
Succession: Measuring Transfer of Code and Developer Productivity

Audris Mockus

Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ

audris@avaya.com

Abstract

Code ownership transfer or succession is a crucial

ingredient in open source code reuse and in offshoring

projects. Measuring succession can help understand

factors that affect the success of such transfers and

suggest ways to make them more efficient. We pro-

pose and evaluate several methods to measure succes-

sion based on the chronology and traces of developer

activities. Based on ten instances of offshoring succes-

sion identified through interviews, we find that the best

succession measure can accurately pinpoint the most

likely mentors. We model the productivity ratio of more

than 1000 developer pairs involved in the succession to

test conjectures based on the organizational socializa-

tion theory and find the ratio to decrease for instances

of offshoring and for mentors who have worked pri-

marily on a single project or have transferred owner-

ship for their non-primary project code, thus support-

ing a theory-based conjectures and providing practical

suggestions on how to improve succession.

1. Introduction

Present software development business practices are
trying to emulate the success of manufacturing process
by offshoring software development to countries with
lower labor costs and higher availability of workers.
The relatively more complex domain of software de-
velopment is making it difficult to achieve cost savings
comparable to offshored manufacturing. In this work
we investigate possible reasons for that challenge. Our
primary goal is to create methods to identify instances
of succession under the assumption that simpler and
direct but intrusive approaches, such as interviews, are
too costly, impractical, or impossible in many real-life
scenarios. A second goal is to investigate the effects of
succession on developer productivity given that cost-
reductions is a common reason to implement succes-

sion.

At the conceptual level, the code ownership transfer,
among other impacts, may lead to a change in the orga-
nizational structure without the corresponding change
in the product structure. Therefore, we expect to see
some changes in the product structure (or a change
in the structure of the receiving organization) as a re-
sult of such transfers. Finding such organizational and
product structure evolution may provide insights and
recommendations related to code ownership transfer in
particular and for improvements of organizational and
technical structure in general. More generally, such
transfers are manifest examples of organizational so-
cialization [20] and, according to that theory, are cru-
cial ways in which organizational knowledge and cul-
ture related to software development is preserved.

Our analysis primarily focuses on ramifications of
code ownership transfer for commercial and open
source software. However, we validate our succession
measures in the offshoring context, therefore some as-
pects of the findings are likely to be specific to that
context. We chose offshoring succession for validation
because of its significance to business and society and
because offshoring succession is often easier to verify
due to the deep emotional and practical impact it often
imprints on the participants. Succession within organi-
zations is often quite informal, is less readily recognized
by participants, and, therefore, is much harder to be
unequivocally established in an empirical investigation.

Given the difficulty of defining and measuring suc-
cession, we are focused on reframing the concepts to
reflect the same or similar phenomena and be subject
to measurement, and on techniques that demonstrate
its impact on products and organization. The first con-
cept involves implicit or virtual teams and it represents
undirected relationships among individuals based on
the affinity to the parts of the product they are working
or have worked on. Implicit team members may know
each other and communicate if they are working on the
same part of the product at the same time. However, if

they are separated temporally or are working on cloned
versions of the product, they may be unaware of each
other’s existence. Thus, they may not form a team in
the ordinary sense of the word and, consequently, we
use the term implicit team.

The second concept is needed to define the transfer
of responsibilities to maintain and enhance a part of
a product and involves directed (often temporal) rela-
tionships between individuals within the implicit teams
reflecting the chronological order in which different in-
dividuals were engaged with (owned) a particular part
of a product. We call it succession1. There are various
types of succession: we are primarily concerned with
offshoring and refer to receiving party as followers and
to the transferring party as mentors.

Our first objective is to create measures of implicit
teams and of the succession in them. The second ob-
jective of this work is to relate succession to outcomes
that motivate the practice in the first place: the re-
duction of development costs. To achieve that, we first
develop reliable measures of organizational dynamics
that reflect succession. Then, we use these measures
to identify multiple instances of succession and to com-
pare mentor and follower productivity under a variety
of scenarios. The hypotheses are based on conjectures
from the theory of organizational socialization [20] that
investigates how individuals learn established organiza-
tional practices and values.

We start from a description of the approach we took
in Section 2 and continue with the description of the
context for our study in Section 3. The measurement
framework for succession is described in Section 4 and
evaluated in Section 5. Section 6 evaluates the impact
of succession on developer productivity, related work is
discussed in Section 7, and conclusions are presented
in Section 8.

2. Methodology

Briefly, the overall approach we take to investigate
succession is to start from the general assumption that
such phenomena leave traces in the development and
IT systems and formulate hypotheses that reflect our
experience and intuition about how such phenomena
may be reflected in the observable traces and digi-
tal artefacts in software change and problem reporting
data. We then refine and validate these ideas using a
small empirical study that identifies actual instances of
succession. The hypotheses are evaluated by observing

1We borrow the meaning from ecology where succession

means the gradual and orderly process of change in an ecosystem

brought about by the progressive replacement of one community

by another until a stable climax is established.

if the observed patterns fit these actual instances of
succession. We then apply these patterns to determine
succession on other parts of the product and in other
projects and investigate how productivity of developers
changes as a result of the succession.

