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Objective

✦ Legacy software is difficult and fault prone to change

✧ Is it possible to do re-engineering on “live” system given the need to

support several deployed releases (streams of fixes) and in parallel

with new feature introduction (streams of features)?

✧ What value such re-engineering may bring?

✧ Will it survive through future changes?

✦ Intuitive conjecture: re-engineering will increase changeability

— ability to make changes to software with minimal effort and

without introducing many defects
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Context

✦ One domain of Avaya’s IP telephony software

✦ 30 KLOC C++, ASN.1 generated code, 3rd party protocol stack

within 7 MLOC system

✦ 40 different developers over 5 years

✦ Design degradation

✦ Constant change

✧ inflow of defects from 5+ deployed releases

✧ changes to implement new functionality for 2+ future releases
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Outline for the remaining talk

✦ Refactoring and re-design

✦ Hypotheses

✦ Methodology

✦ Results

✦ Validation

✦ Conclusions
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Software Refactoring

✦ For migrating legacy code to a target design

✦ Improve code structure without changing external behavior

✦ Sequence of simple behavior preserving code transformation
steps

✦ For instance: “Extract Method”: Turn a code fragment into a
method whose name explains the purpose of the method.
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Refactoring team

✦ 2 developers without experience with the legacy code, but experts

in protocol-composition-design and software refactoring

✧ Analysis, design, and refactoring

✦ 3 subject matter experts knowledgeable in target subsystem,

development environment, and test environment

✧ Consulting, design reviews, and code reviews
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Design
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Modules

8 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Refactoring Hypotheses

✦ H1: The customer reported defect rate will improve

✧ collaboration-based design

✧ refactoring exposed pre-existing issues

✦ H2: The refactoring reduces the effort required to make changes

✧ information hiding

✦ H3: The refactoring reduces the scope of changes within the

restructured domain

✧ if design is good changes will be within modules

✧ changes within a module are likely to touch few files
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Measurement Methodology

✦ Software is created by making changes to it

✧ A delta is a single checkin (ci/commit/edput) representingan atomic

modification of a single file with following attributes

✧ File, Date, Developer, Comment

✧ Other attributes that often can be derived:

✧ Size (number of lines added,deleted)

✧ Lead time (interval from start to completion)

✧ Purpose (Fix/New)

✦ Approach

✧ Use project’s repositories of change data to model (explainand

predict) phenomena in software projects and to create toolsthat

improve software productivity/quality/lead times
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Change Data

Time. Date

#lines added

File ModuleDelta

MR

Developer

Release Detected

Control
Version

System

CM
SystemRelease Submitted

Reporter

Rep. Date

Load

Resolver

Res. Date
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Measures

✦ H1: the number of field MRs found and the root cause of these

problems

✦ H2: change effort and the amount of code that needs to be

inspected to make the change

✦ H3: the number of files touched in a change, the number of lines

added, and the number of lines in the files that are modified
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H1: Defect Density

✦ The number of defects depends on release size [1]

✦ Reported defects and submitted changes in registration domain

✦ Four pre- and one post-refactoring release

Release Size Field defects

pre-Refactoring 526 41

post-Refactoring 80 0

✦ Adjust for the shorter exposure of the last release

✦ assume only 50% of defects in the first 7 months (20)

✦ Fisher’s exact test p-value 0.06
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H1: Defect Density

✦ Large differences needed to get significance for rare events

✦ Alpha and beta trials

✧ All problems were in preexisting functionality — i.e., refactoring

faithfully reproduced them
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H2: Change Effort
Stage Number of changes average(log(PersonMonths))

Pre-Refactoring 292 −1.12

Post-Refactoring 151 −1.23

✦ two-sample t-test oflog(effort) p-value.06

✦ Mann-Whitney oflog(effort) p-value.06

✦ The LOC in the refactored area decreased by 50%
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H3: Scope Reduction
Measure In Registration Refactored

Files UP

Delta UP

Lines Added Down

Lines Modified Down

✦ a single file to several files after refactoring

✦ feature changes have larger scope than fixes

✦ refactoring reduced size 50%

✦ the trend in change scope depends operationalization

✦ when functionality should be kept in a single versus multiple

files, what is the optimal file size?
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Validation

✦ Reality

✧ Verified the process

✧ Verified selection of relevant changes (MRs)

✧ Manually inspected all field MRs

✧ Several operationalizations

✦ Modeling

✧ Distribution: take logs or use nonparametric

✧ Normalize by size where needed

✧ Apply relevant models

✦ A case study — no causal inference

17 B. Geppert, A. Mockus, and F. Roessler Refactoring for Changeability Como, 2005



Summary

✦ Changeability as top objective

✦ Practical impact of the study

✧ Organizational support

✧ Two other domains undergoing refactoring

✧ A course on refactoring taken by 20 developers

✦ Other insights

✧ Complex practical constraints on re-engineering

✧ Difficult to detect impact even when techniques appear to work

✧ Effort impact of around 11%, defect - significant
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