
Succession: Measuring Transfer of Code and
Developer Productivity

Audris Mockus

audris@avaya.com

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/

Outline: Measuring and Using Succession

✦ Motivation: code as functional knowledge

✦ How to measure succession?

✦ How succession affects developer productivity?

✦ Implications

2 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Premise: Code as Functional Knowledge

✦ Functional knowledge

✧ Scholarly and literary works need a subject to interpret/perform them

✧ Code just needs a computer to be executed

✦ Open source code

✧ A vehicle for innovation through reuse (build on existing knowledge)

✧ A common platform for everyone to express themselves (contribute

their knowledge)

✦ Codebase for legacy systems encodes thousands of person-years

of knowledge on:

✧ the organization (process of producing the code) and

✧ the market (value the software provides to users)

3 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Code as functional knowledge: implications

✦ Developers aretransient, but the code iseverlasting

✦ Developers canonly leave a lasting impact

✧ throughchangesto the code and

✧ throughtraining developers who succeed them

✦ Traces developers leave in the code shed light on how software is

created and how developers interact

✦ What happens in a succession: when developers change, but
code stays?

4 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

What are we doing: domain and method

✦ Science

✧ X is the study ofpast human events and activities

✧ Y is the study of humancultures through therecovery,

documentation and analysis ofmaterial remains

✧ Z is the study of humanteamsthrough therecovery, documentation

and analysis ofdigital remains

✦ Method

✧ Tomography is image reconstruction from multiple projections

✧ Organizational tomography is the reconstruction of structure and

behavior of a team from the digital traces it leaves in the code and

elsewhere

5 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Data sources

✦ People: organizational Directory (LDAP) snapshots

✧ Chronology: late 2001 and early 2003. Early 2004 until present:

weekly extracts.

✧ Attributes: personal ID, supervisor ID, department, location, phone,

email

✦ People to login maps

✧ Yellow pages (NIS), weekly extracts from three clusters

✧ login to LDAP attributes, name

✧ Proprietary problem reporting system (QQ), weekly extracts

✧ login to name, email

✦ Version control systems

✧ Chronology: 1990 until present, varies with project

✧ Attributes: login, date, file
6 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Validation: An example problem

✦ Problem: people change logins over time

✧ Change in IT infrastructure

✧ Change in security/authentication requirements

✦ Solution: detect such change and map login to the person:

✧ Map login to organizational IDs from LDAP

(POST/ActiveDirectory)

✧ Problem: LDAP IDs also change over time

✧ Solution: construct an ID unique to the person

✧ Use multiple attributes: for example, if ID changes but

name/phone/location do not

✧ If IDs do not overlap in time then conclude that ID changed

7 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Defining succession

✦ Definition: Implicit or virtual teamsare relationships among
individuals based on the affinity to the parts of the product they
are working or have worked on.

✦ Definition: Successionis a relationship between individuals
within the implicit teams reflecting the transfer of responsibilities
to maintain and enhance the product. There are various typesof
succession: here we are concerned with offshoring and referto
receiving party asfollowersand to the transferring party as
mentors.Note that, in general, followers and mentors do not need
to communicate with each other.

✧ Other successions types: new developers in an organization, code

reusers in OSS and other projects

✦ Objective: measuresuccessionand its impact.
8 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Projections and the inverse problem

✦ Projections

✧ “Engaging” with the code often leads to changing the code (here we

do not consider non-developer roles of a tester/documenter)

✧ The chronological order of engagements bymentorsandfollowers

should be reflected in the temporal order of changes

✦ The inverse problem (reconstruction or tomography)

✧ Implicit teams: developers changing the same packages, files,

methods, or lines

✧ Succession: pairs of developers with the most clear succession

signature

✧ More shared code

✧ Stronger chronological sequence

9 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Design of succession signatures

✦ For a developera, thementoris
b = arg maxb∈{Developers} S(a, b)

✧ S(a, b) > S(a, c) if b is more likely thanc to be a mentor fora

✦ For a pair of developersa, b the succession is reflected by:

✧ S0: the number offiles (packages, methods, or lines) with an earlier

first (median or last) change byb than thefirst (median or last)

change bya.

✧ S1: the number of files weighted by the proportion of developer’s

changes on that file.

✧ S2: the number of files weighted by the proportion of file’s changes

made by that pair of developers.

✧ S3: the number of files weighted by the proportion of developer’s

changes on that file and by the proportion of file’s changes made by

that pair of developers.
10 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Illustration of succession signatures

S0(d1, d2) = S0(d2, d1) = 1 =⇒ none

8

<

:

S1(d1, d2) = 1

2
+ 2

3

S1(d2, d1) = 1

2
+ 1

3

=⇒ d1 > d2

8

<

:

S2(d1, d2) = 1

4
+ 2

4

S2(d2, d1) = 1

2
+ 1

2

=⇒ d2 > d1

8

>

<

>

:

S3(d1, d2) =
1
2

2
+ 2

2

3

4

S3(d2, d1) =
1
2

2
+ 1

2

3

2

=⇒ d1 > d2

11 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Succession and real (not virtual) mentorship

✦ Pick a followerF1

✦ ∀Di calculateS0(F1, Di) and order:

S0(F1, D0) ≤ · · · ≤ S0(F1, Dn)

✦ Identify real mentorDk for F1 via in-

terview

✦ k is the rank for the real mentorDk

among all developers

✧ If S0 is unrelated to mentorship

thenk is uniform on[0, n].

