ha
za

rd

PlatformG
PlatformI
PlatformM

F Have to adjust for runtime and separate by platform or the MTBF
will characterize the currently installed base, not release quality

F So how to compare release quality?

13 July, 2006 Audris Mockus Faces of Software Quality

Interval Quality

1.1 1.3 2.0 2.1 2.2 3.0 3.1

0−1 months after inst.
0−3 months after inst.
0−6 months after inst.

Post inst. MR rates. Current Date

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

**

F Fraction of customers that report software failures within the first few
months of installation

F Does not account for proximity to launch, platform mix

F Significant differences marked with “*”
14 July, 2006 Audris Mockus Faces of Software Quality

F “We live or die by this measure”

15 July, 2006 Audris Mockus Faces of Software Quality

Can we use easy-to-obtain defect density?

DL

DL

DL

DL

DL

DL

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity

DM

DM
DM

DM

DM

DM

F1

F1

F1
F1

F1
F1

F3

F3

F3
F3

F3

F3

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
DM
F1
F3

DefPerKLOC/100
DefPerPreGaMR*10
Probability 1m.
Probability 3m.

F anti-correlated

16 July, 2006 Audris Mockus Faces of Software Quality

High defect density leads to satisfied
customers???

F What does any human/organization strive for?

17 July, 2006 Audris Mockus Faces of Software Quality

Stability

F The rate at which customer problems get to Tier IV is almost
constant despite highly varying deployment and failure rates

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

N
u

m
b

e
rs

 o
f
fie

ld
 is

su
e

s
0

5
0

1
0

0
1

5
0

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5
0

5
0
0

1
0
0
0

1
5
0
0

Months

D
e
p
lo

ye
d
 s

ys
te

m
s

18 July, 2006 Audris Mockus Faces of Software Quality

Major versus Minor releases

F Defect density numerator is about the same as for IQ because

G Major releases are deployed more slowly to fewer customers
G For minor releases a customer is less likely to experience a fault so

they are deployed faster and to more customers

F The denominator diverges because

G Major releases have more code changed and fewer customers
G Minor releases have less code and more customers

19 July, 2006 Audris Mockus Faces of Software Quality

Hardware vs Software

HW Low HW High SW Cold SW All0
.5

1
5

1
0

5
0

1
0

0
5

0
0

1
0

0
0

F Limitations

G Durations of SW Warm,
SW Cold, HW differ by or-
ders of magnitude

G Warm rst. don’t drop calls
G High/Critical cfg. may by

unaffected
G HW-High ultra conserva-

tive
G Variability for each esti-

mate may be high

F Distribution of MTBF for 15 platform/release combinations

20 July, 2006 Audris Mockus Faces of Software Quality

Which part of the software production and
delivery contributes most to quality?

F Development perspective - fraction of MRs removed per stage

G Development→ features, bugs introduced, and resolved
G Verification→ 40% of development stage MRs (post unit-test)
G α/β trials→ 7% of development stage MRs
G Deployment→ 5% in major and 18% in minor releases

F Customer perspective - probability of observing a failure

G may drop up to 30 times in the first few months post-launch [15]

21 July, 2006 Audris Mockus Faces of Software Quality

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
Probability of observing SW issue in the first 3 months

Time in years between launch and deployment

P
ro

ba
bi

lit
y

Platf A, Small, No upgrades
Platf A, Small, Upgrades
Platf A, Medium, Upgrades
Platf B, Medium, No upgrades
Platf B, Medium, Upgrades
Platf B, Large, Upgrades

22 July, 2006 Audris Mockus Faces of Software Quality

More detailed information =⇒ new insights

F New insights gleaned via support systems

F Results become an integral part of development practices —
continuous feedback on production changes/improvements

F Measurement hints

G Pick the right measure for the objective — no single “quality” exists
G Adjust for relevant factors to avoid measuring demographics
G Navigate numerous pitfalls of missing, biased, irrelevant data, bound

the quantity of interest

F Action hints

G Maintenance — the most important quality improvement activity
G Development process view does not represent customer views
G Software tends to be a bigger reliability issue with a few exceptions

23 July, 2006 Audris Mockus Faces of Software Quality

Thank You.