Notably, the overall approach we take is quite simi-
lar to archaeology, except for the fact that we study
a narrow aspects of human culture reflected in or-
ganizational relationships and recover, document, and
analyze digital (not material) remains. Because ob-
servations available to us involve only projections of
the organizational structure on the work product and
support systems, the attempt to reconstruct organiza-
tional structure is analogous to image tomography (im-
age, often three-dimensional, reconstruction from mul-
tiple projections), thus the term organizational tomog-
raphy may be suitable to describe methods reconstruct-
ing organizational structure from the projections or
traces in version control, problem tracking, and other
supporting systems. The amount and complexity of
available data in such systems necessitates the use of
analysis tools except, possibly, in the smallest projects.
Therefore, we rely on methods described in [11]. The
following steps are applied iteratively until data of suf-
ficient quality to perform desired analysis is obtained:
1. Retrieve the raw data from the underlying systems
via access to the database used in the project support
tools or by ”scraping” relevant information from the
web interfaces of these systems.
2. Clean and process raw data to remove artifacts in-
troduced by underlying systems. Verify completeness
and validity of extracted attributes by cross-matching
information obtained from separate systems.
3. Construct meaningful measures that can be used to
assess and model various aspects of software projects.
4. Analyze data and present results and collect feed-
back for further validation.

In this project we rely on data that has passed
through the first two levels of the pipeline and we will
focus primarily on the elaboration of the remaining two
steps. To discover measures of virtual teams and suc-
cession we propose hypotheses that state how such phe-
nomena would be reflected in the observable traces as
software changes. These hypotheses are used to con-
struct measures that represent features of interest (step
3 in the overall analysis). The succession measure de-
fined on the domain of developer pairs can be thought
of as a likelihood function indicating probability that
the first developer has taken over some (or all) of the
responsibilities of the second developer. The pairs with
the highest likelihood can then be expected to repre-
sent instances of succession.

To investigate these hypotheses and to validate the

succession we conduct an empirical study to identify
actual instances of the phenomena through interviews
and document search. The family of proposed mea-
sures is evaluated on this sample to determine how well
they capture the phenomena of interest. We do that
by calculating how the actual mentors ranked with re-
spect to other developers according to the succession
measure.

Once we identify the most suitable succession mea-
sure, we use it to identify succession on a larger sam-
ple of developers where we can not use interviews due
to costs or inability to contact relevant people who,
in many cases, have left the project. This larger and
more diverse sample of follower-mentor pairs is used to
study follower/mentor productivity ratio. To pose hy-
pothesis in this domain we rely on the organizational
socialization theory.

3. Context

We investigate software development in Avaya with
many past and present projects of various sizes and
types involving more than two thousand developers.
As described above, we conduct two empirical studies:
one involving the validation of succession measures and
another involving modeling of the productivity ratio.
In the first study we identified actual instances of suc-
cession in a medium sized (1-3 MNCSL) project that
has used offshoring practices for several years and has
built a substantial expertise in offshoring. In broad
strokes, the practice identifies the tasks and individu-
als (mentors) whose work is a candidate for offshoring
and obtains their cooperation by assigning them differ-
ent responsibilities or by providing a separation bonus
contingent on expertise transfer. At the same time,
a small team of developers in the location is identi-
fied and their team lead is brought to the mentor’s
location to follow (shadow) mentor’s work by partic-
ipating in meetings, phone calls, and other business
related activities together with the mentor. After a
few weeks of shadowing, the team lead returns to the
offshore location and trains remaining members of the
team. Even though the commonly used term is shadow,
we do not believe it properly reflects the semantics of
what is going on2. We, therefore, propose to use the
term follower, because it captures the aspect of shad-

owing by following the mentor around, and the aspect
of learning: one that follows the opinions or teachings
of another.

In particular, we have identified 14 mentors and
their followers to evaluate measures of code ownership

2For example, the mentor would need to be called obscurer

even though she enlightens the shadow with her expertise.

transfer. Four of these individuals were not involved
in development tasks, therefore we had only ten pairs
representing succession of development work.

The second study involves more than one thousand
followers for thirteen major products ranging from 29
to 252 developers residing in five US and five interna-
tional locations ranging in size from 12 to 482 followers
with the primary offshore location having 182 followers.
The remaining international locations were either no
longer a destination for offshoring work or were there
because of a prior acquisition of another company. This
set of followers was selected from a much larger set of all
Avaya developers and software projects to exclude nu-
merous smaller, not affected by offshoring, or no longer
active projects.

Two primary sources of data were utilized in the
study. The changes to the source code were ob-
tained from a variety of version control systems used in
Avaya, including SCCS, ClearCase, CVS, and SubVer-
sion. The data were cleaned to eliminate administra-
tive changes (changes made for the purpose other than
to enhance or fix the product) using a variety of tech-
niques appropriate for each system and each project.
For example, the branch delta in SCCS or CearCase
that do not make changes to the underlying source code
were excluded. The data cleaning and validation was
done to support project measurement and prior stud-
ies, for example, [8, 13] and, therefore is not described
in more detail here. We used developer login mak-
ing the change, the date of change, and the filename
(including path) of the changed source code file. Be-
cause several projects have changed source code repos-
itories over the considered period, we have normalized
the pathnames of files in such projects to be indepen-
dent of the repository. Furthermore, we have mapped
the pathnames to product names to associate each file
with a software product where it was used.

