
Refactoring for Changeability: A way to go?

B. Geppert, A. Mockus, and F. Roessler

{bgeppert, audris, roessler}@avaya.com

Avaya Labs Research

Basking Ridge, NJ 07920

http://www.research.avayalabs.com/user/audris



Objective

✦ Legacy software is difficult and fault prone to change

✧ Is it possible to do re-engineering on “live” system given the need to

support several deployed releases (streams of fixes) and in parallel

with new feature introduction (streams of features)?

✧ What value such re-engineering may bring?

✧ Will it survive through future changes?

✦ Intuitive conjecture: re-engineering will increase changeability

— ability to make changes to software with minimal effort and

without introducing many defects

2 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Context

✦ One domain of Avaya’s IP telephony software

✦ 30 KLOC C++, ASN.1 generated code, 3rd party protocol stack

within 7 MLOC system

✦ 40 different developers over 5 years

✦ Design degradation

✦ Constant change

✧ inflow of defects from 5+ deployed releases

✧ changes to implement new functionality for 2+ future releases

3 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Outline for the remaining talk

✦ Refactoring and re-design

✦ Hypotheses

✦ Methodology

✦ Results

✦ Validation

✦ Conclusions

4 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Software Refactoring

✦ For migrating legacy code to a target design

✦ Improve code structure without changing external behavior

✦ Sequence of simple behavior preserving code transformation
steps

✦ For instance: “Extract Method”: Turn a code fragment into a
method whose name explains the purpose of the method.

5 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Refactoring team

✦ 2 developers without experience with the legacy code, but experts

in protocol-composition-design and software refactoring

✧ Analysis, design, and refactoring

✦ 3 subject matter experts knowledgeable in target subsystem,

development environment, and test environment

✧ Consulting, design reviews, and code reviews

6 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Design

7 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Modules

8 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Refactoring Hypotheses

✦ H1: The customer reported defect rate will improve

✧ collaboration-based design

✧ refactoring exposed pre-existing issues

✦ H2: The refactoring reduces the effort required to make changes

✧ information hiding

✦ H3: The refactoring reduces the scope of changes within the

restructured domain

✧ if design is good changes will be within modules

✧ changes within a module are likely to touch few files

9 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Measurement Methodology

✦ Software is created by making changes to it

✧ A delta is a single checkin (ci/commit/edput) representingan atomic

modification of a single file with following attributes

✧ File, Date, Developer, Comment

✧ Other attributes that often can be derived:

✧ Size (number of lines added,deleted)

✧ Lead time (interval from start to completion)

✧ Purpose (Fix/New)

✦ Approach

✧ Use project’s repositories of change data to model (explainand

predict) phenomena in software projects and to create toolsthat

improve software productivity/quality/lead times

10 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Change Data

Time. Date

#lines added

File ModuleDelta

MR

Developer

Release Detected

Control
Version

System

CM
SystemRelease Submitted

Reporter

Rep. Date

Load

Resolver

Res. Date

11 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Measures

✦ H1: the number of field MRs found and the root cause of these

problems

✦ H2: change effort and the amount of code that needs to be

inspected to make the change

✦ H3: the number of files touched in a change, the number of lines

added, and the number of lines in the files that are modified

12 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



H1: Defect Density

✦ The number of defects depends on release size [1]

✦ Reported defects and submitted changes in registration domain

✦ Four pre- and one post-refactoring release

Release Size Field defects

pre-Refactoring 526 41

post-Refactoring 80 0

✦ Adjust for the shorter exposure of the last release

✦ assume only 50% of defects in the first 7 months (20)

✦ Fisher’s exact test p-value 0.06

13 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



H1: Defect Density

✦ Large differences needed to get significance for rare events

✦ Alpha and beta trials

✧ All problems were in preexisting functionality — i.e., refactoring

faithfully reproduced them

14 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



H2: Change Effort
Stage Number of changes average(log(PersonMonths))

Pre-Refactoring 292 −1.12

Post-Refactoring 151 −1.23

✦ two-sample t-test oflog(effort) p-value.06

✦ Mann-Whitney oflog(effort) p-value.06

✦ The LOC in the refactored area decreased by 50%

15 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



H3: Scope Reduction
Measure In Registration Refactored

Files UP

Delta UP

Lines Added Down

Lines Modified Down

✦ a single file to several files after refactoring

✦ feature changes have larger scope than fixes

✦ refactoring reduced size 50%

✦ the trend in change scope depends operationalization

✦ when functionality should be kept in a single versus multiple

files, what is the optimal file size?

16 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Validation

✦ Reality

✧ Verified the process

✧ Verified selection of relevant changes (MRs)

✧ Manually inspected all field MRs

✧ Several operationalizations

✦ Modeling

✧ Distribution: take logs or use nonparametric

✧ Normalize by size where needed

✧ Apply relevant models

✦ A case study — no causal inference

17 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Summary

✦ Changeability as top objective

✦ Practical impact of the study

✧ Organizational support

✧ Two other domains undergoing refactoring

✧ A course on refactoring taken by 20 developers

✦ Other insights

✧ Complex practical constraints on re-engineering

✧ Difficult to detect impact even when techniques appear to work

✧ Effort impact of around 11%, defect - significant

18 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



.References
[1] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using software

change history.IEEE Transactions on Software Engineering, 26(2), 2000.

19 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Bio

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in AppliedMathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Software Technology Research Department

of Avaya Labs. Previously he worked at Software Production Research Department of Bell Labs.

20 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005