✧ If S0 is capturing mentorship:

thenk << n.

Mentor? i S0(F1, Di)

0 33

1 32

k = 2 2 29

3 11

4 10

5 9

6 7

.

127 0

12 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Four succession signatures for ten followers

Ten mentor-follower relationships established via interviews

Performance of the signature is based on the rank of interview-identified pair among all

other pairs involving the follower

Flwr. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Tot.

V-Team 127 158 161 160 129 165 162 129 177 154 1522

S0 2 20 11 56 0 9 10 0 8 2 118

S1 0 51 9 126 5 44 81 9 35 39 399

S2 1 23 20 19 2 5 3 0 9 0 82

S3 1 25 7 111 4 4 39 0 13 0 204

Tot. 4 119 57 312 11 48 110 17 82 41 803

p-val S2 .01 .15 .12 .12 .016 .03 .019 .008 .05 .006 .05

Table 1: The ranks (starting from 0) of interview-derived mentors according to five

measures for 10 followers.

13 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Analyzing succession: theoretical framework

✦ Organizational socialization

✧ New entrants to an organization learn organizational culture and,

based on how successfully they can practice that culture, they move

up the hierarchy and to the center of decision making

✧ The result of such cultural socialization may be:

✧ Custodial: the newcomer completely preserves organizational

traditions

✧ Innovative: the newcomer changes information or mission of their

organizational function

✧ Organizational culture is a result of organizational evolution:

organizations that can not preserve it (have too innovativeculture) or

can not adjust it in response to changing environment (have too

custodial culture) disappear

14 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Organizational socialization: succession

✦ Hypotheses

✧ Offshoring succession is less informal/random=⇒ less innovation

✧ Mentors with expertise dispersed over several products would

provide mentorship that leads to more innovation

✧ Mentors that transfer expertise of their secondary products would

lead to less innovation by the followers

✧ Mentors with more followers would have less innovative followers

✧ Products with the oldest and largest code bases are likely tohave

lower productivity ratios

✧ The effectiveness of expertise transfer increases over time as the

organization improves its offshoring practices

✦ Custodial responses are likely to lead to a lower productivity ratio
because followers will have to learn from mentor’s example

✦ Productivity: number of delta (atomic changes) per month
15 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

The productivity ratio model

Table 2:log(Ratio) = T ime+Offshore+Primary +Breadth+

Size + log(NFollow). 1012 mentor-follower pairs. Adj-R2 = 59.

Estimate p-value eest 95%CI

Time of transfer −0.01 0.31

Offshoring −0.63 0.00 1

2
[0.42, 0.67]

Primary expertise −0.68 0.00 1

2
[0.40, 0.64]

Expertise breadth −1.41 0.00 1

2
[0.38, 0.64]

Large prod. −1.21 0.00 1

3
[0.21, 0.42]

Medium prod. −0.46 0.00 2

3
[0.52, 0.77]

ln(NF) −0.53 0.00
√

NF

16 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Organizational Tomography and Succession

✦ Succession phenomena: code stays, developers come and go

✧ Estimable: mentor-follower relationships are traceable

✧ Succession has steep costs/practical implications

✧ offshoring: need two to replace one

✧ size: need three for largest products, one for smallest

✧ expertise of the mentor

✧ transferring secondary expertise: two for one

✧ narrow mentor’s expertise: up to two for one

✧ too many followers: square root of the number of followers per

mentor

✦ Tomography: inverse problem approach adds rigor to empirical

studies based on project data

17 Audris Mockus Succession: Measuring Transfer of Code and Developer Productivity ICSE, 2009

Abstract

Code ownership transfer orsuccessionis a crucial ingredient in open source code reuse

and in offshoring projects. Measuring succession can help understand factors that affect

the success of such transfers and suggest ways to make them more efficient. We propose

and evaluate several methods to measure succession based onthe chronology and traces

of developer activities. Using ten instances of offshoringsuccession identified through

interviews, we find that the best succession measure can accurately pinpoint the most

likely mentors. We model theproductivity ratioof more than 1000 developer pairs

involved in the succession to test conjectures formulated using the organizational

socialization theory and find the ratio to decrease for instances of offshoring and for

mentors who have worked primarily on a single project or havetransferred ownership

for their non-primary project code, thus supporting a theory-based conjectures and

providing practical suggestions on how to improve succession.

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, and improving software development. He

designs data mining methods to summarize and augment software change data, interactive

visualization techniques to inspect, present, and controlthe development process, and statistical

models and optimization techniques to understand the relationships among people, organizations,

and characteristics of a software product. Audris Mockus received B.S. and M.S. in Applied

Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991 he received M.S.

and in 1994 he received Ph.D. in Statistics from Carnegie Mellon University. He works in the

Software Technology Research Department of Avaya Labs. Previously he worked in the Software

Production Research Department of Bell Labs.