The second source of data was an organizational
database (POST) that lists individuals, their organi-
zation, and contact information. We had collected fre-
quent snapshots of this data over a period of seven
years. The purpose of this data was to establish the
location(s) for each developer. As any other source of
data, it had its share of anomalies and issues. First,
developer logins were not always identical to email han-
dles in POST. Furthermore, logins have changed over
time for some developers because a recent policy re-
quired logins to match email handles. Third, the email
handles and even organizational IDs have changed for
some developers, especially for a small group of devel-
opers offshore that were initially brought to the US
location and later went to their permanent offshore
location where they got a new organizational ID. To

deal with these issues we used a NIS database (snap-
shots of which we have also collected over seven years)
that mapped login to the organizational ID and the
full name of the person authorized to use the login.
This extra piece of information allowed us to establish
the identities of developers over time despite the or-
ganizational ID’s, email handles, and sometimes even
names (for example, as a result of a marriage) chang-
ing. We have used these sources of data to map logins
and organizational IDs to unique numeric IDs identi-
fying each participant. These unique IDs were then
substituted for logins in the code change data and for
organization IDs in the POST data to normalize iden-
tity information and to provide more privacy (some
developers could be recognized from their login). From
POST data we used only the location of the developer
based on their address and phone number. Obviously,
some developers have changed locations over time. We
have excluded few developers that moved across non-
offshore locations from further analysis and associated
only the main offshore location for the followers that
spent some time early on in the location where they
were mentored.

4. Measurement

To infer code transfer patterns from version con-
trol data we postulated four intuitive measures of suc-
cession and ranked all present and former developers
based on how close they were to each follower. The
rank of the real mentor would be high if the measure
approximates the likelihood of succession. To define
these measures we consider how the succession may
be reflected/projected onto the development support
systems. First, the responsibilities to maintain and
enhance the code leave records of code changes in a
version control system. Second, the chronological or-
der of engagements by mentors and followers should
be reflected in the temporal order of these changes.
The reconstruction or tomography problem is then to
reconstruct implicit teams and succession from such
change records. Implicit teams may then be measured
by linking developers that are changing the same pack-
ages, files, methods, or even lines of code, for example,
by counting the number of files both developers have
changed in the past. Succession may be measured by
selecting pairs of developers with the most clear succes-
sion signature reflecting the location in the code and
chronological order of the changes. The measures of
succession were constructed so that for developer a the
mentor b is determined by finding the developer maxi-

mizing the succession measure:

b = arg max
b∈{Developers}

S(a, b) (1)

Denote files as fi, i = 1, . . . , N , developers as dj , j =
1, . . . , M , and the time of changes as ck(fi, dj), k =
1, . . . , Kij . The idea behind the first measure is to
capture the temporal aspect of succession when one de-
veloper changes the file after another developer. The
first measure S0 counts files3 where the first4 change
a developer dj0 made occurred after the first change
a developer dj1 made. Denote the time of such first
change as FC(fi, dj) = mink ck(fi, dj). The first mea-
sure of succession is the cardinality of the subset of files
both developers changed, but developer dj0 made the
first change later than developer dj1 :

S0(dj0 , dj1) = ℵ{fi : FC(fi, dj0) > FC(fi, dj1)}

This measure treats all files equally, however some files
may be more relevant to the succession.

The idea behind the second measure S1 is to take the
temporal aspects of S0 into account and weights each
file by the fraction of changes developers made on that
file so that the files a developer changes most frequently
get more weight. Denote the number of changes devel-
oper j made to file i as nij , then:

S1(dj0 , dj1) =
∑

i:



nij0
, nij1

> 0

F C(fi, dj0
) > F C(fi, dj1

)

(

nij0
∑

l nlj0

+
nij1

∑

l nlj1

)

.

This way the files central to each developer get more
weight and have a large effect on the overall measure. If
developers overlap only on files they tend to change in-
frequently, the measure S1 would be low. The measure
may take values in the interval [0, 2], with S1 = 0 indi-
cating no overlap in files that were first touched later
by developer j0 and with S1 = 2 indicating that devel-
opers changed the same files with developer j0 always
making later first change than developer j1.

The third measure S2 also combines aspects of suc-
cession and implicit teams, but this time the weight is
based on the relative number of changes the two devel-
opers made to a file. Files changed mostly by others
where the two developers had contributed little would
not contribute much to the measure, but files where at
least one developer made significant fraction of changes

3For finer or coarser granularity it may make sense to count

individual lines, methods, or packages.
4We also considered median and last changes, for all four

measures of succession, but they did not perform well identifying

succession.

would contribute a lot.

S2(dj0 , dj1) =
∑

i:



nij0
, nij1

> 0

F C(fi, dj0
) > F C(fi, dj1

)

nij0 + nij1
∑

j nij

S2 also ranges from zero to two, with the value zero
indicating no overlap and value two indicating perfect
overlap as in measure S1.

The fourth measure S3 combines aspects of all three
measures by weighting by the frequency a file was mod-
ified by a particular developer and by the fraction of
developer’s changes that are devoted to a file:

S3(dj0 , dj1) =
∑

i:



nij0
, nij1

> 0

F C(fi, dj0
) > F C(fi, dj1

)

n2
ij0

P

l nlj0
+

n2
ij1

P

l nlj1
∑

j nij
.

Measures Si, i = 1, 2, 3 would be symmetric if the
condition FC(fi, dj0) > FC(fi, dj1) was eliminated,
making them suitable to measure implicit teams, not
just code transfer phenomena.

Figure 1 illustrates the measures on a trivial ex-
ample of two developers, two files and six changes.
Patterns represent files and colors represent developers
with squares representing changes. Curves link devel-
opers to files for each change. Because S0(d1, d2) =
S0(d2, d1) = 1 the first measure can not identify which
developer is a mentor. The second measure indicates
that d2 is a mentor for d1: S1(d1, d2) = 1

2
+ 2

3
= 7

6

and S1(d2, d1) = 1

2
+ 1

3
= 5

6
. The third and fourth

measures show the opposite, that d1 is a mentor for
d2: S2(d1, d2) = 1

4
+ 2

4
= 3

4
, S2(d2, d1) = 1

2
+ 1

2
= 1,

S3(d1, d2) =
12

2 + 22

3

4
= 11

24
, S3(d2, d1) =

12

2 + 12

3

2
= 5

12
.