24 July, 2006 Audris Mockus Faces of Software Quality

Limitations

F Different characteristics of the project including numbers of
customers, application domain, software size, quality
requirements are likely to affect most of the presented values

F Many projects may not have as detailed and homogeneous
service repositories

25 July, 2006 Audris Mockus Faces of Software Quality

Methodology: Validation
F Interview a sample of individuals operating and maintaining

relevant systems

G Go over recent cases the person was involved with
G to illustrate the practices (what is the nature of the work item, why

you got it, who reviewed it)
G to understand/validate the meaning of attribute values: (when was

the work done, for what purpose, by whom)
G to gather additional data: effort spent, information exchange with

other project participants
G to add experimental/task specific questions

F Augment data via relevant models [8, 11, 1, 12]

F Validate and clean retrieved and modeled data

F Iterate

26 July, 2006 Audris Mockus Faces of Software Quality

Methodology: Existing Models

F Predicting the quality of a patch [12]

F Work coordination:
G What parts of the code can be independently maintained [13]
G Who are the experts to contact about any section of the code [10]
G How to measure organizational dependencies [4]

F Effort: estimate MR effort and benchmark practices
G What makes some changes hard [5]
G What practices and tools work [1, 2, 3]
G How OSS and Commercial practices differ [9]

F Project models
G Release schedule [14]
G Release readiness criteria [7]
G Consumer perceived quality [15, 8]

27 July, 2006 Audris Mockus Faces of Software Quality

References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the impact of software tools: A case study of the

version editor. IEEE Transactions on Software Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost. Bell Labs Technical Journal, 5(2):7–18,
April–June 2000.

[3] Birgit Geppert, Audris Mockus, and Frank Rößler. Refactoring for changeability: A way to go? In Metrics 2005: 11th International
Symposium on Software Metrics, Como, September 2005. IEEE CS Press.

[4] James Herbsleb and Audris Mockus. Formulation and preliminary test of an empirical theory of coordination in software engineering.
In 2003 International Conference on Foundations of Software Engineering, Helsinki, Finland, October 2003. ACM Press.

[5] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An empirical study of global software development:
Distance and speed. In 23nd International Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[6] H.A. Malec. Communications reliability: a historical perspective. IEEE Transactions on Reliability, 47(3):333–345, Sept. 1998.

[7] Audris Mockus. Analogy based prediction of work item flow in software projects: a case study. In 2003 International Symposium on
Empirical Software Engineering, pages 110–119, Rome, Italy, October 2003. ACM Press.

[8] Audris Mockus. Empirical estimates of software availability of deployed systems. In 2006 International Symposium on Empirical
Software Engineering, pages 222–231, Rio de Janeiro, Brazil, September 21-22 2006. ACM Press.

[9] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source software development: Apache and mozilla.
ACM Transactions on Software Engineering and Methodology, 11(3):1–38, July 2002.

[10] Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to identifying expertise. In 2002 International
Conference on Software Engineering, pages 503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[11] Audris Mockus and Lawrence G. Votta. Identifying reasons for software change using historic databases. In International Conference
on Software Maintenance, pages 120–130, San Jose, California, October 11-14 2000.

[12] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs Technical Journal, 5(2):169–180, April–June
2000.

[13] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach. IEEE Software, 18(2):30–37, March 2001.

[14] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in software projects. In 2003 International
Conference on Software Engineering, pages 274–284, Portland, Oregon, May 3-10 2003. ACM Press.

[15] Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived software quality. In ICSE 2005, pages 225–233, St Louis,
Missouri, May 2005. ACM Press.

[16] J. D. Musa, A. Iannino, and K. Okumoto. Software Reliability. McGraw-Hill Publishing Co., 1990.

Abstract
Improving software quality is a primary concern of software engineering. It is, therefore, of interest
how various software engineering approaches impact software quality. The quality of software is
commonly measured via defect density often assuming that it will relate to some of customer
experiences with software. We set out to quantify customer experiences of a deployed software
system to provide a basis for quality improvement actions. First, we process and model information
gathered from a variety of service support systems to obtain estimates of software reliability and
discover the hazard function to vary with time elapsed from installation. This suggests a quality
measure based on the customers’ probability of failure within the first few months of installation.
Surprisingly, the customer perceived quality has negative correlation with defect density. The large
magnitude of quality improvement after system verification stage suggests that the most efficient
way to achieve the highest levels of quality is to manage the deployment practices by, for example,
adjusting the deployment rate, by providing adequate resources to resolve post-launch problems, and
by conducting extensive alpha and beta trials.

Audris Mockus
Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, and improving software development. He

designs data mining methods to summarize and augment software change data, interactive

visualization techniques to inspect, present, and control the development process, and statistical

models and optimization techniques to understand the relationships among people, organizations,

and characteristics of a software product. Audris Mockus received B.S. and M.S. in Applied

Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991 he received M.S.

and in 1994 he received Ph.D. in Statistics from Carnegie Mellon University. He works in the

Software Technology Research Department of Avaya Labs. Previously he worked in the Software

Production Research Department of Bell Labs.