Figure 1. Illustration of how succession mea-
sures are calculated.

5. Evaluation of succession measures

To evaluate these four measures we need to con-
sidered how close the best fitting mentor defined by
Equation 1 is to the actual mentor. For each measure
Si and each follower dj we ordered all remaining devel-
opers dk according to the magnitude of Si(dj , dk) in de-
creasing magnitude, so that k0 = argmaxk Si(dj , dk),
k1 = argmaxk 6=k0 Si(dj , dk), and so on. For each fol-
lower we thus got a list of values for each measure that
was sorted by magnitude in decreasing order. That
way each follower got a list of all potential mentors or-
dered by a particular measure. Looking at a particular
follower and a particular measure the first developer
in this ordered list represents the best mentor (accord-
ing to that measure) for that follower. We then looked
at the rank (position in this ordered list) of the actual
mentor. These ranks (starting from zero) are presented
in Table 1. In other words, if dk0 is the actual mentor,
then Table 1 contains zero, if dk1 is the actual mentor,
then Table 1 contains one, and so forth.

There are several patterns visible in the table. Sur-
prisingly, the purely temporal first measure S0 appears
to perform quite well in detecting mentor-follower rela-
tionships. Another surprise is that, arguably, the most
intuitive measure S1 where the weighting is done ac-
cording the fraction of developer’s changes on a file,
has the worst performance. Weighting by the fraction
of file’s changes made by a developer (S2) performs
uniformly better than the remaining measures. This
suggests that succession and ownership are mostly re-
lated to the fraction of file’s changes performed by a
developer, and not based on the fraction of developer’s
changes performed on a file. In other words, what mat-
ters most is who owns the file, not which files a devel-
oper spends most of their time changing. This is true
to the extent that the measure S3 incorporating both
weights appears to be inferior to measure S2 that in-
corporates only one weight.

The second observation concerns several followers
(2, 3, 4, and 9) for whom none of the measures have
top ranks for the actual mentors. A closer look at these
instances reveals that actual mentors were senior de-
velopers who have previously transferred ownership of
the code taken over by the follower to other developers.
These earlier followers occupy the top mentor rankings,
leaving the actual mentor further down in the ranking
list. We illustrate this point in Figure 2 where Follower
2 is shown connected with to the top two mentor can-
didates according to the top two values of S2. The top
value of S2 is represented by a solid edge and the sec-
ond value with a dashed edge. Edge thickness reflects
the value of S2. Black (dark) edges show the top men-

Follower 1 2 3 4 5 6 7 8 9 10 Total
V-Team 127 158 161 160 129 165 162 129 177 154 1522
S0 2 20 11 56 0 9 10 0 8 2 118
S1 0 51 9 126 5 44 81 9 35 39 399
S2 1 23 20 19 2 5 3 0 9 0 82
S3 1 25 7 111 4 4 39 0 13 0 204
Total 4 119 57 312 11 48 110 17 82 41 803
p-val S2 0.008 0.146 0.124 0.119 0.016 0.03 0.0185 0.008 0.051 0.0061 0.054

Table 1. The ranks (starting from 0) of interview-derived me ntors according to four measures for 10
followers.

tor candidates and the orange (light) edges show the
top follower candidates. The shortest solid edge (top
candidate) path from Follower 2 to the actual mentor
has three edges including developer 1 and developer 11
(developer numbers are unrelated to the follower num-
bers in Table 1).

Follower 2

Dev01 Dev02

mentor

Dev03Dev04 Dev11

Dev12

Dev08

Dev09Dev05 Dev06Dev07

Dev10

Dev14

Dev13 Dev15

Figure 2. Illustration of top-two mentor candi-
date graph for Follower 2 and measure S2.

This suggests that the succession measures may be
improved by constructing an ownership transfer graph
and determining ownership transfers utilizing proper-
ties (shortest paths) of that graph. Other possible im-
provements may be achieved by considering traces of
communication among developers. It is nearly impos-
sible to obtain such communication information based
on email or instant messaging for companies operat-
ing in countries with strong privacy rules. Fortunately,
workflow systems, such as bug tracking systems and
discussion boards prevalent in software projects, pro-
vide an alternative source of communication patterns.

The best possible sum of the ranks that could be
achieved is zero, but it is not realistic given a large
number of candidates. The worst possible sum of ranks
would be > 20K if the true mentor was ranked last

from all developers in the sample. A more reasonable
worst-case score would be having the true mentor to
be the last among developers that changed at least one
file in common with the follower (shown in the row la-
beled “V-Team” in Table 1). That would lead to a rank
sum of 1033, and an average rank sum for a random
selection of mentors would be around 500. For com-
parison, S2 has a rank sum of 82 (the sum is only 11
if we exclude followers 2, 3, 4, and 9). The comparison
with random selection can be formulated as a statisti-
cal test calculating the probability that the observed or
lower rank could have been obtained purely by chance.
These probabilities (commonly known as p-values) are
shown in Table 1 for measure S2 and indicate that mea-
sure S2 is significantly different from a random choice
of mentors. Ranks that have their p-value above 0.05
are shown in lighter color in Table 1.

More generally, given that teams of four to five de-
velopers are taking over the tasks of an individual, it
is not unreasonable to have ranks larger than zero,
because code ownership transfer is a group activity.
Therefore, the score of 11 for 6 followers (excluding 2,
3, 4, and 9) is probably close to the best we can ex-
pect for any measure of succession, while the scores for
the remaining followers may be improved through bet-
ter measures that take into account entire succession
graph as suggested above.

6. Evaluating the impact of succession

The ultimate objective of any software engineering
investigation is to determine if the phenomena under
study has tangible effects on software effort, quality, or
lead-time. Because succession is crucial to offshoring
practices that tend to be motivated by cost savings,
we investigate the impact of succession on developer
productivity. To accomplish that we needed to choose
a measure of productivity and to choose a larger sam-
ple of mentor-follower pairs. To place the investigation
in a theoretical framework we chose the theory of or-

ganizational socialization [20] because it can be used
to pose testable hypotheses about the outcome of var-
ious succession scenarios. We start with conjectures
of how different scenarios of succession should affect
developer productivity in Section 6.1, select the most
suitable measures of productivity in Section 6.2, discuss
the sample selection process in Section 6.3, present the
resulting model of productivity ratio in Section 6.4, and
discuss threats to validity in Section 6.5

6.1. How Succession Affects Developer Productivity

The organizational socialization theory [20] inves-
tigates how organizational culture including values,
norms, and practices is transferred and assimilated by
participants. In our context we are focused on develop-
ment practices specific to a particular product or a part
of product. These practices, to a large extent, include
the knowledge about other key players in the project,
their roles and responsibilities, and the ways of inter-
action that are more likely to bring the desired results.
Therefore the theory of organizational socialization is
a useful tool to analyze succession.

The concept of organization and individuals is based
on [17], which includes functional, hierarchical, and in-
teractional dimensions. Functional dimension defines
the type of tasks individuals perform. We focused on
the developer tasks, so the differentiation was primarily
based on the products or parts of products developers
were involved in. The hierarchical dimension defines re-
porting structure and it was primarily reflected in the
fact that the line management was primarily location
specific. Therefore, for developers spanning location
boundary the lowest common supervisor tended to be
further up the management hierarchy than in cases of
same-site interactions. The interactional dimension de-
fines the centrality of a person in the decision making
process, with more experienced people tending to have
more impact. Thus, a senior developer making major
architectural decisions would be higher in the interac-
tional dimension than a hypothetical junior developer
who is entrusted to fix only medium- and low-severity
defects.

The organizational socialization theory classifies
outcomes of individual’s adaptation to organizational
culture into roughly two classes. Custodial outcomes
represent complete preservation of organizational cul-
ture and job function. Innovative outcomes range from
expanding the information sources used to make deci-
sions to a redefinition of job’s mission. In our context,
an example of an innovative outcome would be a de-
veloper assigned to fix defects starting to use novel de-
bugging tools (expanding information sources) or try-

ing to influence development process to improve the
quality of bug reports or to prevent introduction of
defects (changing job’s mission). We assume in our
analysis that more innovative outcomes in software de-
velopment will lead to higher developer productivity.

Van Manen and Schiele [20] distinguish collective vs.
individual, formal, vs. informal, sequential vs. ran-
dom, fixed vs. variable, serial vs. disjunctive, and in-
vestiture vs. divestiture socializations as major predic-
tors of the socialization outcome and propose how each
may lead from custodial (preserving organizational tra-
ditions) to innovative (changing the information and
mission of the organizational function) outcomes. We
use only a subset of conjectures that are most salient
to succession and that can be measured in our context.

In particular, we distinguish between succession
within a location and succession that has offshoring
as its purpose. In both cases the socialization is in-
dividual (mentorship) and serial (taking over mentor’s
responsibilities). It is not clear to what extent we can
determine if investiture (no attempt to change individ-
ual) and divestiture (certain personal characteristics of
an individual are to be stripped) vary with different
scenarios of succession. The within-location succes-
sion can be characterized as less formal than across-
location succession because the follower works in the
same organization and does not have to travel for the
explicit internship. Within-location succession is more
likely to be random and event driven learning (needing
mentor help for a particularly vexing defect) learning
than a more scripted and sequential offshoring men-
torship scenario. Within-location succession may also
have a more variable time-table than the trip-duration
bounded schedule of the offshoring followers. However,
according to interviews, there is an indication of contin-
ued professional collaborations between a follower and
a mentor even in cases where the mentor leaves the or-
ganization suggesting that even offshoring socialization
is variable and goal- not schedule-driven. According to
conjectures in [20], informal, random, and fixed time
table successions are more likely to lead to innovative
outcomes. Given clear differences in informal and ran-
dom aspects and less clear distinction in the time table,
we would expect that:
Proposition 1. Offshoring succession leads to less in-
novation.

The second aspect that we distinguish in succession
scenarios relates to the breadth of mentor’s expertise.
We operationalize it by the percent of changes done on
the product most frequently changed by the mentor.
Higher value of that measure indicates that mentor’s
work is primarily concentrated on that single product,
while lower values indicate that the mentor had sub-

stantial experience in other products. Such breadth of
experience is likely to increase mentor’s understanding
of what it takes to master a new codebase and, there-
fore, to improve succession:
Proposition 2. Mentors with expertise dispersed over
several products would provide mentorship that leads
to more innovation.

The third aspect that varies in succession scenarios
is related to what area of expertise is transferred from
a mentor to a follower. Mentors tend to be more senior
developers that have worked on several products, but
if the succession is done on a product that is not the
primary area of expertise for the mentor, it may lead
to a less effective transition.
Proposition 3. Mentors that transfer expertise of
their secondary products would lead to less innovation
by the followers.

We also propose that:
Proposition 4. The effectiveness of expertise trans-
fer increases over time as the organization improves its
offshoring practices.

The mentors with the largest numbers of followers
are likely to be most productive, therefore an aver-
age follower would appear less productive in compari-
son, thus lowering the productivity ratio. Furthermore,
mentors with the largest numbers of followers are less
likely to spend as much time on mentorship of each fol-
lower, potentially reducing the amount of transferred
expertise and resulting in less innovative followers.
Proposition 5. Mentors with more followers would
have less innovative followers.

Finally, we expect that the productivity ratio would
depend on the complexity of the transferred knowledge.
This is not explicitly stated in [20], but can be easily
derived based on the understanding that bigger and
older products have more elaborate rules and tradi-
tions and, therefore, require more custodial responses
from the newcomers and requires more time from a
newcomer to become central enough in the organiza-
tion to be able to implement their innovations.
Proposition 6. Products with the oldest and largest
code bases are likely to have lower productivity ratios.

6.2. Measuring Developer Productivity

Conceptually, the productivity of a developer is the
number of product units (output) produced over some
unit of effort (inputs). For commercial developers who
are employed full-time, the inputs may be roughly
approximated by developer time (staff-months) mul-
tiplied by salary and other employment costs. How-
ever, unlike in manufacturing, in software the product
units are typically not well defined. Most commonly

used measures of software output lines of code (LOC)
or Non-Commentary Lines of Code (NCSL) are easy
to obtain but tend to have numerous drawbacks and
have to be adjusted for system size, staffing levels, de-
velopment capability, programming language, the ex-
tent of reuse, and type of development activity (see,
e.g., [3, 7]). Another commonly used measure of out-
put is Function Points [1]. However, it is more difficult
to calculate and was not used in this organization.

Therefore, we chose to use number of changes
per staff-month as a pragmatic measure of developer
productivity, because it was readily available (simi-
lar to NCSL) and has been successfully used in the
past [2, 12]. In particular, the study in [2] has investi-
gated a relationship between software features that are
sold to customers and the number of changes needed to
implement that feature and found a strong relationship
between changes and sellable functionality. The sum-
mary of developer experience with respect to a part
of the system expressed in the number of changes was
found to reflect developers’ and managers’ subjective
perceptions of expertise [12]. Furthermore, a study of
global development found that it takes more than a
year for developers to reach full productivity (measured
in changes per month) on a large telecommunication
system [14].

It is important to note that changes per staff-month
may not be suitable to measure individual’s perfor-
mance in a performance evaluation setting because it is
likely to have fairly large variance and is easy to manip-
ulate if it was used for such a purpose. However, it ap-
pears to be adequate in situations where it is not used
for performance evaluation (and there are no other mo-
tivation for developers to make unnecessary changes),
and the sample is large enough to reduce the inherently
large variances. One of the key assumption here is that
the source code is kept strictly under version control, as
was the case in our study. Furthermore, because men-
tors and followers make changes to the same files, the
comparisons between them automatically adjusts for
the inherent differences in making changes to different
applications, using different programming languages,
and other code related factors.

6.3. Inferring succession

The resulting data including numeric IDs, locations,
dates, and file names was filtered further to remove
developers that were primarily involved in supporting
version control, build, and test environments and other
internal tools that spanned multiple software projects.
Finally, followers that spent less than four months mak-
ing changes to the code or made less than 100 changes

were excluded to limit the impact of learning on our
results.

Based on the experiences of fitting mentor-follower
relationships described in Section 5, we applied the best
performing measure S2 on a sample of 1012 potential
followers to find their most likely mentors. All follower-
mentor pairs overlapped in time, suggesting that the
followers were aware of mentor’s existence even if they
did not go through an explicit mentorship relationship.

6.4. Model of Productivity Ratio

To test propositions in Section 6.1 we fit a regres-
sion model with response being the ratio of productiv-
ity as defined in Section 6.2 between the follower and
the mentor. The predictors are:
PR The ratio of follower to mentor productivity. To
make the distribution less skewed we have transformed
it using logarithmic transformation.
Fr Date of the first change made by the follower to ac-
count for the organizational learning over time.
Off An indicator that the mentor-follower relationship
was offshoring.
Prd An indicator that the primary mentor expertise
was gained for a different product.
Brdth Concentration of mentor’s expertise repre-
sented by the fraction of mentor’s changes for their
primary product.
NF The number of followers for a mentor, representing
mentor’s skill, seniority, and the lack of time to devote
to any particular follower. To make the distribution
less skewed we have transformed it using logarithmic
transformation.
Lrg Indicator of a very large system with tens of
MLOC.
Md Indicator of a medium size system with several
MLOC.

The model for the regression shown in Table 2 was:

ln(PR) ∼ Fr+Off+Prd+Brdth+Lrg+Md+ln(NF)

According to coefficient of the offshoring predictor,
Proposition 1 is supported by the data. In particu-
lar, offshoring succession roughly halves the produc-
tivity ratio (e−0.63 ≈ 0.5) with 95% confidence inter-
val of [0.42, 0.67]. Similar result also holds for Propo-
sition 3. Transfering products that are not primary
to the mentor also roughly halves the productivity
ratio (e−0.68 ≈ 0.5) with 95% confidence interval of
[0.4, 0.64].

Proposition 2 is supported by the data and a hy-
pothetical mentor that spends 100% of their changes
on one product leads to roughly half (e−1.41/2 ≈ 0.5)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.85 19.876 1 0.27

Fr −0.01 0.010 −1 0.31
Off −0.63 0.125 −5 0.00
Prd −0.68 0.118 −6 0.00

Brdth −1.41 0.267 −5 0.00
Lrg −1.21 0.166 −7 0.00
Md −0.46 0.099 −5 0.00

ln(NF) −0.53 0.033 −16 0.00

Table 2. The productivity ratio model with
1012 mentor-follower pairs and Adj-R 2 = 59.

of the productivity ratio as compared to a hypotheti-
cal mentor that spends only 50% of changes on their
primary product. The 95% confidence interval for this
ratio is [0.38, 0.64].

There appears to be no support for Proposition 4
that the productivity ratio increases over time: the
coefficient is not significantly different from zero.

Proposition 5 is supported and the productivity ra-
tio drops roughly in proportion to the square root
(power of 0.53) of the number of followers.

Finally, Proposition 6 is also supported with
the largest products having approximately one third
(e−1.21 ≈ 0.3) of the productivity ratio of small prod-
ucts with the 95% confidence interval of [0.21, 0.42].
Medium sized products have roughly two-thirds
e−0.46 ≈ 0.63 the productivity ratio of small products
with the confidence interval of [0.52, 0.77].

It is important to note that the model does not im-
ply that the follower productivity is always lower than
the mentor productivity. In fact, under optimal condi-
tions when the succession is not offshoring, the product
is small, the mentor is transfering expertise of their
main product, and the mentor has one follower, the
predicted productivity ratio is bigger than one.

The findings confirm a number of theoretical propo-
sitions based on organizational socialization theory
and, more importantly, provide a method to collect
relevant data and test new conjectures related to the
transition of development work.

These findings also have a number of important
practical implications. First, the offfshoring succession
has high costs. While we could not confirm the need for
four to five ratio of new offshore developers per mentor
for smaller products (the estimate is two to one), it ap-
pears that the ratio needs to be even higher (six to one)
for the largest products. Therefore, offshoring should
always start with smaller, newer projects and cost and
other implications should be carefully considered in the
very large and/or very old projects.

In addition to choosing the right project, choosing
the right mentor may also increase the productivity
ratio. The results suggest that followers with mentors
having a broader base of expertise that spans more
than one product have better productivity ratio than
followers with mentors that worked on a single project.

Mentors appear to have trouble transfering their ex-
pertise to a large number of followers, therefore even
the best mentors should limit the number of their fol-
lowers.

6.5. Threats to Validity

Broadly, there are questions about the extent to
which the results for Avaya projects would generalize
to the rest of the industry, questions regarding the abil-
ity of the succession measure to detect the mentor for
a given follower, and questions related to the partic-
ular model used to test hypotheses of organizational
socialization.

The set of Avaya projects considered in this analy-
sis is quite diverse and ranges from embedded devices
and high-availability server software to desktop appli-
cations. This suggests that similar results may be ex-
pected in other companies as well.

The ability of the succession measure to point out
actual mentors is another important point. The vali-
dation was conducted in the most clear-cut situation
of offshoring context and may be more difficult to val-
idate in less clear cases for other types of succession.
Nevertheless, the fact that the followers primarily work
on the same code as mentors, points out the fact that
determining the actual formal mentor for a follower (if
one was ever assigned) may not be so important. In
fact, the measure could be used as a definition of the
“virtual mentor.” We have investigated the sensitivity
of our results to the alternative selection of mentors.
In particular, we fitted the model shown in Table 2 re-
placing the top choices of the mentors with the second,
third, fourth, and fifth best choices (according to S2

measure) for each follower. The same coefficients were
significant and had the same sign, but the model fit
went down with each subsequent choice from the ad-
justed R2 of 0.6 for the top choice to the adjusted R2 of
0.35, 0.26, 0.25, and 0.22 for the second, third, fourth,
and fifth best choices accordingly. This shows that the
results are not sensitive to the top five mentor choices.

Given observational nature of the study, there may
be other latent variables that explain variation of pro-
ductivity ratio and of predictors. However, the pre-
dictors themselves were not strongly correlated. Only
the predictor number of mentors and the predictor of
largest projects had a Spearman correlation of 0.66.

Remaining correlations were below 0.4.

7. Related work

While there are no published results that are sim-
ilar to this investigation, it touches upon multiple es-
tablished areas of software engineering research. From
the measurement perspective the interrelationships
among parts of a codebase were investigated in depth
in [5]. The fact that expert developers can be iden-
tified by observing code that they change was ex-
ploited in expertise visualization tool [12]. The rela-
tionship among developers using workflow and com-
monly changed codebase was utilized in identifying in-
terdependencies and coordination requirements in, for
example, [8, 6]. In [14], the code was chunked into in-
dependently changeable pieces of suitable size to fit the
capabilities of a particular offshore development loca-
tion. A detailed case study of what a volunteer has
to go through to join two open-source projects is pre-
sented in [21]. Succession, on the other hand, has not
been previously measured.

The investigations of developer productivity have a
long and rich history from early work on cost estima-
tion models [4] to more recent studies [15] and tool-
based approaches [18] that help address the issues of
how individual developers deal with code understand-
ing: a problem that is a crucial part of succession.
Findings from a more inclusive study of how individ-
ual developers work in large projects [9] and tools that
support awareness through source control system [16]
and code annotations [19] would nicely complement our
higher level recommendations of mentor selection in
succession.

8. Conclusions

We have proposed and validated a method to mea-
sure the phenomena of succession based on the infor-
mation in the version control and organization direc-
tory systems, proposed six organizational socialization
theory derived hypotheses on how different types of
succession affect developer productivity. The analysis
of more than one thousand developers involved in more
than ten products shows that there are large differences
in the productivity ratio. Larger projects, overloaded
mentors, and offshoring succession significantly reduce
the productivity ratio. Breadth of mentor expertise
and succession where mentor’s primary poduct is trans-
fered significantly increase the productivity ratio.

The succession becomes more important as the soft-
ware development increasingly follows in the offshoring

and outsourcing footsteps of the manufacturing and as
open-source code reuse in commercial projects becomes
more widspread. More generally, the succession is an
essential aspect of organizational dynamics in software
projects.

Clearly, despite the large size of the study, the re-
sults presented in this work would benefit from repli-
cation in other environments, yet promise of research
in this area is tantalizing. The potential to track the
transfer of code ownership in the universe of all soft-
ware code [10] and the ability to quantify how the prod-
uct and organization coevolve are likely to provide nu-
merous lessons and may significantly improve the way
software development organizations and product are
created and structured in the future.

Acknowledgments

We thank R. Hackbarth and J. Palframan for pro-
viding instances of succession and better understanding
of the offshoring process.

References

[1] A. J. Albrecht and J. R. Gaffney. Software function,
source lines of code, and development effort prediction:
a software science validation. IEEE Trans. on Software
Engineering, 9(6):638–648, 1983.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using
version control data to evaluate the impact of software
tools: A case study of the version editor. IEEE Trans-
actions on Software Engineering, 28(7):625–637, July
2002.

[3] V. Basili and R. Reiter. An investigation of human
factors in software development. IEEE Computer,
12(12):21–38, December 1979.

[4] B. Boehm. Software Engineering Economics. Prentice-
Hall, 1981.

[5] L. Briand, P. Devanbu, and W. Melo. An investigation
into coupling measures for c++. In Proceedings of the
19th international conference on Software engineering,
pages 412–421, Boston, MA, 1997.

[6] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Car-
ley. Identification of coordination requirements: Impli-
cations for the design of collaboration and awareness
tools. In Conference on Computer Supported Cooper-
ative Work CSCW’06, Banff, Alberta, Canada, 2006.

[7] B. Curtis. Substantiating programmer variability. In
Proceedings of the IEEE 69, July 1981.

[8] J. Herbsleb and A. Mockus. Formulation and prelimi-
nary test of an empirical theory of coordination in soft-
ware engineering. In 2003 International Conference on
Foundations of Software Engineering, Helsinki, Fin-
land, October 2003. ACM Press.

[9] T. D. LaToza, G. Venolia, and R. DeLine. Main-
taining mental models: a study of developer work
habits. In Proceedings of the 28th international confer-
ence on Software engineering, pages 492–501, Shang-
hai, China, 2006.

[10] A. Mockus. Large-scale code reuse in open source soft-
ware. In ICSE’07 Intl. Workshop on Emerging Trends
in FLOSS Research and Development, Minneapolis,
Minnesota, May 21 2007.

[11] A. Mockus. Software support tools and experimental
work. In V. Basili and et al, editors, Empirical Soft-
ware Engineering Issues: Critical Assessments and
Future Directions, volume LNCS 4336, pages 91–99.
Springer, 2007.

[12] A. Mockus and J. Herbsleb. Expertise browser: A
quantitative approach to identifying expertise. In
2002 International Conference on Software Engineer-
ing, pages 503–512, Orlando, Florida, May 19-25 2002.
ACM Press.

[13] A. Mockus and D. Weiss. Interval quality: Relat-
ing customer-perceived quality to process quality. In
2008 International Conference on Software Engineer-
ing, pages 733–740, Leipzig, Germany, May 10–18
2008. ACM Press.

[14] A. Mockus and D. M. Weiss. Globalization by
chunking: a quantitative approach. IEEE Software,
18(2):30–37, March 2001.

[15] M. P. Robillard and W. C. G. C. Murphy. How
effective developers investigate source code: An ex-
ploratory study. tse, 30(12):889–903, 2004.

[16] A. Sarma, Z. Noroozi, and A. van der Hoek. Palan-
tir: Raising awareness among configuration manage-
ment workspaces. In 25th International Conference on
Software Engineering (ICSE’03), page 444, 2003.

[17] E. Schein. The individual, the organization, and the
carier: A conceptual scheme. Journal of Applied Be-
havioural Science, 7:401–426, 1971.

[18] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Sup-
porting navigation in software. In 13th International
Workshop on Program Comprehension (IWPC’05),
pages 173–175, 2005.

[19] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby.
Shared waypoints and social tagging to support col-
laboration in software development. In Proceedings
of the 2006 20th anniversary conference on Computer
supported cooperative work, Banff, Alberta, Canada,
2006.

[20] J. Van Maanen and E. Schein. Towards a theory of or-
ganizational socialization. In B. Staw, editor, Research
in organizational behavior, volume 1, pages 209–264.
JAI Press, Greenwich, CT, 1979.

[21] G. von Krogh, S. Spaeth, and K. R. Lakhani. Com-
munity, joining, and specialization in open source
software innovation: a case study. Research Policy,
32(7):1217–1241, July 2003.

